Synthesis of Porous Polydimethylsiloxane Gold Nanoparticles Composites by a Single Step Laser Ablation Process
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34830035
PubMed Central
PMC8623421
DOI
10.3390/ijms222212155
PII: ijms222212155
Knihovny.cz E-zdroje
- Klíčová slova
- absorbance, curing time, laser ablation in medium, nanoparticles, polydimethylsiloxane, porous composite, scanning electron microscopy,
- MeSH
- dimethylpolysiloxany chemie MeSH
- kovové nanočástice chemie MeSH
- laserová terapie * MeSH
- nanokompozity chemie MeSH
- poréznost MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dimethylpolysiloxany MeSH
- zlato MeSH
Typically, polymeric composites containing nanoparticles are realized by incorporating pre-made nanoparticles into a polymer matrix by using blending solvent or by the reduction of metal salt dispersed in the polymeric matrix. Generally, the production of pre-made Au NPs occurs in liquids with two-step processes: producing the gold nanoparticles first and then adding them to the liquid polymer. A reproducible method to synthetize Au nanoparticles (NPs) into polydimethylsiloxane (PDMS) without any external reducing or stabilizing agent is a challenge. In this paper, a single-step method is proposed to synthetize nanoparticles (NPs) and at the same time to realize reproducible porous and bulk composites using laser ablation in liquid. With this single-step process, the gold nanoparticles are therefore produced directly in the liquid polymer. The optical properties of the suspensions of AuNPs in distilled water and in the curing agent have been analyzed by the UV-VIS spectroscopy, employed in the transmission mode, and compared with those of the pure curing agent. The electrical dc conductivity of the porous PDMS/Au NPs nanocomposites has been evaluated by the I-V characteristics. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis have monitored the composition and morphology of the so-obtained composites and the size of the fabricated Au nanoparticles. Atomic force microscopy (AFM) has been used to determine the roughness of the bulk PDMS and its Au NP composites.
Department of Physics Messina University 5 le F S D'Alcontres 31 98166 Messina Italy
Department of Solid State Engineering Institute of Chemical Technology 166 28 Prague Czech Republic
Zobrazit více v PubMed
SadAbadi H., Badilescu S., Packirisamy M., Wüthrich R. Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones. Biosens. Bioelectron. 2013;44:77–84. doi: 10.1016/j.bios.2013.01.016. PubMed DOI
Bai H.-J., Gou H.-L., Xu J.-J., Chen H.-Y. Molding a Silver Nanoparticle Template on Polydimethylsiloxane to Efficiently Capture Mammalian Cells. Langmuir. 2010;26:2924–2929. doi: 10.1021/la902683x. PubMed DOI
Bhatia S.N., Ingber D.E. Microfluidic organs-on-chips. Nat. Biotechnol. 2014;32:760–772. doi: 10.1038/nbt.2989. PubMed DOI
Vlachopoulou M.-E., Petrou P., Kakabakos S., Tserepi A., Beltsios K., Gogolides E. Effect of surface nanostructuring of PDMS on wetting properties, hydrophobic recovery and protein adsorption. Microelectron. Eng. 2009;86:1321–1324. doi: 10.1016/j.mee.2008.11.050. DOI
Abate A.R., Lee D., Do T., Holtze C., Weitz D.A. Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip. 2008;8:516–518. doi: 10.1039/b800001h. PubMed DOI
Lee J.N., Park A.C., Whitesides G.M. Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Anal. Chem. 2003;75:6544–6554. doi: 10.1021/ac0346712. PubMed DOI
Mata A., Fleischman A.J., Roy S. Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems. Biomed. Microdevices. 2005;7:281–293. doi: 10.1007/s10544-005-6070-2. PubMed DOI
Cutroneo M., Havranek V., Mackova A., Malinsky P., Torrisi A., Silipigni L., Sofer Z., Torrisi L. Selective modification of electrical insulator material by ion micro beam for the fabrication of circuit elements. Radiat. Eff. Defects Solids. 2020;175:307–317. doi: 10.1080/10420150.2019.1701462. DOI
Bodas D., Rauch J.-Y., Khan-Malek C. Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma. Eur. Polym. J. 2008;44:2130–2139. doi: 10.1016/j.eurpolymj.2008.04.012. DOI
