• This record comes from PubMed

Synthesis of Porous Polydimethylsiloxane Gold Nanoparticles Composites by a Single Step Laser Ablation Process

. 2021 Nov 10 ; 22 (22) : . [epub] 20211110

Language English Country Switzerland Media electronic

Document type Journal Article

Typically, polymeric composites containing nanoparticles are realized by incorporating pre-made nanoparticles into a polymer matrix by using blending solvent or by the reduction of metal salt dispersed in the polymeric matrix. Generally, the production of pre-made Au NPs occurs in liquids with two-step processes: producing the gold nanoparticles first and then adding them to the liquid polymer. A reproducible method to synthetize Au nanoparticles (NPs) into polydimethylsiloxane (PDMS) without any external reducing or stabilizing agent is a challenge. In this paper, a single-step method is proposed to synthetize nanoparticles (NPs) and at the same time to realize reproducible porous and bulk composites using laser ablation in liquid. With this single-step process, the gold nanoparticles are therefore produced directly in the liquid polymer. The optical properties of the suspensions of AuNPs in distilled water and in the curing agent have been analyzed by the UV-VIS spectroscopy, employed in the transmission mode, and compared with those of the pure curing agent. The electrical dc conductivity of the porous PDMS/Au NPs nanocomposites has been evaluated by the I-V characteristics. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis have monitored the composition and morphology of the so-obtained composites and the size of the fabricated Au nanoparticles. Atomic force microscopy (AFM) has been used to determine the roughness of the bulk PDMS and its Au NP composites.

See more in PubMed

SadAbadi H., Badilescu S., Packirisamy M., Wüthrich R. Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones. Biosens. Bioelectron. 2013;44:77–84. doi: 10.1016/j.bios.2013.01.016. PubMed DOI

Bai H.-J., Gou H.-L., Xu J.-J., Chen H.-Y. Molding a Silver Nanoparticle Template on Polydimethylsiloxane to Efficiently Capture Mammalian Cells. Langmuir. 2010;26:2924–2929. doi: 10.1021/la902683x. PubMed DOI

Bhatia S.N., Ingber D.E. Microfluidic organs-on-chips. Nat. Biotechnol. 2014;32:760–772. doi: 10.1038/nbt.2989. PubMed DOI

Vlachopoulou M.-E., Petrou P., Kakabakos S., Tserepi A., Beltsios K., Gogolides E. Effect of surface nanostructuring of PDMS on wetting properties, hydrophobic recovery and protein adsorption. Microelectron. Eng. 2009;86:1321–1324. doi: 10.1016/j.mee.2008.11.050. DOI

Abate A.R., Lee D., Do T., Holtze C., Weitz D.A. Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip. 2008;8:516–518. doi: 10.1039/b800001h. PubMed DOI

Lee J.N., Park A.C., Whitesides G.M. Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Anal. Chem. 2003;75:6544–6554. doi: 10.1021/ac0346712. PubMed DOI

Mata A., Fleischman A.J., Roy S. Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems. Biomed. Microdevices. 2005;7:281–293. doi: 10.1007/s10544-005-6070-2. PubMed DOI

Cutroneo M., Havranek V., Mackova A., Malinsky P., Torrisi A., Silipigni L., Sofer Z., Torrisi L. Selective modification of electrical insulator material by ion micro beam for the fabrication of circuit elements. Radiat. Eff. Defects Solids. 2020;175:307–317. doi: 10.1080/10420150.2019.1701462. DOI

Bodas D., Rauch J.-Y., Khan-Malek C. Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma. Eur. Polym. J. 2008;44:2130–2139. doi: 10.1016/j.eurpolymj.2008.04.012. DOI

de Menezes C.A. Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments. Phys. Status Solidi C. 2010;7:189–192. doi: 10.1002/pssc.200982419. DOI

Yin J., Yang Y., Hu Z., Deng B. Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J. Membr. Sci. 2013;441:73–82. doi: 10.1016/j.memsci.2013.03.060. DOI

Ibrahim I.D., Jamiru T., Sadiku R., Kupolati W.K., Agwuncha S.C. Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nanocomposites. J. Nanotechnol. 2016;2016:1–9. doi: 10.1155/2016/4235975. DOI

Torrisi L., Silipigni L., Restuccia N., Cuzzocrea S., Cutroneo M., Barreca F., Fazio B., Di Marco G., Guglielmino S. Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy. J. Phys. Chem. Solids. 2018;119:62–70. doi: 10.1016/j.jpcs.2018.03.034. DOI

Bai L., Zhu L., Ang C.Y., Li X., Wu S., Zeng Y., Ågren H., Zhao Y. Iron(III)-Quantity-Dependent Aggregation-Dispersion Conversion of Functionalized Gold Nanoparticles. Chem.-A Eur. J. 2014;20:4032–4037. doi: 10.1002/chem.201303958. PubMed DOI

