Theta-gamma-coupling as predictor of working memory performance in young and elderly healthy people
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
This study was supported by the COOPERATIO program of the Third Faculty of Medicine, Charles University
This study was supported by the COOPERATIO program of the Third Faculty of Medicine, Charles University
PubMed
39415245
PubMed Central
PMC11619296
DOI
10.1186/s13041-024-01149-8
PII: 10.1186/s13041-024-01149-8
Knihovny.cz E-zdroje
- Klíčová slova
- Electroencephalography (EEG), Power spectral density (PSD), Theta-gamma coupling, Transcranial alternating current stimulation (tACS), Working memory (WM),
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- gama rytmus EEG * fyziologie MeSH
- krátkodobá paměť * fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- přímá transkraniální stimulace mozku * MeSH
- reakční čas fyziologie MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- theta rytmus EEG * fyziologie MeSH
- zdraví MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The relationship between working memory (WM) and neuronal oscillations can be studied in detail using brain stimulation techniques, which provide a method for modulating these oscillations and thus influencing WM. The endogenous coupling between the amplitude of gamma oscillations and the phase of theta oscillations is crucial for cognitive control. Theta/gamma peak-coupled transcranial alternating current stimulation (TGCp-tACS) can modulate this coupling and thus influence WM performance. This study investigated the effects of TGCp-tACS on WM in older adults and compared their responses with those of younger participants from our previous work who underwent the same experimental design. Twenty-eight older subjects underwent both TGCp-tACS and sham stimulation sessions at least 72 h apart. Resting-state electroencephalography (EEG) was recorded before and after the interventions, and a WM task battery with five different WM tasks was performed during the interventions to assess various WM components. Outcomes measured included WM task performance (e.g., accuracy, reaction time (RT)) and changes in power spectral density (PSD) in different frequency bands. TGCp-tACS significantly decreased accuracy and RT on the 10- and 14-point Sternberg tasks and increased RT on the Digit Symbol Substitution Test in older adults. In contrast, younger participants showed a significant increase in accuracy only on the 14-item Sternberg task. Electrophysiological analysis revealed a decrease in delta and theta PSD and an increase in high gamma PSD in both younger and older participants after verum stimulation. In conclusion, theta-gamma coupling is essential for WM and modulation of this coupling affects WM performance. The effects of TGCp-tACS on WM vary with age due to natural brain changes. To better support older adults, the study suggests several strategies to improve cognitive function, including: Adjusting stimulation parameters, applying stimulation to two sites, conducting multiple sessions, and using brain imaging techniques for precise targeting.
Zobrazit více v PubMed
Baddeley A. Working memory. Sci (80-. 1992;255:556–9. 10.1126/science.1736359. PubMed
Johnson MK, McMahon RP, Robinson BM, Harvey AN, Hahn B, Leonard CJ, et al. The relationship between working memory capacity and broad measures of cognitive ability in healthy adults and people with schizophrenia. Neuropsychology. 2013;27:220. 10.1037/A0032060. PubMed PMC
Baddeley AD, Hitch G. Working memory. Psychol learn Motiv -. Adv Res Theory. 1974;8:47–89. 10.1016/S0079-7421(08)60452-1.
Daneman M, Carpenter PA. Individual differences in working memory and reading. J Verbal Learn Verbal Behav. 1980;19:450–66. 10.1016/S0022-5371(80)90312-6.
Engle RW. Working memory capacity as executive attention. Curr Dir Psychol Sci. 2002;11:19–23. 10.1111/1467-8721.00160.
Cowan N. What are the differences between long-term, short-term, and working memory? Prog Brain Res. 2008;169:323. 10.1016/S0079-6123(07)00020-9. PubMed PMC
Zhenzhu Y, Zhang M. Zhou Xiaolin † &. Chinese Science Bulletin updating verbal and visuospatial working memory: are the processes parallel? Chin Sci Bull. 2008;53:2175–85. 10.1007/s11434-008-0299-0.
Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The Unity and Diversity of Executive Functions and their contributions to Complex Frontal Lobe tasks: a latent variable analysis. Cogn Psychol. 2000;41:49–100. 10.1006/COGP.1999.0734. PubMed
D’Esposito M. From cognitive to neural models of working memory. Philos. Trans. R. Soc. B Biol. Sci., vol. 362, Royal Society; 2007, pp. 761–72. 10.1098/rstb.2007.2086 PubMed PMC
Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol. 2012;63:1–29. 10.1146/ANNUREV-PSYCH-120710-100422. PubMed
Aben B, Stapert S, Blokland A. About the distinction between Working Memory and short-term memory. Front Psychol. 2012;0:301. 10.3389/FPSYG.2012.00301. PubMed PMC
Cowan N. The many faces of working memory and short-term storage. Psychon Bull Rev. 2017;24:1158–70. PubMed
Babulal GM. Advancing research on diversity and disparities among aging adults. J Appl Gerontol. 2020;39:455. 10.1177/0733464820906240. PubMed PMC
Cohen RA, Marsiske MM, Smith GE. Neuropsychology of aging. Handb Clin Neurol. 2019;167:149–80. 10.1016/B978-0-12-804766-8.00010-8. PubMed
Grady C. Trends in Neurocognitive Aging. Nat Rev Neurosci. 2012;13:491. 10.1038/NRN3256. PubMed PMC
Shipstead Z, Redick TS, Engle RW. Is working memory training effective? Psychol Bull. 2012;138:628–54. 10.1037/A0027473. PubMed
Soveri A, Karlsson EPA, Waris O, Grönholm-Nyman P, Laine M. Pattern of near transfer effects following working memory training with a dual N-Back task. Exp Psychol. 2017;64:240–52. 10.1027/1618-3169/A000370. PubMed
Sorenson H. Mental ability over a wide range of adult ages. J Appl Psychol. 1933;17:729–41. 10.1037/H0072233.
