Blue Laser for Production of Carbon Dots
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-06702S
GACR
P2022M33MS
European Union Next Generation EU for the italian PNRR
PubMed
39408511
PubMed Central
PMC11478752
DOI
10.3390/polym16192801
PII: polym16192801
Knihovny.cz E-zdroje
- Klíčová slova
- PBS, carbon dots, laser ablation in liquid, luminescence, polycaprolactone,
- Publikační typ
- časopisecké články MeSH
The synthesis of carbon dots (CDs) is gaining wide-ranging interest due to their broad applicability, owing to their small size and luminescence. CDs were prepared from charcoal via a one-step process using laser ablation in liquid without the use of reagents. The adopted method was based on the use of a commercially available continuous wave (CW) laser diode emitting a 450 nm wavelength and, for the liquid, a phosphate-buffered saline (PBS) solution, routinely used in the biological field. Photoluminescence analysis revealed fluorescence, at 480 nm, increasing with laser irradiation time. The atomic force microscopy (AFM) of the CDs revealed an average sphere shape with a size of about 10 nm. Biodegradable polycaprolactone (PCL), typically adopted in biomedicine applications, was used as a matrix to show the preserved luminescence, ideal for the non-invasive monitoring of implanted scaffolds in tissue engineering.
Zobrazit více v PubMed
Xu X., Ray R., Gu Y., Ploehn H.J., Gearheart L., Raker K., Scrivens W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004;126:12736–12737. doi: 10.1021/ja040082h. PubMed DOI
Kaczmarek A., Hoffman J., Morgiel J., Mościcki T., Stobiński L., Szymański Z., Małolepszy A. Luminescent Carbon Dots Synthesized by the Laser Ablation of Graphite in Polyethylenimine and Ethylenediamine. Materials. 2021;14:729. doi: 10.3390/ma14040729. PubMed DOI PMC
Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G., Wu A.M., Gambhir S.S., Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–544. doi: 10.1126/science.1104274. PubMed DOI PMC
Lovric J., Cho S.J., Winnik F.M., Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol. 2005;12:1227–1234. doi: 10.1016/j.chembiol.2005.09.008. PubMed DOI
Cao L., Meziani M.J., Sahu S., Sun Y.P. Photoluminescence Properties of Graphene versus Other Carbon Nanomaterials. Acc. Chem. Res. 2013;46:171–180. doi: 10.1021/ar300128j. PubMed DOI
Zhu S., Song Y., Zhao X., Shao J., Zhang J., Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015;8:355–381. doi: 10.1007/s12274-014-0644-3. DOI
Bao L., Zhang Z.-L., Tian Z.-Q., Zhang L., Liu C., Lin Y., Qi B., Pang D.-W. Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism. Adv. Mater. 2011;23:5801–5806. doi: 10.1002/adma.201102866. PubMed DOI
Yu P., Wen X., Toh Y.-R., Tang J. Temperature-Dependent Fluorescence in Carbon Dots. J. Phys. Chem. C. 2012;116:25552–25557. doi: 10.1021/jp307308z. DOI
Wang Y., Kalytchuk S., Zhang Y., Shi H., Kershaw S.V., Rogach A.L. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. J. Phys. Chem. Lett. 2014;5:1412–1420. doi: 10.1021/jz5005335. PubMed DOI
Zheng L.Y., Chi Y.W., Dong Y.Q., Lin J.P., Wang B.B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 2009;131:4564–4565. doi: 10.1021/ja809073f. PubMed DOI
Li L.L., Ji J., Fei R., Wang C.Z., Lu Q., Zhang J.R., Jiang L.P., Zhu J.J. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 2012;22:2971–2979. doi: 10.1002/adfm.201200166. DOI
Bourlinos A.B., Stassinopoulos A., Anglos D., Zboril R., Karakassides M., Giannelis E.P. Surface functionalized carbogenic quantum dots. Small. 2008;4:455–458. doi: 10.1002/smll.200700578. PubMed DOI
Fang Q., Dong Y., Chen Y., Lu C.-H., Chi Y., Yang H.-H., Yu T. Luminescence origin of carbon-based dots obtained from citric acid and amino group containing molecules. Carbon. 2017;118:319–326. doi: 10.1016/j.carbon.2017.03.061. DOI
Torrisi L., Cutroneo M. Alluminium plasma production at high laser intensity. J. Appl. Phys. 2014;115:083105. doi: 10.1063/1.4866878. DOI
Cutroneo M., Havranek V., Mackova A., Malinsky P., Silipigni L., Slepicka P., Fajstavr D., Torrisi L. Synthesis of porous polydimethylsiloxane gold nanoparticles composites by a single step laser ablation process. Int. J. Mol. Sci. 2021;22:12155. doi: 10.3390/ijms222212155. PubMed DOI PMC
Torrisi L., Cutroneo M., Ceccio G. Effect of metallic nanoparticle in thin foils for laser ion acceleration. Phys. Scr. 2015;90:1. doi: 10.1088/0031-8949/90/1/015603. DOI
Torrisi L., Cutroneo M., Silipigni L., Barreca F., Fazio B., Restuccia N., Kovacik L. Gold nanoparticles produced by laser ablation in water and in graphene oxide suspension. Phil. Mag. 2018;98:2205–2220. doi: 10.1080/14786435.2018.1478147. DOI
Li S., Chen M., Liu X. Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide. Opt. Express. 2014;22:18707–18714. doi: 10.1364/OE.22.018707. PubMed DOI
Asl P.M., Dorranian D. Effect of liquid medium temperature on the production rate and quality of graphene nanosheets produced by laser ablation. Opt. Quant. Electron. 2016;48:535.
