• This record comes from PubMed

Glucose-sensitive insulin with attenuation of hypoglycaemia

. 2024 Oct ; 634 (8035) : 944-951. [epub] 20241016

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Links

PubMed 39415004
PubMed Central PMC11499270
DOI 10.1038/s41586-024-08042-3
PII: 10.1038/s41586-024-08042-3
Knihovny.cz E-resources

The risk of inducing hypoglycaemia (low blood glucose) constitutes the main challenge associated with insulin therapy for diabetes1,2. Insulin doses must be adjusted to ensure that blood glucose values are within the normal range, but matching insulin doses to fluctuating glucose levels is difficult because even a slightly higher insulin dose than needed can lead to a hypoglycaemic incidence, which can be anything from uncomfortable to life-threatening. It has therefore been a long-standing goal to engineer a glucose-sensitive insulin that can auto-adjust its bioactivity in a reversible manner according to ambient glucose levels to ultimately achieve better glycaemic control while lowering the risk of hypoglycaemia3. Here we report the design and properties of NNC2215, an insulin conjugate with bioactivity that is reversibly responsive to a glucose range relevant for diabetes, as demonstrated in vitro and in vivo. NNC2215 was engineered by conjugating a glucose-binding macrocycle4 and a glucoside to insulin, thereby introducing a switch that can open and close in response to glucose and thereby equilibrate insulin between active and less-active conformations. The insulin receptor affinity for NNC2215 increased 3.2-fold when the glucose concentration was increased from 3 to 20 mM. In animal studies, the glucose-sensitive bioactivity of NNC2215 was demonstrated to lead to protection against hypoglycaemia while partially covering glucose excursions.

Comment In

PubMed

See more in PubMed

Hoeg-Jensen, T. Review: glucose-sensitive insulin. Mol. Metab.46, 101107 (2021). PubMed PMC

ElSayed, N. A. et al. 6. Glycemic targets: standards of care in diabetes—2023. Diabetes Care46, S97–S110 (2023). PubMed PMC

Brownlee, M. & Cerami, A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science206, 1190–1191 (1979). PubMed

Tromans, R. A. et al. A biomimetic receptor for glucose. Nat. Chem.11, 52–56 (2019). PubMed

Veiseh, O., Tang, B. C., Whitehead, K. A., Anderson, D. G. & Langer, R. Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov.14, 45–57 (2015). PubMed PMC

Zaykov, A. N., Mayer, J. P. & DiMarchi, R. D. Pursuit of a perfect insulin. Nat. Rev. Drug Discov.15, 425–439 (2016). PubMed

Bakh, N. A. et al. Glucose-responsive insulin by molecular and physical design. Nat. Chem.9, 937–944 (2017). PubMed

Yu, J., Zhang, Y., Yan, J., Kahkoska, A. R. & Gu, Z. Advances in bioresponsive closed-loop drug delivery systems. Int. J. Pharm.544, 350–357 (2018). PubMed PMC

VandenBerg, M. A. & Webber, M. J. Biologically inspired and chemically derived methods for glucose-responsive insulin therapy. Adv. Healthc. Mater.8, e1801466 (2019). PubMed

Disotuar, M. M., Chen, D., Lin, N. P. & Chou, D. H. Glucose-responsive insulin through bioconjugation approaches. J. Diabetes Sci. Technol.14, 198–203 (2020). PubMed PMC

Jarosinski, M. A., Dhayalan, B., Rege, N., Chatterjee, D. & Weiss, M. A. ‘Smart’ insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia64, 1016–1029 (2021). PubMed PMC

Kaarsholm, N. C. et al. Engineering glucose responsiveness into insulin. Diabetes67, 299–308 (2018). PubMed

Visser, S. A. G., Kandala, B., Fancourt, C., Krug, A. W. & Cho, C. R. A model-informed drug discovery and development strategy for the novel glucose-responsive insulin MK-2640 enabled rapid decision making. Clin. Pharmacol. Ther.107, 1296–1311 (2020). PubMed PMC

Zion, T. C. & Lancaster, T. M. Soluble non-depot insulin conjugates and uses thereof. Patent WO/2010/107520 (2010).