Halberda J, Ly R, Wilmer JB, Naiman DQ, Germine L. Number sense across the lifespan as revealed by a massive internet-based sample. Proc Natl Acad Sci U S A. 2012;109:11116–20. 10.1073/PNAS.1200196109/-/DCSUPPLEMENTAL. PubMed PMC
Germine LT, Duchaine B, Nakayama K. Where cognitive development and aging meet: face learning ability peaks after age 30. Cognition. 2011;118:201–10. 10.1016/J.COGNITION.2010.11.002. PubMed
Shakow D, Goldman R. The effect of age on the Stanford-Binet vocabulary score of adults. J Educ Psychol. 1938;29:241–56. 10.1037/H0062830.
Salthouse TA, Meinz EJ. Aging, inhibition, working memory, and speed. Journals Gerontol - Ser B Psychol Sci Soc Sci. 1995;50 B:P297–306. 10.1093/GERONB/50B.6.P297. PubMed
Chao LL, Knight RT. Age-related prefrontal alterations during auditory memory. Neurobiol Aging. 1997;18:87–95. 10.1016/S0197-4580(96)00161-3. PubMed
Grady CL, Yu H, Alain C. Age-related differences in brain activity underlying working memory for spatial and nonspatial auditory information. Cereb Cortex. 2008;18:189–99. 10.1093/CERCOR/BHM045. PubMed
Craik FIM, Luo L, Sakuta Y. Effects of aging and divided attention on memory for items and their contexts. Psychol Aging. 2010;25:968–79. 10.1037/A0020276. PubMed
Brockmole JR, Logie RH. Age-related change in visual working memory: a study of 55,753 participants aged 8–75. Front Psychol. 2013;4:34741. 10.3389/FPSYG.2013.00012/BIBTEX. PubMed PMC
Nowak K, Costa-Faidella J, Dacewicz A, Escera C, Szelag E. Altered event-related potentials and theta oscillations index auditory working memory deficits in healthy aging. Neurobiol Aging. 2021;108:1–15. 10.1016/J.NEUROBIOLAGING.2021.07.019. PubMed
Schroeder D, differences TS-P and, individual. 2004 undefined. Age-related effects on cognition between 20 and 50 years of age. Elsevier 2004;36:393–404. 10.1016/S0191-8869(03)00104-1
Logie RH, Maylor EA. An internet study of Prospective Memory across Adulthood. Psychol Aging. 2009;24:767–74. 10.1037/A0015479. PubMed
Johnson W, Logie R, Intelligence JB-. 2010 undefined. Working memory tasks differ in factor structure across age cohorts: Implications for dedifferentiation. Elsevier 2010;38:513–28. 10.1016/j.intell.2010.06.005
Hartshorne JK, Germine LT. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the lifespan. Psychol Sci. 2015;26:433. 10.1177/0956797614567339. PubMed PMC
Dobbs AR, Rule BG. Adult age differences in working memory. Psychol Aging. 1989;4:500–3. 10.1037/0882-7974.4.4.500. PubMed
Thornton WJL, Raz N. Aging and the role of Working Memory resources in Visuospatial attention. Aging Neuropsychol Cogn. 2006;13:36–61. 10.1080/13825580490904264. PubMed
Missonnier P, Herrmann FR, Rodriguez C, Deiber MP, Millet P, Fazio-Costa L, et al. Age-related differences on event-related potentials and brain rhythm oscillations during working memory activation. J Neural Transm. 2011;118:945–55. 10.1007/S00702-011-0600-2. PubMed
Archer JA, Lee A, Qiu A, Chen SHA. Working memory, age and education: a lifespan fMRI study. PLoS ONE. 2018;13:e0194878. 10.1371/JOURNAL.PONE.0194878. PubMed PMC
Logie RH. The functional organization and capacity limits of working memory. Curr Dir Psychol Sci. 2011;20:240–5. 10.1177/0963721411415340.
Jenkins L, Myerson J, Joerding JA, Hale S. Converging evidence that visuospatial cognition is more age-sensitive than verbal cognition. Psychol Aging. 2000;15:157–75. 10.1037/0882-7974.15.1.157. PubMed
Chen J, Hale S, Myerson J. Effects of Domain, Retention interval, and information load on Young and older adults’ visuospatial working memory. Http://DxDoiOrg/101076/Anec10212214461 2010;10:122–33. 10.1076/ANEC.10.2.122.14461
Schneider-Garces NJ, Gordon BA, Brumback-Peltz CR, Shin E, Lee Y, Sutton BP, et al. Span, CRUNCH, and Beyond: Working Memory Capacity and the aging brain. J Cogn Neurosci. 2010;22:655. 10.1162/JOCN.2009.21230. PubMed PMC
West RL. An application of prefrontal cortex function theory to cognitive aging. Psychol Bull. 1996;120:272–92. 10.1037/0033-2909.120.2.272. PubMed
Salthouse TA, Hancock HE, Meinz EJ, Hambrick DZ. Interrelations of age, visual acuity, and cognitive functioning. Journals Gerontol Ser B. 1996;51. 10.1093/GERONB/51B.6.P317. B:P317-330. PubMed
Hasher L, Zacks RT. Working memory, comprehension, and aging: a review and a New View. Psychol learn Motiv -. Adv Res Theory. 1988;22:193–225. 10.1016/S0079-7421(08)60041-9.
