Fast singlet excited-state deactivation pathway of flavin with a trimethoxyphenyl derivative
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
CEUS-UNISONO 2020/02/Y/ST4/00042
National Science Centre of Poland
21-14200K
Czech Science Foundation
PubMed
39420059
PubMed Central
PMC11487251
DOI
10.1038/s41598-024-75239-x
PII: 10.1038/s41598-024-75239-x
Knihovny.cz E-resources
- Keywords
- Excited state ab initio calculations, Flavin, Isoalloxazine, Photophysics, Time-resolved spectroscopy,
- Publication type
- Journal Article MeSH
Incorporation of the trimethoxyphenyl group at position 7 of flavin can drastically change the photophysical properties of flavin. We show unique fast singlet 1(π,π*) excited state deactivation pathway through nonadiabatic transition to the 1(n,π*) excited- state, and subsequent deactivation to the ground electronic state (S0), closing the photocycle. This mechanism explains the exceptionally weak fluorescence and the short excited-state lifetime for the flavin trimethoxyphenyl derivative and the lack of excited triplet T1 state formation. Full recovery of flavin in its ground state takes place within a 15 ps time window after photoexcitation in a polar solvent such as acetonitrile. According to quantum chemical calculations, the C(2)-O distance elongates by 0.16 Å in the 1(n,π*) state, with respect to the ground state. Intermediate-state structures are predicted by theoretical ab initio calculations and their dynamics are investigated using broadband vis-NIR time-resolved transient absorption and fluorescence up-conversion techniques.
Faculty of Chemistry Adam Mickiewicz University Uniwersytetu Poznanskiego 8 61 614 Poznan Poland
Institute of Physics Polish Academy of Sciences Aleja Lotników 32 46 02 668 Warsaw Poland
See more in PubMed
Massey, V. The chemical and biological versatility of Riboflavin. Biochem. Sos Trans. 28, 283–296. 10.1042/bst0280283 (2000). PubMed
Cibulka, R. & Fraaije, M. W. Flavin-Based Catalysis: Principles and Applications (Viley-VCH, 2021).
Silva, E. & Edwards, A. M. Flavins: Photochemistry and Photobiology (Royal Society of Chemistry, 2006).
Sideri, I. K., Voutyritsa, E. & Kokotos, C. G. Photoorganocatalysis, small organic molecules and light in the service of organic synthesis: the awakening of a sleeping giant. Org. Biomol. Chem. 16, 4596–4614. 10.1039/c8ob00725j (2018). PubMed
Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166. 10.1021/acs.chemrev.6b00057 (2016). PubMed
Srivastava, V., Singh, P. K. & Singh, P. P. Recent advances of visible-light photocatalysis in the functionalization of organic compounds. J. Photochem. Photobiol. C Photochem. Rev. 50, 100488. 10.1016/j.jphotochemrev.2022.100488 (2022).
Rehpenn, A., Walter, A. & Storch, G. Molecular editing of flavins for catalysis. Synthesis 53, 2583–2593. 10.1055/a-1458-2419 (2021).
Iida, H., Imada, Y. & Murahashi, S. I. Biomimetic flavin-catalysed reactions for organic synthesis. Org. Biomol. Chem. 13, 7599–7613. 10.1039/c5ob00854a (2015). PubMed
Sikorska, E., Sikorski, M., Steer, R. P., Wilkinson, F. & Worrall, D. R. Efficiency of singlet oxygen generation by alloxazines and isoalloxazines. J. Chem. Soc. Faraday Trans. 94, 2347–2353. 10.1039/A802340I (1998).
Sikorska, E., Khmelinskii, I. V., Koput, J. & Sikorski, M. Electronic structure of lumiflavin and its analoguesin their ground and excited states. J. Mol. Struct. (Theochem.) 676, 155–160. 10.1016/j.theochem.2004.02.007 (2004).
Sikorska, E. et al. Spectroscopy and photophysics of lumiflavins and lumichromes. J. Phys. Chem. A 108, 1501–1508. 10.1021/jp037048u (2004).
