Glucose-sensitive insulin with attenuation of hypoglycaemia
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39415004
PubMed Central
PMC11499270
DOI
10.1038/s41586-024-08042-3
PII: 10.1038/s41586-024-08042-3
Knihovny.cz E-zdroje
- MeSH
- glukosa * metabolismus MeSH
- glukosidy aplikace a dávkování chemie farmakologie terapeutické užití MeSH
- hypoglykemie * farmakoterapie metabolismus chemicky indukované MeSH
- inzulin * aplikace a dávkování analogy a deriváty metabolismus farmakologie terapeutické užití MeSH
- krevní glukóza * metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- makrocyklické sloučeniny aplikace a dávkování chemie farmakologie terapeutické užití MeSH
- potkani Sprague-Dawley MeSH
- prasata MeSH
- receptor inzulinu metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glukosa * MeSH
- glukosidy MeSH
- inzulin * MeSH
- krevní glukóza * MeSH
- makrocyklické sloučeniny MeSH
- receptor inzulinu MeSH
The risk of inducing hypoglycaemia (low blood glucose) constitutes the main challenge associated with insulin therapy for diabetes1,2. Insulin doses must be adjusted to ensure that blood glucose values are within the normal range, but matching insulin doses to fluctuating glucose levels is difficult because even a slightly higher insulin dose than needed can lead to a hypoglycaemic incidence, which can be anything from uncomfortable to life-threatening. It has therefore been a long-standing goal to engineer a glucose-sensitive insulin that can auto-adjust its bioactivity in a reversible manner according to ambient glucose levels to ultimately achieve better glycaemic control while lowering the risk of hypoglycaemia3. Here we report the design and properties of NNC2215, an insulin conjugate with bioactivity that is reversibly responsive to a glucose range relevant for diabetes, as demonstrated in vitro and in vivo. NNC2215 was engineered by conjugating a glucose-binding macrocycle4 and a glucoside to insulin, thereby introducing a switch that can open and close in response to glucose and thereby equilibrate insulin between active and less-active conformations. The insulin receptor affinity for NNC2215 increased 3.2-fold when the glucose concentration was increased from 3 to 20 mM. In animal studies, the glucose-sensitive bioactivity of NNC2215 was demonstrated to lead to protection against hypoglycaemia while partially covering glucose excursions.
APIGENEX Prague Czech Republic
Digital Science and Innovation Novo Nordisk Bagsværd Denmark
Global Drug Discovery Novo Nordisk Bagsværd Denmark
Zobrazit více v PubMed
Hoeg-Jensen, T. Review: glucose-sensitive insulin. Mol. Metab.46, 101107 (2021). PubMed PMC
ElSayed, N. A. et al. 6. Glycemic targets: standards of care in diabetes—2023. Diabetes Care46, S97–S110 (2023). PubMed PMC
Brownlee, M. & Cerami, A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science206, 1190–1191 (1979). PubMed
Tromans, R. A. et al. A biomimetic receptor for glucose. Nat. Chem.11, 52–56 (2019). PubMed
Veiseh, O., Tang, B. C., Whitehead, K. A., Anderson, D. G. & Langer, R. Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov.14, 45–57 (2015). PubMed PMC
Zaykov, A. N., Mayer, J. P. & DiMarchi, R. D. Pursuit of a perfect insulin. Nat. Rev. Drug Discov.15, 425–439 (2016). PubMed
Bakh, N. A. et al. Glucose-responsive insulin by molecular and physical design. Nat. Chem.9, 937–944 (2017). PubMed
Yu, J., Zhang, Y., Yan, J., Kahkoska, A. R. & Gu, Z. Advances in bioresponsive closed-loop drug delivery systems. Int. J. Pharm.544, 350–357 (2018). PubMed PMC
VandenBerg, M. A. & Webber, M. J. Biologically inspired and chemically derived methods for glucose-responsive insulin therapy. Adv. Healthc. Mater.8, e1801466 (2019). PubMed
Disotuar, M. M., Chen, D., Lin, N. P. & Chou, D. H. Glucose-responsive insulin through bioconjugation approaches. J. Diabetes Sci. Technol.14, 198–203 (2020). PubMed PMC
Jarosinski, M. A., Dhayalan, B., Rege, N., Chatterjee, D. & Weiss, M. A. ‘Smart’ insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia64, 1016–1029 (2021). PubMed PMC
Kaarsholm, N. C. et al. Engineering glucose responsiveness into insulin. Diabetes67, 299–308 (2018). PubMed
Visser, S. A. G., Kandala, B., Fancourt, C., Krug, A. W. & Cho, C. R. A model-informed drug discovery and development strategy for the novel glucose-responsive insulin MK-2640 enabled rapid decision making. Clin. Pharmacol. Ther.107, 1296–1311 (2020). PubMed PMC
Zion, T. C. & Lancaster, T. M. Soluble non-depot insulin conjugates and uses thereof. Patent WO/2010/107520 (2010).
