Fast singlet excited-state deactivation pathway of flavin with a trimethoxyphenyl derivative
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CEUS-UNISONO 2020/02/Y/ST4/00042
National Science Centre of Poland
21-14200K
Czech Science Foundation
PubMed
39420059
PubMed Central
PMC11487251
DOI
10.1038/s41598-024-75239-x
PII: 10.1038/s41598-024-75239-x
Knihovny.cz E-zdroje
- Klíčová slova
- Excited state ab initio calculations, Flavin, Isoalloxazine, Photophysics, Time-resolved spectroscopy,
- Publikační typ
- časopisecké články MeSH
Incorporation of the trimethoxyphenyl group at position 7 of flavin can drastically change the photophysical properties of flavin. We show unique fast singlet 1(π,π*) excited state deactivation pathway through nonadiabatic transition to the 1(n,π*) excited- state, and subsequent deactivation to the ground electronic state (S0), closing the photocycle. This mechanism explains the exceptionally weak fluorescence and the short excited-state lifetime for the flavin trimethoxyphenyl derivative and the lack of excited triplet T1 state formation. Full recovery of flavin in its ground state takes place within a 15 ps time window after photoexcitation in a polar solvent such as acetonitrile. According to quantum chemical calculations, the C(2)-O distance elongates by 0.16 Å in the 1(n,π*) state, with respect to the ground state. Intermediate-state structures are predicted by theoretical ab initio calculations and their dynamics are investigated using broadband vis-NIR time-resolved transient absorption and fluorescence up-conversion techniques.
Faculty of Chemistry Adam Mickiewicz University Uniwersytetu Poznanskiego 8 61 614 Poznan Poland
Institute of Physics Polish Academy of Sciences Aleja Lotników 32 46 02 668 Warsaw Poland
Zobrazit více v PubMed
Massey, V. The chemical and biological versatility of Riboflavin. Biochem. Sos Trans. 28, 283–296. 10.1042/bst0280283 (2000). PubMed
Cibulka, R. & Fraaije, M. W. Flavin-Based Catalysis: Principles and Applications (Viley-VCH, 2021).
Silva, E. & Edwards, A. M. Flavins: Photochemistry and Photobiology (Royal Society of Chemistry, 2006).
Sideri, I. K., Voutyritsa, E. & Kokotos, C. G. Photoorganocatalysis, small organic molecules and light in the service of organic synthesis: the awakening of a sleeping giant. Org. Biomol. Chem. 16, 4596–4614. 10.1039/c8ob00725j (2018). PubMed
Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166. 10.1021/acs.chemrev.6b00057 (2016). PubMed
Srivastava, V., Singh, P. K. & Singh, P. P. Recent advances of visible-light photocatalysis in the functionalization of organic compounds. J. Photochem. Photobiol. C Photochem. Rev. 50, 100488. 10.1016/j.jphotochemrev.2022.100488 (2022).
Rehpenn, A., Walter, A. & Storch, G. Molecular editing of flavins for catalysis. Synthesis 53, 2583–2593. 10.1055/a-1458-2419 (2021).
Iida, H., Imada, Y. & Murahashi, S. I. Biomimetic flavin-catalysed reactions for organic synthesis. Org. Biomol. Chem. 13, 7599–7613. 10.1039/c5ob00854a (2015). PubMed
Sikorska, E., Sikorski, M., Steer, R. P., Wilkinson, F. & Worrall, D. R. Efficiency of singlet oxygen generation by alloxazines and isoalloxazines. J. Chem. Soc. Faraday Trans. 94, 2347–2353. 10.1039/A802340I (1998).
Sikorska, E., Khmelinskii, I. V., Koput, J. & Sikorski, M. Electronic structure of lumiflavin and its analoguesin their ground and excited states. J. Mol. Struct. (Theochem.) 676, 155–160. 10.1016/j.theochem.2004.02.007 (2004).
Sikorska, E. et al. Spectroscopy and photophysics of lumiflavins and lumichromes. J. Phys. Chem. A 108, 1501–1508. 10.1021/jp037048u (2004).