Kirova AM, Bays RB, Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s Disease. Biomed Res Int 2015;2015. 10.1155/2015/748212 PubMed PMC
Chen T, Naveh-Benjamin M. Assessing the associative deficit of older adults in long-term and short-term/working memory. Psychol Aging. 2012;27:666–82. 10.1037/A0026943. PubMed
Esposito G, Kirkby BS, Van Horn JD, Ellmore TM, Berman KF. Context-dependent, neural system-specific neurophysiological concomitants of ageing: mapping PET correlates during cognitive activation. Brain. 1999;122:963–79. 10.1093/BRAIN/122.5.963. PubMed
Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, Marshuetz C, et al. Age differences in the Frontal lateralization of verbal and spatial Working Memory revealed by PET. J Cogn Neurosci. 2000;12:174–87. 10.1162/089892900561814. PubMed
Stegmayer K, Usher J, Trost S, Henseler I, Tost H, Rietschel M, et al. Disturbed cortico–amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder. Eur Arch Psychiatry Clin Neurosci. 2015;265:303–11. 10.1007/s00406-014-0517-5. PubMed
Maehler C, Schuchardt K. Working memory in children with specific learning disorders and/or attention deficits. Learn Individ Differ. 2016;49:341–7. 10.1016/j.lindif.2016.05.007.
Grot S, Légaré VP, Lipp O, Soulières I, Dolcos F, Luck D. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia. Schizophr Res. 2017;188:68–74. 10.1016/j.schres.2017.01.021. PubMed
Le TM, Borghi JA, Kujawa AJ, Klein DN, Leung HC. Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder. NeuroImage Clin. 2017;14:43–53. 10.1016/j.nicl.2017.01.004. PubMed PMC
Baghdadi G, Kamarajan C, Hadaeghi F, Editorial. Role of brain oscillations in neurocognitive control systems. Front Syst Neurosci. 2023;17:1182496. 10.3389/FNSYS.2023.1182496/BIBTEX. PubMed PMC
Beste C, Münchau A, Frings C. Towards a systematization of brain oscillatory activity in actions. Commun Biol 2023 61. 2023;6:1–11. 10.1038/s42003-023-04531-9. PubMed PMC
Pina JE, Bodner M, Ermentrout B. Oscillations in working memory and neural binding: a mechanism for multiple memories and their interactions. PLoS Comput Biol. 2018;14. 10.1371/JOURNAL.PCBI.1006517. PubMed PMC
Başar E. Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci. 2013;15:291–300. 10.31887/dcns.2013.15.3/ebasar. PubMed PMC
Salimpour Y, Anderson WS. Cross-frequency Coupling based Neuromodulation for Treating Neurological disorders. Front Neurosci. 2019;0:125. 10.3389/FNINS.2019.00125. PubMed PMC
Florin E, Baillet S. The brain’s resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations. NeuroImage. 2015;111:26–35. 10.1016/J.NEUROIMAGE.2015.01.054. PubMed PMC
Canolty RT, Knight RT. The functional role of cross-frequency coupling. Trends Cogn Sci. 2010;14:506–15. 10.1016/J.TICS.2010.09.001. PubMed PMC
Lisman JE, Jensen O. The Theta-Gamma Neural Code. vol. 77. NIH Public Access; 2013. 10.1016/j.neuron.2013.03.007 PubMed PMC
Florez CM, McGinn RJ, Lukankin V, Marwa I, Sugumar S, Dian J, et al. In Vitro recordings of Human neocortical oscillations. Cereb Cortex. 2015;25:578–97. 10.1093/CERCOR/BHT235. PubMed
Lozano-Soldevilla D, Huurne N, Oostenveld R. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. Front Comput Neurosci. 2016;10:213437. 10.3389/FNCOM.2016.00087/BIBTEX. PubMed PMC
Jutten RJ, Harrison J, de Jong FJ, Aleman A, Ritchie CW, Scheltens P, et al. A composite measure of cognitive and functional progression in Alzheimer’s disease: design of the capturing changes in Cognition study. Alzheimer’s Dement Transl Res Clin Interv. 2017;3:130–8. 10.1016/J.TRCI.2017.01.004. PubMed PMC
Tesche CD, Karhu J. Theta oscillations index human hippocampal activation during a working memory task. Proc Natl Acad Sci U S A. 2000;97:919. 10.1073/PNAS.97.2.919. PubMed PMC
Hsieh LT, Ranganath C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage. 2014;85:721–9. 10.1016/J.NEUROIMAGE.2013.08.003. PubMed PMC
Herweg NA, Solomon EA, Kahana MJ. Theta oscillations in Human Memory. Trends Cogn Sci. 2020;24:208–27. 10.1016/j.tics.2019.12.006. PubMed PMC
Lisman J. Working memory: the importance of Theta and Gamma oscillations. Curr Biol. 2010;20:R490–2. 10.1016/J.CUB.2010.04.011. PubMed