Małolepszy A., Błoński S., Chrzanowska-Giżyńska J., Wojasiński M., Płociński T., Stobiński Z., Szymański Z. Fluorescent carbon and graphene oxide nanoparticles synthesized by the laser ablation in liquid. Appl. Phys. A. 2018;124:282. doi: 10.1007/s00339-018-1711-5. DOI
Beikzadeh S., Hosseini S.M., Mofid V., Ramezani S., Ghorbani M., Ehsani A., Mortazavian A.M. Electrospun ethyl cellulose/poly caprolactone/gelatin nanofibers: The investigation of mechanical, antioxidant, and antifungal properties for food packaging. Int. J. Biol. Macromol. 2021;191:457–464. doi: 10.1016/j.ijbiomac.2021.09.065. PubMed DOI
Yeong W.Y., Sudarmadji N., Yu H.Y., Chua C.K., Leong K.F., Venkatraman S.S., Boey Y.C.F., Tan L.P. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6:2028. doi: 10.1016/j.actbio.2009.12.033. PubMed DOI
Malik N. Thermally exfoliated graphene oxide reinforced polycaprolactone-based bactericidal nanocomposites for food packaging applications. Mater. Technol. 2022;37:345–354. doi: 10.1080/10667857.2020.1842150. DOI
Ezati P., Rhim J.-W. Pectin/carbon quantum dots fluorescent film with ultraviolet blocking property through light conversion. Colloids Surf. B Biointerfaces. 2022;219:112804. doi: 10.1016/j.colsurfb.2022.112804. PubMed DOI
Ezati P., Rhim J.-W., Molaei R., Priyadarshi R., Han S. Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit. Postharvest Biol. Technol. 2022;186:111845. doi: 10.1016/j.postharvbio.2022.111845. DOI
Huang S., Wang K., Wang S., Wang Y., Wang M. Highly Fluorescent Polycaprolactones with Tunable Light Emission Wavelengths across Visible to NIR Spectral Window. Adv. Mater. Interfaces. 2016;3:1600259. doi: 10.1002/admi.201600259. DOI
Koike N., Fukumura D., Gralla O., Au P., Schechner J.S., Jain R.K. Creation of long-lasting blood vessels. Nature. 2004;428:138. doi: 10.1038/428138a. PubMed DOI
Diao H.J., Wang K., Long H.Y., Wang M., Chew S.Y. Highly fluorescent and photostable polymeric nanofibers as scaffolds for cell interfacing and long-term tracking. Adv. Healthcare Mater. 2016;5:529. doi: 10.1002/adhm.201500693. PubMed DOI
Kohsakowski S., Santagata A., Dell’aglio M., de Giacomo A., Barcikowski S., Wagener P., Gökce B. High productive and continuous nanoparticle fabrication by laser ablation of a wire-target in a liquid jet. Appl. Surf. Sci. 2017;403:487–499. doi: 10.1016/j.apsusc.2017.01.077. DOI
Torrisi L., Torrisi A., Cutroneo M. Intense continuous wave laser to synthesize luminescent solution of carbon dots. Fuller. Nanotub. Carbon Nanostruct. 2024;32:866. doi: 10.1080/1536383X.2024.2340014. DOI
Torrisi L., Torrisi A., Cutroneo M. Luminescence enhancement of carbon dots synthesized by intense CW laser at 450 nm irradiating biocompatible solutions. Fuller. Nanotub. Carbon Nanostruct. 2024:12. doi: 10.1080/1536383X.2024.2391548. DOI
Mindivan F., Göktaş M. The green synthesis of carbon quantum dots (CQDs) and characterization of polycaprolactone (PCL/CQDs) films. Colloids Surf. A Physicochem. Eng. Asp. 2023;677:132446. doi: 10.1016/j.colsurfa.2023.132446. DOI
Asim N., Ahmadi S., Alghoul M.A., Hammadi F.Y., Saeedfar K., Sopian K. Research and Development Aspects on Chemical Preparation Techniques of Photoanodes for Dye Sensitized Solar Cells. Int. J. Photoenergy. 2014;2014:518156. doi: 10.1155/2014/518156. DOI
Wang L., Zhang X., Yang K., Wang L., Lee C.-S. Oxygen/nitrogen-related surface states controlled carbon nanodots with tunable full-color luminescence: Mechanism and bio-imaging. Carbon. 2020;160:298–306. doi: 10.1016/j.carbon.2020.01.029. DOI
Sigma-Aldrich, Phosphate Buffer Saline, Actual Website 2024. [(accessed on 28 August 2024)]. Available online: https://www.sigmaaldrich.com/IT/it/substance/phosphatebufferedsaline1234598765.