Torrisi L., Cutroneo M., Ceccio G. Effect of metallic nanoparticles in thin foils for laser ion acceleration. Phys. Scr. 2014;90:15603. doi: 10.1088/0031-8949/90/1/015603. DOI

Chevrier D.M., Chatt A., Zhang P. Properties and applications of protein-stabilized fluorescent gold nanoclusters: Short review. J. Nanophotonics. 2012;6:064504-1. doi: 10.1117/1.JNP.6.064504. DOI

Wang Y., Chen J., Irudayaraj J. Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2+ Breast Cancer. ACS Nano. 2011;5:9718–9725. doi: 10.1021/nn2032177. PubMed DOI

Johnson J.A., Dehankar A., Robbins A., Kabtiyal P., Jergens E., Lee K.H., Johnston-Halperin E., Poirier M., Castro C.E., Winter J.O. The path towards functional nanoparticle-DNA origami composites. Mater. Sci. Eng. R. 2019;138:153–209. doi: 10.1016/j.mser.2019.06.003. DOI

Torrisi L., Restuccia N., Cuzzocrea S., Paterniti I., Ielo I., Pergolizzi S., Cutroneo M., Kovacik L. Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging. Gold Bull. 2017;50:51–60. doi: 10.1007/s13404-017-0195-y. DOI

Patel D., Singh R.P., Thareja R.K. Craters and nanostructures with laser ablation of metal/metal alloy in air and liquid. Appl. Surf. Sci. 2014;288:550–557. doi: 10.1016/j.apsusc.2013.10.072. DOI

Hamad A., Li L., Liu Z., Zhong X.L., Wang T. Picosecond laser generation of Ag–TiO2 nanoparticles with reduced energy gap by ablation in ice water and their antibacterial activities. Appl. Phys. A. 2015;119:1387–1396. doi: 10.1007/s00339-015-9111-6. DOI

Kodeary A.K., Gatea M.A., Haddawi S.F., Hamidi S.M. Tunable thermo piezo plasmonic efect on core/shell nanoparticles under laser irradiation and external electric feld. Opt. Quantum Electron. 2020;52:1–19. doi: 10.1007/s11082-020-2232-y. DOI

Huang X., El-Sayed M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010;1:13–28. doi: 10.1016/j.jare.2010.02.002. DOI

[(accessed on 1 January 2021)]. Available online: http://www.mit.edu/~6.777/matprops/pdms.htm.

[(accessed on 1 January 2019)]. Available online: https://www.Thoughtco.com/table-of-electrical-resistivity-conductivity-608499.

Goyal A., Kumar A., Patra P.K., Mahendra S., Tabatabaei S., Alvarez P.J.J., John G., Ajayan P.M. In situ Synthesis of Metal Nanoparticle Embedded Free Standing Multifunctional PDMS Films. Macromol. Rapid Commun. 2009;30:1116–1122. doi: 10.1002/marc.200900174. PubMed DOI

[(accessed on 1 January 2021)]. Available online: https://litron.co.uk/2021.

Cutroneo M., Havranek V., Semian V., Torrisi A., Mackova A., Malinsky P., Silipigni L., Slepicka P., Fajstavr D. Porous polydimethylsiloxane filled with graphene-based material for biomedicine. J. Porous Mater. 2021;28:1481–1491. doi: 10.1007/s10934-021-01095-z. DOI

Torrisi L., Cutroneo M., Silipigni L., Barreca F., Fazio B., Restuccia N., Kovacik L. Gold nanoparticles produced by laser ablation in water and in graphene oxide suspension. Philos. Mag. 2018;98:2205–2220. doi: 10.1080/14786435.2018.1478147. DOI

[(accessed on 1 January 2021)]. Available online: http://nanoscaleworld.bruker-axs.com/nanoscaleworld/forums/t/812.aspx.

Cutroneo M., Mackova A., Torrisi L., Lavrentiev V. Laser ion implantation of Ge in SiO2 using a post-ion acceleration system. Laser Part. Beams. 2017;35:72–80. doi: 10.1017/S0263034616000860. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Blue Laser for Production of Carbon Dots

. 2024 Oct 03 ; 16 (19) : . [epub] 20241003

Polyvinylalcohol Composite Filled with Carbon Dots Produced by Laser Ablation in Liquids

. 2024 May 13 ; 16 (10) : . [epub] 20240513

Overview of Polyethylene Terephthalate Foils Patterned Using 10 MeV Carbon Ions for Realization of Micromembranes

. 2023 Jan 22 ; 14 (2) : . [epub] 20230122

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...