Thompson L, Khuc J, Saccani MS, Zokaei N, Cappelletti M. Gamma oscillations modulate working memory recall precision. Exp Brain Res. 2021;239:2711–24. 10.1007/S00221-021-06051-6. PubMed PMC
Maris E, van Vugt M, Kahana M. Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG. NeuroImage. 2011;54:836–50. 10.1016/j.neuroimage.2010.09.029. PubMed
Papaioannou O, Crespo LP, Clark K, Ogbuagu NN, Alliende LM, Silverstein SM, et al. Is cortical Theta-Gamma Phase-Amplitude Coupling Memory-Specific? Brain Sci. 2022;12. 10.3390/BRAINSCI12091131. PubMed PMC
Lisman JE, Idiart MAP. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Sci (80-). 1995;267:1512–5. 10.1126/science.7878473. PubMed
Jensen O, Lisman JE. Novel lists of 7 ± 2 known items can be reliably stored in an oscillatory short-term memory network: Interaction with long-term memory. Learn Mem. 1996;3:257–63. PubMed
Herman PA, Lundqvist M, Lansner A. Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Res. 2013;1536:68–87. 10.1016/j.brainres.2013.08.002. Brain Res. PubMed
Van Vugt MK, Chakravarthi R, Lachaux J-P. For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance. Front Hum Neurosci. 2014;8:696. 10.3389/fnhum.2014.00696. PubMed PMC
Hanslmayr S, Axmacher N, Inman CS. Modulating human memory via Entrainment of Brain oscillations. Trends Neurosci. 2019;42:485–99. 10.1016/J.TINS.2019.04.004. PubMed
Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nat 2006 4447119. 2006;444:610–3. 10.1038/nature05278. PubMed
Bueno-Lopez A, Eggert T, Dorn H, Danker-Hopfe H. Slow oscillatory transcranial direct current stimulation (so-tDCS) during slow wave sleep has no effects on declarative memory in healthy young subjects. Brain Stimul. 2019;12:948–58. 10.1016/j.brs.2019.02.012. PubMed
Lee H, Fell J, Axmacher N. Electrical engram: how deep brain stimulation affects memory. Trends Cogn Sci. 2013;17:574–84. 10.1016/j.tics.2013.09.002. PubMed
Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23:843–9. 10.1038/mp.2017.59. PubMed PMC
Romo R, Salinas E. Cognitive neuroscience: Flutter discrimination: neural codes, perception, memory and decision making. Nat Rev Neurosci. 2003;4:203–18. 10.1038/nrn1058. PubMed
Ng BSW, Logothetis NK, Kayser C. EEG phase patterns reflect the selectivity of neural firing. Cereb Cortex. 2013;23:389–98. 10.1093/CERCOR/BHS031. PubMed
Vosskuhl J, Strüber D, Herrmann CS. Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci. 2018;12:211. 10.3389/fnhum.2018.00211. PubMed PMC
Ali MM, Sellers KK, Fröhlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci. 2013;33:11262–75. 10.1523/JNEUROSCI.5867-12.2013. PubMed PMC
Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (a-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8:499–508. 10.1016/J.BRS.2014.12.004. PubMed PMC
Veniero D, Vossen A, Gross J, Thut G. Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of Control over Oscillatory Network Activity. Front Cell Neurosci. 2015;9:1–17. 10.3389/FNCEL.2015.00477. PubMed PMC
Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res. 2019;237:3071–88. 10.1007/s00221-019-05666-0. PubMed
Hsu WY, Zanto TP, Anguera JA, Lin YY, Gazzaley A. Delayed enhancement of multitasking performance: effects of anodal transcranial direct current stimulation on the prefrontal cortex. Cortex. 2015;69:175. 10.1016/J.CORTEX.2015.05.014. PubMed PMC
Hsu WY, Zanto TP, Gazzaley A. Parametric effects of transcranial alternating current stimulation on multitasking performance. Brain Stimul. 2019;12:73–83. PubMed
Vosskuhl J, Huster RJ, Herrmann CS. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Front Hum Neurosci. 2015;9:257. 10.3389/fnhum.2015.00257. PubMed PMC
Chander BS, Witkowski M, Braun C, Robinson SE, Born J, Cohen LG, et al. tACS phase locking of Frontal Midline Theta oscillations disrupts Working Memory performance. Front Cell Neurosci. 2016;10:120. 10.3389/fncel.2016.00120. PubMed PMC
Kasten FH, Herrmann CS. Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. Front Hum Neurosci. 2017;11:233225. 10.3389/FNHUM.2017.00002/BIBTEX. PubMed PMC