de Menezes C.A. Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments. Phys. Status Solidi C. 2010;7:189–192. doi: 10.1002/pssc.200982419. DOI
Yin J., Yang Y., Hu Z., Deng B. Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J. Membr. Sci. 2013;441:73–82. doi: 10.1016/j.memsci.2013.03.060. DOI
Ibrahim I.D., Jamiru T., Sadiku R., Kupolati W.K., Agwuncha S.C. Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nanocomposites. J. Nanotechnol. 2016;2016:1–9. doi: 10.1155/2016/4235975. DOI
Torrisi L., Silipigni L., Restuccia N., Cuzzocrea S., Cutroneo M., Barreca F., Fazio B., Di Marco G., Guglielmino S. Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy. J. Phys. Chem. Solids. 2018;119:62–70. doi: 10.1016/j.jpcs.2018.03.034. DOI
Bai L., Zhu L., Ang C.Y., Li X., Wu S., Zeng Y., Ågren H., Zhao Y. Iron(III)-Quantity-Dependent Aggregation-Dispersion Conversion of Functionalized Gold Nanoparticles. Chem.-A Eur. J. 2014;20:4032–4037. doi: 10.1002/chem.201303958. PubMed DOI
Torrisi L., Cutroneo M., Ceccio G. Effect of metallic nanoparticles in thin foils for laser ion acceleration. Phys. Scr. 2014;90:15603. doi: 10.1088/0031-8949/90/1/015603. DOI
Chevrier D.M., Chatt A., Zhang P. Properties and applications of protein-stabilized fluorescent gold nanoclusters: Short review. J. Nanophotonics. 2012;6:064504-1. doi: 10.1117/1.JNP.6.064504. DOI
Wang Y., Chen J., Irudayaraj J. Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2+ Breast Cancer. ACS Nano. 2011;5:9718–9725. doi: 10.1021/nn2032177. PubMed DOI
Johnson J.A., Dehankar A., Robbins A., Kabtiyal P., Jergens E., Lee K.H., Johnston-Halperin E., Poirier M., Castro C.E., Winter J.O. The path towards functional nanoparticle-DNA origami composites. Mater. Sci. Eng. R. 2019;138:153–209. doi: 10.1016/j.mser.2019.06.003. DOI
Torrisi L., Restuccia N., Cuzzocrea S., Paterniti I., Ielo I., Pergolizzi S., Cutroneo M., Kovacik L. Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging. Gold Bull. 2017;50:51–60. doi: 10.1007/s13404-017-0195-y. DOI
Patel D., Singh R.P., Thareja R.K. Craters and nanostructures with laser ablation of metal/metal alloy in air and liquid. Appl. Surf. Sci. 2014;288:550–557. doi: 10.1016/j.apsusc.2013.10.072. DOI
Hamad A., Li L., Liu Z., Zhong X.L., Wang T. Picosecond laser generation of Ag–TiO2 nanoparticles with reduced energy gap by ablation in ice water and their antibacterial activities. Appl. Phys. A. 2015;119:1387–1396. doi: 10.1007/s00339-015-9111-6. DOI
Kodeary A.K., Gatea M.A., Haddawi S.F., Hamidi S.M. Tunable thermo piezo plasmonic efect on core/shell nanoparticles under laser irradiation and external electric feld. Opt. Quantum Electron. 2020;52:1–19. doi: 10.1007/s11082-020-2232-y. DOI
Huang X., El-Sayed M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010;1:13–28. doi: 10.1016/j.jare.2010.02.002. DOI
[(accessed on 1 January 2021)]. Available online: http://www.mit.edu/~6.777/matprops/pdms.htm.
[(accessed on 1 January 2019)]. Available online: https://www.Thoughtco.com/table-of-electrical-resistivity-conductivity-608499.
Goyal A., Kumar A., Patra P.K., Mahendra S., Tabatabaei S., Alvarez P.J.J., John G., Ajayan P.M. In situ Synthesis of Metal Nanoparticle Embedded Free Standing Multifunctional PDMS Films. Macromol. Rapid Commun. 2009;30:1116–1122. doi: 10.1002/marc.200900174. PubMed DOI
[(accessed on 1 January 2021)]. Available online: https://litron.co.uk/2021.
Cutroneo M., Havranek V., Semian V., Torrisi A., Mackova A., Malinsky P., Silipigni L., Slepicka P., Fajstavr D. Porous polydimethylsiloxane filled with graphene-based material for biomedicine. J. Porous Mater. 2021;28:1481–1491. doi: 10.1007/s10934-021-01095-z. DOI
Torrisi L., Cutroneo M., Silipigni L., Barreca F., Fazio B., Restuccia N., Kovacik L. Gold nanoparticles produced by laser ablation in water and in graphene oxide suspension. Philos. Mag. 2018;98:2205–2220. doi: 10.1080/14786435.2018.1478147. DOI
[(accessed on 1 January 2021)]. Available online: http://nanoscaleworld.bruker-axs.com/nanoscaleworld/forums/t/812.aspx.
Cutroneo M., Mackova A., Torrisi L., Lavrentiev V. Laser ion implantation of Ge in SiO2 using a post-ion acceleration system. Laser Part. Beams. 2017;35:72–80. doi: 10.1017/S0263034616000860. DOI