Heelis, P. F. The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 11, 15–39. 10.1039/CS9821100015 (1982).
Kowalczyk, M. et al. Spectroscopy and photophysics of flavin-related compounds: Isoalloxazines. J. Mol. Struct. (Theochem.) 756, 47–54. 10.1016/j.theochem.2005.09.005 (2005).
Sikorska, E., Khmelinskii, I. V., Worrall, D. R., Koput, J. & Sikorski, M. Spectroscopy and photophysics of iso- and alloxazines: experimental and theoretical study. J. Fluoresc. 14, 57–64. 10.1023/B:JOFL.0000014660.59105.31 (2004). PubMed
Čubiňák, M. et al. Tuning the photophysical properties of flavins by attaching an aryl moiety via direct C – C bond coupling. J. Org. Chem. 88, 218–229. 10.1021/acs.joc.2c02168 (2023). PubMed
Visser, A. J. W. G. & Müller, F. Absorption and fluorescence studies on neutral and cationic isoalloxazines. Helv. Chim. Acta 62, 593–608. 10.1002/hlca.19790620227 (1979).
Kar, R. K. & Miller, A. F. Understanding flavin electronic structure and spectra. WIREs Comput. Mol. Sci. 12, e1541. 10.1021/acs.jpcb.1c07306 (2022).
Pakiari, A. H., Slarhaji, M., Abdollahi, T. & Safapour, M. The redox potential of flavin derivatives as a mediator in biosensors. J. Mol. Model. 27, 96. 10.1007/s00894-020-04650-8 (2021). PubMed
Kar, R. K., Chansen, S., Mroginski, M. A. & Miller, A. F. Tuning the quantum chemical properties of flavins via modification at C8. J. Phys. Chem. B 125, 12654–12669. 10.1021/acs.jpcb.1c07306 (2021). PubMed
Etz, B. D., DuClos, J. M. & Vyas, S. Investigating the photochemistry of C7 and C8 functionalized N(5)-ethyl-flavinium cation: a computational study. J. Phys. Chem. A 124, 4193–4201. 10.1021/acs.jpca.0c01938 (2020). PubMed
Salzmann, S. & Marian, C. M. The photophysics of alloxazine: a quantum chemical investigation in vacuum and solution. Photochem. Photobiol. Sci. 8, 1655–1666. 10.1039/b9pp00022d (2009). PubMed
Chang, X. P., Xie, X. Y., Lin, S. Y. & Cui, G. QM/MM study on mechanistic photophysics of alloxazine chromophore in aqueous solution. J. Phys. Chem. A 120, 6129–6136. 10.1021/acs.jpca.6b02669 (2016). PubMed
Kabir, M. P., Ghosh, P. & Gozem, S. Electronic structure methods for simulating flavin’s spectroscopy and photophysics: comparison of multi-reference, TD-DFT, and single-reference wave function methods. J. Phys. Chem. B. 128, 7545–7557. 10.1021/acs.jpcb.4c03748 (2024). PubMed PMC
Tolba, A. H., Vávra, F., Chudoba, J. & Cibulka, R. Tuning flavin-based photocatalytic systems for application in the mild chemoselective aerobic oxidation of benzylic substrates. Eur. J. Org. Chem. 10, 1579–1585. 10.1002/ejoc.201901628 (2020).
Pokluda, A. et al. Robust photocatalytic method using ethylene-bridged flavinium salts for the aerobic oxidation of unactivated benzylic substrates. Adv. Synth. Catal. 363, 1–10. 10.1002/adsc.202100024 (2021).
Pavlovska, T. et al. Primary and secondary amines by flavin-photocatalyzed consecutive desulfonylation and dealkylation of sulfonamides. Adv. Synth. Catal. 365, 4662–4671 (2023).