Song J, Liu D, Zhang M, Wang H, Tan S. Intermittent theta burst stimulation (iTBS) combined with working memory training to improve cognitive function in schizophrenia: study protocol for a randomized controlled trial. Trials 2020. 2020;211:21:1–10. 10.1186/S13063-020-04563-0. PubMed PMC
Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80:751–64. 10.1016/J.NEURON.2013.10.002/ATTACHMENT/C0391771-2049-448E-B7FF-A031D0FE94B5/MMC1.PDF. PubMed PMC
Abend R, Jalon I, Gurevitch G, Sar-El R, Shechner T, Pine DS, et al. Modulation of fear extinction processes using transcranial electrical stimulation. Transl Psychiatry 2016 610. 2016;6:e913–913. 10.1038/tp.2016.197. PubMed PMC
Supriya S, Siuly S, Wang H, Zhang Y. Automated epilepsy detection techniques from electroencephalogram signals: a review study. Heal Inf Sci Syst. 2020;8:33. 10.1007/S13755-020-00129-1. PubMed PMC
Hoy KE, Bailey N, Arnold S, Windsor K, John J, Daskalakis ZJ, et al. The effect of γ-tACS on working memory performance in healthy controls. Brain Cogn. 2015;101:51–6. 10.1016/j.bandc.2015.11.002. PubMed
Tseng P, Iu KC, Juan CH. The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Sci Rep. 2018;8:1–9. 10.1038/s41598-017-18449-w. PubMed PMC
Tseng P, Chang YT, Chang CF, Liang WK, Juan CH. The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Sci Rep. 2016;6:1–15. 10.1038/srep32138. PubMed PMC
Röhner F, Breitling C, Rufener KS, Heinze H-J, Hinrichs H, Krauel K, et al. Modulation of Working Memory using Transcranial Electrical Stimulation: a direct comparison between TACS and TDCS. Front Neurosci. 2018;0:761. 10.3389/FNINS.2018.00761. PubMed PMC
Bender M, Romei V, Sauseng P. Slow Theta tACS of the Right Parietal Cortex enhances Contralateral Visual Working Memory Capacity. Brain Topogr 2019 323. 2019;32:477–81. 10.1007/S10548-019-00702-2. PubMed
Sahu PP, Tseng P. Frontoparietal theta tACS nonselectively enhances encoding, maintenance, and retrieval stages in visuospatial working memory. Neurosci Res. 2021;172:41–50. 10.1016/J.NEURES.2021.05.005. PubMed
Nakamura-Palacios EM, Falçoni Júnior AT, Anders QS, de Paula L dos, Zottele SP, Ronchete MZ et al. CF, Would frontal midline theta indicate cognitive changes induced by non-invasive brain stimulation? A mini review. Front Hum Neurosci. 2023;17:1116890. 10.3389/FNHUM.2023.1116890/BIBTEX PubMed PMC
Jaušovec N, Jaušovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol Psychol. 2014;96:42–7. 10.1016/j.biopsycho.2013.11.006. PubMed
Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22:1314–8. 10.1016/j.cub.2012.05.021. PubMed
Jaušovec N, Jaušovec K, Pahor A. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychol (Amst). 2014;146:1–6. 10.1016/j.actpsy.2013.11.011. PubMed
Wolinski N, Cooper NR, Sauseng P, Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018;16:e2005348. 10.1371/journal.pbio.2005348. PubMed PMC
Santarnecchi E, Muller T, Rossi S, Sarkar A, Polizzotto NR, Rossi A, et al. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex. 2016;75:33–43. PubMed
Meiron O, Lavidor Mw. Clin Neurophysiol. 2014;125:77–82. 10.1016/J.CLINPH.2013.06.013. PubMed
Pahor A, Jaušovec N. The effects of theta and gamma tacs on working memory and electrophysiology. Front Hum Neurosci. 2018;11:651. 10.3389/fnhum.2017.00651. PubMed PMC
Alekseichuk I, Turi Z, Amador de Lara G, Antal A, Paulus W. Spatial Working memory in humans depends on Theta and High Gamma synchronization in the Prefrontal Cortex. Curr Biol. 2016;26:1513–21. 10.1016/j.cub.2016.04.035. PubMed
Alekseichuk I, Pabel SC, Antal A, Paulus W. Intrahemispheric theta rhythm desynchronization impairs working memory. Restor Neurol Neurosci. 2017;35:147–58. 10.3233/RNN-160714. PubMed
Kleinert ML, Szymanski C, Müller V. Frequency-unspecific effects of θ-tACS related to a visuospatial working memory task. Front Hum Neurosci. 2017;11:367. 10.3389/fnhum.2017.00367. PubMed PMC
Hu Z, Woods AJ, Samuel IBH, Meyyappan S, Ding M. Proceedings #22: Frontoparietal Theta tACS enhances verbal Working memory in healthy humans with high Working Memory Capacity. Brain Stimul. 2019;12(e86–7). 10.1016/j.brs.2018.12.191.