Heelis, P. F. The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 11, 15–39. 10.1039/CS9821100015 (1982).
Kowalczyk, M. et al. Spectroscopy and photophysics of flavin-related compounds: Isoalloxazines. J. Mol. Struct. (Theochem.) 756, 47–54. 10.1016/j.theochem.2005.09.005 (2005).
Sikorska, E., Khmelinskii, I. V., Worrall, D. R., Koput, J. & Sikorski, M. Spectroscopy and photophysics of iso- and alloxazines: experimental and theoretical study. J. Fluoresc. 14, 57–64. 10.1023/B:JOFL.0000014660.59105.31 (2004). PubMed
Čubiňák, M. et al. Tuning the photophysical properties of flavins by attaching an aryl moiety via direct C – C bond coupling. J. Org. Chem. 88, 218–229. 10.1021/acs.joc.2c02168 (2023). PubMed
Visser, A. J. W. G. & Müller, F. Absorption and fluorescence studies on neutral and cationic isoalloxazines. Helv. Chim. Acta 62, 593–608. 10.1002/hlca.19790620227 (1979).
Kar, R. K. & Miller, A. F. Understanding flavin electronic structure and spectra. WIREs Comput. Mol. Sci. 12, e1541. 10.1021/acs.jpcb.1c07306 (2022).
Pakiari, A. H., Slarhaji, M., Abdollahi, T. & Safapour, M. The redox potential of flavin derivatives as a mediator in biosensors. J. Mol. Model. 27, 96. 10.1007/s00894-020-04650-8 (2021). PubMed
Kar, R. K., Chansen, S., Mroginski, M. A. & Miller, A. F. Tuning the quantum chemical properties of flavins via modification at C8. J. Phys. Chem. B 125, 12654–12669. 10.1021/acs.jpcb.1c07306 (2021). PubMed
Etz, B. D., DuClos, J. M. & Vyas, S. Investigating the photochemistry of C7 and C8 functionalized N(5)-ethyl-flavinium cation: a computational study. J. Phys. Chem. A 124, 4193–4201. 10.1021/acs.jpca.0c01938 (2020). PubMed
Salzmann, S. & Marian, C. M. The photophysics of alloxazine: a quantum chemical investigation in vacuum and solution. Photochem. Photobiol. Sci. 8, 1655–1666. 10.1039/b9pp00022d (2009). PubMed
Chang, X. P., Xie, X. Y., Lin, S. Y. & Cui, G. QM/MM study on mechanistic photophysics of alloxazine chromophore in aqueous solution. J. Phys. Chem. A 120, 6129–6136. 10.1021/acs.jpca.6b02669 (2016). PubMed
Kabir, M. P., Ghosh, P. & Gozem, S. Electronic structure methods for simulating flavin’s spectroscopy and photophysics: comparison of multi-reference, TD-DFT, and single-reference wave function methods. J. Phys. Chem. B. 128, 7545–7557. 10.1021/acs.jpcb.4c03748 (2024). PubMed PMC
Tolba, A. H., Vávra, F., Chudoba, J. & Cibulka, R. Tuning flavin-based photocatalytic systems for application in the mild chemoselective aerobic oxidation of benzylic substrates. Eur. J. Org. Chem. 10, 1579–1585. 10.1002/ejoc.201901628 (2020).
Pokluda, A. et al. Robust photocatalytic method using ethylene-bridged flavinium salts for the aerobic oxidation of unactivated benzylic substrates. Adv. Synth. Catal. 363, 1–10. 10.1002/adsc.202100024 (2021).
Pavlovska, T. et al. Primary and secondary amines by flavin-photocatalyzed consecutive desulfonylation and dealkylation of sulfonamides. Adv. Synth. Catal. 365, 4662–4671 (2023).