Chen, Y. S. et al. Insertion of a synthetic switch into insulin provides metabolite-dependent regulation of hormone-receptor activation. Proc. Natl Acad. Sci. USA118, e2103518118 (2021). PubMed PMC
Feringa, B. L. The art of building small: from molecular switches to molecular motors. J. Org. Chem.72, 6635–6652 (2007). PubMed
Meldal, M. & Tornøe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev.108, 2952–3015 (2008). PubMed
Jensen, K. B. et al. New phenol esters for efficient pH-controlled amine acylation of peptides, proteins, and sepharose beads in aqueous media. Bioconjug. Chem.33, 172–179 (2022). PubMed
Tamara, S., den Boer, M. A. & Heck, A. J. R. High-resolution native mass spectrometry. Chem. Rev.122, 7269–7326 (2022). PubMed PMC
Uchikawa, E., Choi, E., Shang, G., Yu, H. & Bai, X. C. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor–ligand complex. eLife8, e48630 (2019). PubMed PMC
Wagner, A., Diez, J., Schulze-Briese, C. & Schluckebier, G. Crystal structure of ultralente—a microcrystalline insulin suspension. Proteins74, 1018–1027 (2009). PubMed
Croll, T. I. et al. Higher-resolution structure of the human insulin receptor ectodomain: multi-modal inclusion of the insert domain. Structure24, 469–476 (2016). PubMed PMC
Lawrence, M. C. Understanding insulin and its receptor from their three-dimensional structures. Mol. Metab.52, 101255 (2021). PubMed PMC
Gutmann, T. et al. Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. J. Cell Biol.219, e201907210 (2020). PubMed PMC
Kristensen, C., Andersen, A. S., Ostergaard, S., Hansen, P. H. & Brandt, J. Functional reconstitution of insulin receptor binding site from non-binding receptor fragments. J. Biol. Chem.277, 18340–18345 (2002). PubMed
Jonassen, I. et al. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm. Res.29, 2104–2114 (2012). PubMed PMC
Moody, A. J., Stan, M. A., Stan, M. & Gliemann, J. A simple free fat cell bioassay for insulin. Horm. Metab. Res.6, 12–16 (1974). PubMed
Ono, K., Takigawa, S. & Yamada, K. l-Glucose: another path to cancer cells. Cancers12, 850 (2020). PubMed PMC
Tromans, R. A., Samanta, S. K., Chapman, A. M. & Davis, A. P. Selective glucose sensing in complex media using a biomimetic receptor. Chem. Sci.11, 3223–3227 (2020). PubMed PMC
Pedersen, K. M. et al. Optimization of pig models for translation of subcutaneous pharmacokinetics of therapeutic proteins: liraglutide, insulin aspart and insulin detemir. Transl. Res.239, 71–84 (2022). PubMed
Kurtzhals, P., Østergaard, S., Nishimura, E. & Kjeldsen, T. Derivatization with fatty acids in peptide and protein drug discovery. Nat. Rev. Drug Discov.22, 59–80 (2023). PubMed
Bergman, R. N. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes38, 1512–1527 (1989). PubMed
Shaw Research. Desmond Molecular Dynamics System release 2020-3 (Schrödinger, 2020).
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci.30, 70–82 (2021). PubMed PMC
Soos, M. A. et al. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor. Biochem. J.235, 199–208 (1986). PubMed PMC
Soos, M. A. et al. A panel of monoclonal antibodies for the type I insulin-like growth factor receptor. Epitope mapping, effects on ligand binding, and biological activity. J. Biol. Chem.267, 12955–12963 (1992). PubMed
Andersen, M., Nørgaard-Pedersen, D., Brandt, J., Pettersson, I. & Slaaby, R. IGF1 and IGF2 specificities to the two insulin receptor isoforms are determined by insulin receptor amino acid 718. PLoS ONE12, e0178885 (2017). PubMed PMC
Hansen, B. F. et al. Molecular characterisation of long-acting insulin analogues in comparison with human insulin, IGF-1 and insulin X10. PLoS ONE7, e34274 (2012). PubMed PMC
Hansen, B. F. et al. Sustained signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. Biochem. J.315, 271–279 (1996). PubMed PMC
Hoeg-Jensen, T. et al. Glucose sensitive insulins and uses thereof. Patent WO/2020/058322 (2020).