Kim SE, Kim HS, Kwak Y, Ahn MH, Choi KM, Min BK. Neurodynamic correlates for the cross-frequency coupled transcranial alternating current stimulation during working memory performance. Front Neurosci. 2022;16:1013691. 10.3389/FNINS.2022.1013691/BIBTEX. PubMed PMC
Turi Z, Mittner M, Lehr A, Bürger H, Antal A, Paulus W. θ-γ Cross-frequency Transcranial Alternating Current Stimulation over the trough. Impairs Cogn Control ENeuro. 2020;7:1–12. https://doi.org/10.1523/ENEURO.0126-20.2020. PubMed PMC
Borghini G, Candini M, Filannino C, Hussain M, Walsh V, Romei V, et al. Alpha oscillations are causally linked to inhibitory abilities in ageing. J Neurosci. 2018;38:4418–29. https://doi.org/10.1523/JNEUROSCI.1285-17.2018. PubMed PMC
Misselhorn J, Göschl F, Higgen FL, Hummel FC, Gerloff C, Engel AK. Sensory capability and information integration independently explain the cognitive status of healthy older adults. Sci Rep 2020 101. 2020;10:1–18. 10.1038/s41598-020-80069-8. PubMed PMC
Grover S, Wen W, Viswanathan V, Gill CT, Reinhart RMG. Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci 2022 259. 2022;25:1237–46. 10.1038/s41593-022-01132-3. PubMed PMC
Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci 2019 225. 2019;22:820–7. 10.1038/s41593-019-0371-x. PubMed PMC
Draaisma LR, Wessel MJ, Moyne M, Morishita T, Hummel FC. Targeting the frontoparietal network using bifocal transcranial alternating current stimulation during a motor sequence learning task in healthy older adults. Brain Stimul. 2022;15:968–79. 10.1016/j.brs.2022.06.012. PubMed
Greve KW. The WCST-64: a standardized short-form of the Wisconsin Card sorting test. Clin Neuropsychol. 2001;15:228–34. 10.1076/CLIN.15.2.228.1901. PubMed
Miles S, Howlett CA, Berryman C, Nedeljkovic M, Moseley GL, Phillipou A. Considerations for using the Wisconsin Card sorting test to assess cognitive flexibility. Behav Res Methods. 2021;53:2083–91. 10.3758/S13428-021-01551-3/TABLES/2. PubMed
Smith-Seemiller L, Franzen MD, Bowers D. Use of Wisconsin Card sorting test short forms in clinical samples. Clin Neuropsychol. 1997;11:421–7. 10.1080/13854049708400472.
Laiacona M, Inzaghi MG, De Tanti A, Capitani E. Wisconsin card sorting test: a new global score, with Italian norms, and its relationship with the Weigl sorting test. Neurol Sci. 2000;21:279–91. 10.1007/S100720070065/METRICS. PubMed
Berg EA. A simple objective technique for measuring flexibility in thinking. J Gen Psychol. 1948;39:15–22. 10.1080/00221309.1948.9918159. PubMed
Drewe EA. The Effect of Type and Area of Brain Lesion on Wisconsin Card sorting test performance. Cortex. 1974;10:159–70. 10.1016/S0010-9452(74)80006-7. PubMed
Nelson HE. A modified card sorting test sensitive to Frontal Lobe defects. Cortex. 1976;12:313–24. 10.1016/S0010-9452(76)80035-4. PubMed
Herrmann CS, Strüber D, Helfrich RF, Engel AK. EEG oscillations: from correlation to causality. Int J Psychophysiol. 2016;103:12–21. 10.1016/j.ijpsycho.2015.02.003. PubMed
Giandomenico K, Baron LS, Gul A, Arbel Y. Between shifting and Feedback Processing in the Wisconsin Card sorting test in children with Developmental Language Disorder. Brain Sci 2023. Page 1128 2023;13:13:1128. 10.3390/BRAINSCI13081128. PubMed PMC
Bohon C, Weinbach N, Lock J. Performance and brain activity during the Wisconsin Card sorting test in adolescents with obsessive–compulsive disorder and adolescents with weight-restored anorexia nervosa. Eur Child Adolesc Psychiatry. 2020;29:217–26. 10.1007/S00787-019-01350-4/METRICS. PubMed PMC
Jaeger J. Digit symbol substitution test: the case for Sensitivity over specificity in Neuropsychological Testing. J Clin Psychopharmacol. 2018;38:513. 10.1097/JCP.0000000000000941. PubMed PMC
Patel T, Kurdi MS. A comparative study between oral melatonin and oral midazolam on preoperative anxiety, cognitive, and psychomotor functions. J Anaesthesiol Clin Pharmacol. 2015;31:37–43. 10.4103/0970-9185.150534. PubMed PMC
Wesnes KA. The value of assessing cognitive function in drug development. Dialogues Clin Neurosci. 2000;2:183. 10.31887/DCNS.2000.2.3/KWESNES. PubMed PMC
Pratt DN, Luther L, Kinney KS, Osborne KJ, Corlett PR, Powers AR, et al. Comparing a computerized digit symbol test to a Pen-and-paper classic. Schizophr Bull Open. 2023;4. 10.1093/SCHIZBULLOPEN/SGAD027. PubMed PMC
Albinet CT, Boucard G, Bouquet CA, Audiffren M. Processing speed and executive functions in cognitive aging: how to disentangle their mutual relationship? Brain Cogn. 2012;79:1–11. 10.1016/J.BANDC.2012.02.001. PubMed
Rabbitt P. Methodology of frontal and executive function. Methodol Front Exec Funct. 2004;1–257. 10.4324/9780203344187.
Baudouin A, Clarys D, Vanneste S, Isingrini M. Executive functioning and processing speed in age-related differences in memory: contribution of a coding task. Brain Cogn. 2009;71:240–5. 10.1016/J.BANDC.2009.08.007. PubMed
Sobczak-Edmans M, Lo YC, Hsu YC, Chen YJ, Kwok FY, Chuang KH, et al. Cerebro-Cerebellar pathways for Verbal Working Memory. Front Hum Neurosci. 2019;12:416704. 10.3389/FNHUM.2018.00530/BIBTEX. PubMed PMC
Klabes J, Babilon S, Zandi B, Khanh TQ. The Sternberg paradigm: correcting encoding latencies in visual and auditory test designs. Vision 2021;5. 10.3390/VISION5020021 PubMed PMC
Roznowski M, Smith ML. A note on some psychometric properties of Sternberg task performance: modifications to content. Intelligence. 1993;17:389–98. 10.1016/0160-2896(93)90006-Q.