McBride, R. A., Barnard, D. T., Jacoby-Morris, K., Harun-Or-Rashid, M. & Stanley, R. J. Reduced flavin in aqueous solution is nonfluorescent. Biochemistry 62, 759–769. 10.1021/acs.biochem.2c00538 (2023). PubMed
Imada, Y., Iida, H., Ono, S., Masui, Y. & Murahashi, S. I. Flavin-catalyzed oxidation of amines and sulfides with molecular oxygen: biomimetic green oxidation. Chem. Asian J. 1, 136–147. 10.1002/asia.200600080 (2006). PubMed
Golczak, A. et al. Tetramethylalloxazines as efficient singlet oxygen photosensitizers and potential redox–sensitive agents. Sci. Rep. 13, 13426. 10.1038/s41598-023-40536-4 (2023). PubMed PMC
LMFIT. Non-Linear Least-Square Minimization and Curve-Fitting for Python (0.8.0) (Zenodo, 2014).
Wendel, M. et al. Time-resolved spectroscopy of the singlet excited state of betanin in aqueous and alcoholic solutions. Phys. Chem. Chem. Phys. 17, 18152–18158. 10.1039/c5cp00684h (2015). PubMed
Gierczyk, B., Murphree, S. S., Rode, M. F. & Burdzinski, G. Blockade of persistent colored isomer formation in photochromic 3H–naphthopyrans by excited–state intramolecular proton transfer. Sci. Rep. 12, 19159. 10.1038/s41598-022-23759-9 (2022). PubMed PMC
Møller, C. & Plesset, M. S. Note on an aproximation treatment for many-electron systems. Phys. Rev. 46, 618–622. 10.1103/PhysRev.46.618 (1934).
Hättig, C. Advances in Quantum Chemistry (ed Jensen, H. J. Å.), Vol. 50, 37–60 (Academic Press, 2005).
Schirmer, J. Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys. Rev. A 26, 2395–2416. 10.1103/PhysRevA.26.2395 (1982).
Trofimov, A. B. & Schirmer, J. An efficient polarization propagator approach to valence electron excitation spectra. J. Phys. B Mol. Opt. Phys. 28, 2299–2324. 10.1088/0953-4075/28/12/003 (1995).
Tuna, D. et al. Assessment of approximate coupled-cluster and algebraic-diagrammatic-construction methods for ground- and excited-state reaction paths and the conical-intersection seam of a retinal-chromophore model. J. Chem. Theory Comput. 11, 5758–5781. 10.1021/acs.jctc.5b00022 (2015). PubMed
Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023. 10.1063/1.456153 (1989).
Christiansen, O., Koch, H. & Jørgensen, P. The second-order approximate coupled cluster singles and doubles model CC2. Chem. Phys. Lett. 243, 409–418. 10.1016/0009-2614(95)00841-Q (1995).
Hättig, C. & Weigend, F. CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J. Chem. Phys. 113, 5154–5161. 10.1063/1.1290013 (2000).
TURBOMOLE V7.1 2016, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH. http://www.turbomole.com (2016).
Mojr, V. et al. Flavin photocatalysts for visible-light [2+ 2] cycloadditions: structure, reactivity and reaction mechanism. CheCatChem 10, 1–11. 10.1002/cctc.201701490 (2018).
Oziminski, W. P. & Dobrowolski, J. C. s- and p-electron contributions to the substituent effect: natural population analysis. J. Phys. Org. Chem. 22, 769–778. 10.1002/poc.1530 (2009).
Dobrowolski, J. C., Lipinski, P. F. J. & Karpinska, G. Substituent effect in the first excited singlet state of monosubstituted benzenes. J. Phys. Chem. A 122, 4609–4621. 10.1021/acs.jpca.8b02209 (2018). PubMed
Rode, M. F. & Sobolewski, A. L. Effect of chemical substituents on energetical landscape of a molecular switch: an ab initio study. J. Phys. Chem. A 114, 11879–11889. 10.1021/jp105710n (2010). PubMed
Perun, S., Sobolewski, A. L. & Domcke, W. Conical intersections in thymine. J. Phys. Chem. A 110, 13238–13244. 10.1021/jp0633897 (2006). PubMed
Kao, Y. T. et al. Ultrafast dynamics of flavins in five redox states. J. Am. Chem. Soc. 130, 7695–7701. 10.1021/ja8045469 (2008). PubMed PMC