Chen, Y. S. et al. Insertion of a synthetic switch into insulin provides metabolite-dependent regulation of hormone-receptor activation. Proc. Natl Acad. Sci. USA118, e2103518118 (2021). PubMed PMC

Feringa, B. L. The art of building small: from molecular switches to molecular motors. J. Org. Chem.72, 6635–6652 (2007). PubMed

Meldal, M. & Tornøe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev.108, 2952–3015 (2008). PubMed

Jensen, K. B. et al. New phenol esters for efficient pH-controlled amine acylation of peptides, proteins, and sepharose beads in aqueous media. Bioconjug. Chem.33, 172–179 (2022). PubMed

Tamara, S., den Boer, M. A. & Heck, A. J. R. High-resolution native mass spectrometry. Chem. Rev.122, 7269–7326 (2022). PubMed PMC

Uchikawa, E., Choi, E., Shang, G., Yu, H. & Bai, X. C. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor–ligand complex. eLife8, e48630 (2019). PubMed PMC

Wagner, A., Diez, J., Schulze-Briese, C. & Schluckebier, G. Crystal structure of ultralente—a microcrystalline insulin suspension. Proteins74, 1018–1027 (2009). PubMed

Croll, T. I. et al. Higher-resolution structure of the human insulin receptor ectodomain: multi-modal inclusion of the insert domain. Structure24, 469–476 (2016). PubMed PMC

Lawrence, M. C. Understanding insulin and its receptor from their three-dimensional structures. Mol. Metab.52, 101255 (2021). PubMed PMC

Gutmann, T. et al. Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. J. Cell Biol.219, e201907210 (2020). PubMed PMC

Kristensen, C., Andersen, A. S., Ostergaard, S., Hansen, P. H. & Brandt, J. Functional reconstitution of insulin receptor binding site from non-binding receptor fragments. J. Biol. Chem.277, 18340–18345 (2002). PubMed

Jonassen, I. et al. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm. Res.29, 2104–2114 (2012). PubMed PMC

Moody, A. J., Stan, M. A., Stan, M. & Gliemann, J. A simple free fat cell bioassay for insulin. Horm. Metab. Res.6, 12–16 (1974). PubMed

Ono, K., Takigawa, S. & Yamada, K. l-Glucose: another path to cancer cells. Cancers12, 850 (2020). PubMed PMC

Tromans, R. A., Samanta, S. K., Chapman, A. M. & Davis, A. P. Selective glucose sensing in complex media using a biomimetic receptor. Chem. Sci.11, 3223–3227 (2020). PubMed PMC

Pedersen, K. M. et al. Optimization of pig models for translation of subcutaneous pharmacokinetics of therapeutic proteins: liraglutide, insulin aspart and insulin detemir. Transl. Res.239, 71–84 (2022). PubMed

Kurtzhals, P., Østergaard, S., Nishimura, E. & Kjeldsen, T. Derivatization with fatty acids in peptide and protein drug discovery. Nat. Rev. Drug Discov.22, 59–80 (2023). PubMed

Bergman, R. N. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes38, 1512–1527 (1989). PubMed

Shaw Research. Desmond Molecular Dynamics System release 2020-3 (Schrödinger, 2020).

Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci.30, 70–82 (2021). PubMed PMC

Soos, M. A. et al. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor. Biochem. J.235, 199–208 (1986). PubMed PMC

Soos, M. A. et al. A panel of monoclonal antibodies for the type I insulin-like growth factor receptor. Epitope mapping, effects on ligand binding, and biological activity. J. Biol. Chem.267, 12955–12963 (1992). PubMed

Andersen, M., Nørgaard-Pedersen, D., Brandt, J., Pettersson, I. & Slaaby, R. IGF1 and IGF2 specificities to the two insulin receptor isoforms are determined by insulin receptor amino acid 718. PLoS ONE12, e0178885 (2017). PubMed PMC

Hansen, B. F. et al. Molecular characterisation of long-acting insulin analogues in comparison with human insulin, IGF-1 and insulin X10. PLoS ONE7, e34274 (2012). PubMed PMC

Hansen, B. F. et al. Sustained signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. Biochem. J.315, 271–279 (1996). PubMed PMC

Hoeg-Jensen, T. et al. Glucose sensitive insulins and uses thereof. Patent WO/2020/058322 (2020).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...