Corbin L, Marquer J. Is Sternberg’s memory scanning task really a short-termmemory task? Swiss J Psychol. 2013;72:181–96. 10.1024/1421-0185/A000112.
Van Dun K, Mariën P. Cerebellar-Induced Aphasia and Related Language disorders. Linguist Cerebellum. 2016;107–33. 10.1016/B978-0-12-801608-4.00006-2.
Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci 2003 410. 2003;4:829–39. 10.1038/nrn1201. PubMed
Kelber P, Gierlich M, Göth J, Jeschke MG, Mackenzie IG, Mittelstädt V. A diffusion model analysis of object-based selective attention in the Eriksen Flanker Task. Exp Psychol. 2023;70:155–70. 10.1027/1618-3169/A000588. PubMed PMC
Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16:143–9. 10.3758/BF03203267.
Stins J, Polderman J, Boomsma D, De Geus E. Conditional accuracy in response interference tasks: evidence from the Eriksen flanker task and the spatial conflict task. Adv Cogn Psychol. 2007;3:409. 10.2478/V10053-008-0005-4. PubMed PMC
Sanders LMJ, Hortobágyi T, Balasingham M, Zee EA, van Van der, Heuvelen MJG. Psychometric properties of a Flanker Task in a sample of patients with dementia: a pilot study. Dement Geriatr Cogn Dis Extra. 2018;8:382. 10.1159/000493750. PubMed PMC
Wager E, Peterson MA, Folstein JR, Scalf PE. Ground-based inhibition: suppressive perceptual mechanisms interact with top-down attention to reduce distractor interference. J Vis. 2015;15:9–9. 10.1167/15.8.9. PubMed
Vogel EK, McCollough AW, Machizawa MG. Neural measures reveal individual differences in controlling access to working memory. Nat 2005 4387067. 2005;438:500–3. 10.1038/nature04171. PubMed
Li CH, He X, Wang YJ, Hu Z, Guo CY. Visual working memory capacity can be increased by training on distractor filtering efficiency. Front Psychol. 2017;8:231016. 10.3389/FPSYG.2017.00196/BIBTEX. PubMed PMC
Delorme A, Makeig S. No title. J Neurosci Methods. 2004;134:9–21. PubMed
Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intell Neurosci. 2011;2011. 10.1155/2011/156869. PubMed PMC
Vogeti S, Boetzel C, Herrmann CS. Entrainment and spike-timing dependent plasticity – a review of proposed mechanisms of Transcranial Alternating Current Stimulation. Front Syst Neurosci. 2022;16:827353. 10.3389/FNSYS.2022.827353/BIBTEX. PubMed PMC
Zaehle T, Rach S, Herrmann CS. Transcranial Alternating Current Stimulation enhances individual alpha activity in human EEG. PLoS ONE. 2010;5:e13766. 10.1371/JOURNAL.PONE.0013766. PubMed PMC
Mormann F, Osterhage H, Andrzejak RG, Weber B, Fernández G, Fell J, et al. Independent delta/theta rhythms in the human hippocampus and entorhinal cortex. Front Hum Neurosci. 2008;2:202. 10.3389/NEURO.09.003.2008/BIBTEX. PubMed PMC
Adams NE, Teige C, Mollo G, Karapanagiotidis T, Cornelissen PL, Smallwood J, et al. Neural circuits: Theta/delta coupling across cortical laminae contributes to semantic cognition. J Neurophysiol. 2019;121:1150. 10.1152/JN.00686.2018. PubMed PMC
Fertonani A, Miniussi C. Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist. 2017;23:109–23. 10.1177/1073858416631966/ASSET/IMAGES/LARGE/10.1177_1073858416631966-FIG4.JPEG. PubMed PMC
Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. 2015;9:141424. 10.3389/FNCEL.2015.00181/BIBTEX. PubMed PMC
Fertonani A, Pirulli C, Bollini A, Miniussi C, Bortoletto M. Age-related changes in cortical connectivity influence the neuromodulatory effects of transcranial electrical stimulation. Neurobiol Aging. 2019;82:77–87. 10.1016/J.NEUROBIOLAGING.2019.07.009. PubMed
Benwell CSY, Learmonth G, Miniussi C, Harvey M, Thut G. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: evidence from biparietal tDCS influence on lateralized attention bias. Cortex. 2015;69:152–65. 10.1016/J.CORTEX.2015.05.007. PubMed
Martin AK, Meinzer M, Lindenberg R, Sieg MM, Nachtigall L, Flöel A. Effects of transcranial direct current stimulation on neural networks in young and older adults. J Cogn Neurosci. 2017;29:1817–28. 10.1162/JOCN_A_01166. PubMed
Penton T, Bate S, Dalrymple KA, Reed T, Kelly M, Godovich S, et al. Using high frequency Transcranial Random noise stimulation to Modulate Face Memory performance in younger and older adults: lessons Learnt from mixed findings. Front Neurosci. 2018;12. 10.3389/FNINS.2018.00863. PubMed PMC
Fiori V, Nitsche M, Iasevoli L, Cucuzza G, Caltagirone C, Marangolo P. Differential effects of bihemispheric and unihemispheric transcranial direct current stimulation in young and elderly adults in verbal learning. Behav Brain Res. 2017;321:170–5. 10.1016/J.BBR.2016.12.044. PubMed