Acqua-calc.com, Density of Charcoal (Material), Actual Website 2024: Density of Charcoal in 285 Units of Density (aqua-calc.com) [(accessed on 28 August 2024)]. Available online: https://www.aqua-calc.com/page/density-table/substance/charcoal.
Tumuluru J.S., Hess J.R., Boardman R.D., Wright C.T., Westover T.L. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal. Ind. Biotechnol. 2012;8:113–132. doi: 10.1089/ind.2012.0004. DOI
Siemons R.V., Baaijens L. An Innovative Carbonisation Report: Technology and Environmental Impact. Termotehnika. 2012;XXXVIII:131–138.
Hoffman J., Chrzanowska J., Mościcki T., Radziejewska J., Stobiński L., Szymański Z. Plasma generated during underwater pulsed laser processing. Appl. Surf. Sci. 2017;417:130–135. doi: 10.1016/j.apsusc.2017.01.185. DOI
Yang G. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Prog. Mater. Sci. 2007;52:648–698. doi: 10.1016/j.pmatsci.2006.10.016. DOI
Li P., Xue S., Sun L., Zong X., An L., Qu D., Wang X., Sun Z. Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system. Light Sci. Appl. 2022;11:298. doi: 10.1038/s41377-022-00984-5. PubMed DOI PMC
Abdolmaleki A., Mohamadi Z. Acidic ionic liquids catalyst in homo and graft polymerization of ε-caprolactone. Colloid Polym. Sci. 2013;291:1999–2005. doi: 10.1007/s00396-013-2941-x. DOI
Benkaddour A., Jradi K., Robert S., Daneault C. Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry. Nanomaterials. 2013;3:141–157. doi: 10.3390/nano3010141. PubMed DOI PMC
Mintz K., Guerrero B., Leblanc R. Photoinduced Electron Transfer in Carbon Dots with Long-Wavelength Photoluminescence. J. Phys. Chem. C. 2018;122:29507–29515. doi: 10.1021/acs.jpcc.8b06868. DOI
Bhattacharyya S., Ehrat F., Urban P., Teves R., Wyrwich R., Döblinger M., Feldmann J., Urban A.S., Stolarczyk J.K. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat. Commun. 2017;8:1–9. doi: 10.1038/s41467-017-01463-x. PubMed DOI PMC
Ventrella A., Camisasca A., Fontana A., Giordani S. Synthesis of green fluorescent carbon dots from carbon nano-onions and graphene oxide. RSC Adv. 2020;10:36404. doi: 10.1039/D0RA06172G. PubMed DOI PMC
Backes E.H., Harb S.V., Beatrice C.A.G., Shimomura K.M.B., Passador F.R., Costa L.C., Pessan L.A. Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review. J. Biomed. Mater. Res. B Appl. Biomater. 2022;110:1479–1503. doi: 10.1002/jbm.b.34997. PubMed DOI
Hou Y., Wang W., Bartolo P. Investigation of polycaprolactone for bone tissue engineering scaffolds: In vitro degradation and biological studies. Mater. Des. 2022;216:110582. doi: 10.1016/j.matdes.2022.110582. DOI
Ahmadi S., Khoshkalampour A., Ghorbani M., Ramezani S., Ghasempour Z., Ghareaghajlou N. Development of active packaging material based on polycaprolactone/hydroxypropyl methylcellulose nanofibers containing carbon dot nanoparticles for meat preservation. LWT-Food Sci. Technol. 2024;197:115913. doi: 10.1016/j.lwt.2024.115913. DOI