McBride, R. A., Barnard, D. T., Jacoby-Morris, K., Harun-Or-Rashid, M. & Stanley, R. J. Reduced flavin in aqueous solution is nonfluorescent. Biochemistry 62, 759–769. 10.1021/acs.biochem.2c00538 (2023). PubMed
Imada, Y., Iida, H., Ono, S., Masui, Y. & Murahashi, S. I. Flavin-catalyzed oxidation of amines and sulfides with molecular oxygen: biomimetic green oxidation. Chem. Asian J. 1, 136–147. 10.1002/asia.200600080 (2006). PubMed
Golczak, A. et al. Tetramethylalloxazines as efficient singlet oxygen photosensitizers and potential redox–sensitive agents. Sci. Rep. 13, 13426. 10.1038/s41598-023-40536-4 (2023). PubMed PMC
LMFIT. Non-Linear Least-Square Minimization and Curve-Fitting for Python (0.8.0) (Zenodo, 2014).
Wendel, M. et al. Time-resolved spectroscopy of the singlet excited state of betanin in aqueous and alcoholic solutions. Phys. Chem. Chem. Phys. 17, 18152–18158. 10.1039/c5cp00684h (2015). PubMed
Gierczyk, B., Murphree, S. S., Rode, M. F. & Burdzinski, G. Blockade of persistent colored isomer formation in photochromic 3H–naphthopyrans by excited–state intramolecular proton transfer. Sci. Rep. 12, 19159. 10.1038/s41598-022-23759-9 (2022). PubMed PMC
Møller, C. & Plesset, M. S. Note on an aproximation treatment for many-electron systems. Phys. Rev. 46, 618–622. 10.1103/PhysRev.46.618 (1934).
Hättig, C. Advances in Quantum Chemistry (ed Jensen, H. J. Å.), Vol. 50, 37–60 (Academic Press, 2005).
Schirmer, J. Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys. Rev. A 26, 2395–2416. 10.1103/PhysRevA.26.2395 (1982).
Trofimov, A. B. & Schirmer, J. An efficient polarization propagator approach to valence electron excitation spectra. J. Phys. B Mol. Opt. Phys. 28, 2299–2324. 10.1088/0953-4075/28/12/003 (1995).
Tuna, D. et al. Assessment of approximate coupled-cluster and algebraic-diagrammatic-construction methods for ground- and excited-state reaction paths and the conical-intersection seam of a retinal-chromophore model. J. Chem. Theory Comput. 11, 5758–5781. 10.1021/acs.jctc.5b00022 (2015). PubMed
Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023. 10.1063/1.456153 (1989).
Christiansen, O., Koch, H. & Jørgensen, P. The second-order approximate coupled cluster singles and doubles model CC2. Chem. Phys. Lett. 243, 409–418. 10.1016/0009-2614(95)00841-Q (1995).
Hättig, C. & Weigend, F. CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J. Chem. Phys. 113, 5154–5161. 10.1063/1.1290013 (2000).
TURBOMOLE V7.1 2016, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH. http://www.turbomole.com (2016).
Mojr, V. et al. Flavin photocatalysts for visible-light [2+ 2] cycloadditions: structure, reactivity and reaction mechanism. CheCatChem 10, 1–11. 10.1002/cctc.201701490 (2018).
Oziminski, W. P. & Dobrowolski, J. C. s- and p-electron contributions to the substituent effect: natural population analysis. J. Phys. Org. Chem. 22, 769–778. 10.1002/poc.1530 (2009).
Dobrowolski, J. C., Lipinski, P. F. J. & Karpinska, G. Substituent effect in the first excited singlet state of monosubstituted benzenes. J. Phys. Chem. A 122, 4609–4621. 10.1021/acs.jpca.8b02209 (2018). PubMed
Rode, M. F. & Sobolewski, A. L. Effect of chemical substituents on energetical landscape of a molecular switch: an ab initio study. J. Phys. Chem. A 114, 11879–11889. 10.1021/jp105710n (2010). PubMed
Perun, S., Sobolewski, A. L. & Domcke, W. Conical intersections in thymine. J. Phys. Chem. A 110, 13238–13244. 10.1021/jp0633897 (2006). PubMed
Kao, Y. T. et al. Ultrafast dynamics of flavins in five redox states. J. Am. Chem. Soc. 130, 7695–7701. 10.1021/ja8045469 (2008). PubMed PMC