Heise KF, Niehoff M, Feldheim JF, Liuzzi G, Gerloff C, Hummel FC. Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age. Front Aging Neurosci. 2014;6. 10.3389/FNAGI.2014.00146. PubMed PMC
Penolazzi B, Di Domenico A, Marzoli D, Mammarella N, Fairfield B, Franciotti R, et al. Effects of Transcranial Direct current stimulation on episodic memory related to emotional visual stimuli. PLoS ONE. 2010;5. 10.1371/JOURNAL.PONE.0010623. PubMed PMC
Berryhill ME, Jones KT. tDCS selectively improves working memory in older adults with more education. Neurosci Lett. 2012;521:148–51. 10.1016/J.NEULET.2012.05.074. PubMed
Learmonth G, Thut G, Benwell CSY, Harvey M. The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance. Neuropsychologia. 2015;74:108–19. 10.1016/J.NEUROPSYCHOLOGIA.2015.01.037. PubMed
Antonenko D, Nierhaus T, Meinzer M, Prehn K, Thielscher A, Ittermann B, et al. Age-dependent effects of brain stimulation on network centrality. NeuroImage. 2018;176:71–82. 10.1016/J.NEUROIMAGE.2018.04.038. PubMed
Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci 2006 71. 2006;7:30–40. 10.1038/nrn1809. PubMed
Cuypers K, Maes C, Swinnen SP, Aging. GABA Aging (Albany NY). 2018;10:1186. 10.18632/AGING.101480. PubMed PMC
Lee J, Kim HJ. Normal aging induces changes in the Brain and Neurodegeneration Progress: review of the structural, biochemical, metabolic, Cellular, and Molecular Changes. Front Aging Neurosci. 2022;14. 10.3389/FNAGI.2022.931536. PubMed PMC
Köster M, Friese U, Schöne B, Trujillo-Barreto N, Gruber T. Theta-gamma coupling during episodic retrieval in the human EEG. Brain Res. 2014;1577:57–68. 10.1016/j.brainres.2014.06.028. PubMed
Razza LB, Vanderhasselt MA, Luethi MS, Repple J, Busatto G, Buchpiguel BA, et al. Cortical thickness is related to working memory performance after non-invasive brain stimulation. Brazilian J Med Biol Res. 2023;56. 10.1590/1414-431X2023E12945. PubMed PMC
Indahlastari A, Albizu A, O’Shea A, Forbes MA, Nissim NR, Kraft JN, et al. Modeling transcranial electrical stimulation in the aging brain. Brain Stimul. 2020;13:664–74. 10.1016/j.brs.2020.02.007. PubMed PMC
Rodrigues da Silva PH, Luethi MS, Vanderhasselt M-A, Brunoni AR, Razza LB. Association between brain cortical thickness and transcranial direct current stimulation working memory performance in healthy individuals. Brain Stimul. 2023;16:349–50. 10.1016/j.brs.2023.01.671.
Madan CR, Kensinger EA. Predicting age from cortical structure across the lifespan. Eur J Neurosci. 2018;47:399–416. 10.1111/EJN.13835. PubMed PMC
de Chastelaine M, Donley BE, Kennedy KM, Rugg MD. Age moderates the relationship between cortical thickness and cognitive performance. Neuropsychologia. 2019;132:107136. 10.1016/J.NEUROPSYCHOLOGIA.2019.107136. PubMed PMC
Vidal-Pineiro D, Parker N, Shin J, French L, Grydeland H, Jackowski A, et al. Cellular correlates of cortical thinning throughout the lifespan. BioRxiv. 2020;585786. 10.1101/585786. PubMed PMC
Wilson CG, Nusbaum AT, Whitney P, Hinson JM. Age-differences in cognitive flexibility when overcoming a preexisting bias through feedback. J Clin Exp Neuropsychol. 2018;40:586–94. 10.1080/13803395.2017.1398311. PubMed
Spreng RN, Wojtowicz M, Grady CL. Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev. 2010;34:1178–94. 10.1016/J.NEUBIOREV.2010.01.009. PubMed
Angelidis A, Solis E, Lautenbach F, van der Does W, Putman P. I’m going to fail! Acute cognitive performance anxiety increases threat-interference and impairs WM performance. PLoS ONE. 2019;14. 10.1371/JOURNAL.PONE.0210824. PubMed PMC
Kehler L, Francisco CO, Uehara MA, Moussavi Z. The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2020- July, Institute of Electrical and Electronics Engineers Inc.; 2020, pp. 3649–53. 10.1109/EMBC44109.2020.9175903 PubMed
Moussavi Z, Kimura K, Kehler L, de Oliveira Francisco C, Lithgow B. A Novel Program to improve cognitive function in individuals with dementia using Transcranial Alternating Current Stimulation (tACS) and tutored Cognitive exercises. Front Aging. 2021;0:3. 10.3389/FRAGI.2021.632545. PubMed PMC
Kasten FH, Duecker K, Maack MC, Meiser A, Herrmann CS. Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat Commun 2019 101. 2019;10:1–11. 10.1038/s41467-019-13417-6. PubMed PMC
Yen C, Lin CL, Chiang MC. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life 2023, Vol 13, Page 1472. 2023;13:1472. 10.3390/LIFE13071472 PubMed PMC