• This record comes from PubMed

Novel, soluble 3-heteroaryl-substituted tanshinone mimics attenuate the inflammatory response in murine macrophages

. 2024 Oct 18 ; 14 (1) : 24501. [epub] 20241018

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
GR2019-12369266 Ministero della Salute
LM2023042 Ministerstvo Školství, Mládeže a Tělovýchovy
. CZ.02.1.01/0.0/0.0/18_046/0015974 European Regional Development Fund
PNRR-MUR NextGenerationEU cod. CN00000041 Ministero dell'Università e della Ricerca
21548 Associazione Italiana per la Ricerca sul Cancro
813284 H2020 Marie Skłodowska-Curie Actions

Links

PubMed 39424621
PubMed Central PMC11489580
DOI 10.1038/s41598-024-73309-8
PII: 10.1038/s41598-024-73309-8
Knihovny.cz E-resources

The RNA binding protein Human Antigen R (HuR) has been identified as a main regulator of the innate immune response and its inhibition can lead to beneficial anti-inflammatory effects. To this aim, we previously synthesized a novel class of small molecules named Tanshinone Mimics (TMs) able to interfere with HuR-RNA binding, and that dampen the LPS-induced immune response. Herein, we present a novel series of TMs, encompassing thiophene 3/TM9 and 4/TM10, furan 5/TM11 and 6/TM12, pyrrole 7b/TM13, and pyrazole 8. The furan-containing 5(TM11) showed the greatest inhibitory effect of the series on HuR-RNA complex formation, as suggested by RNA Electromobility Shift Assay and Time-Resolved FRET. Molecular Dynamics Calculation of HuR - 5/TM11 interaction, quantum mechanics approaches and Surface Plasmon Resonance data, all indicates that, within the novel heteroaryl substituents, the furan ring better recapitulates the chemical features of the RNA bound to HuR. Compound 5/TM11 also showed improved aqueous solubility compared to previously reported TMs. Real-time monitoring of cell growth and flow cytometry analyses showed that 5/TM11 preferentially reduced cell proliferation rather than apoptosis in murine macrophages at immunomodulatory doses. We observed its effects on the innate immune response triggered by lipopolysaccharide (LPS) in macrophages, showing that 5/TM11 significantly reduced the expression of proinflammatory cytokines as Cxcl10 and Il1b.

See more in PubMed

Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23. 10.1016/j.jaci.2009.12.980 (2010). PubMed PMC

Tucureanu, M. M. et al. Lipopolysaccharide-induced inflammation in monocytes/macrophages is blocked by liposomal delivery of G. Int. J. Nanomed. 13, 63–76. 10.2147/IJN.S150918 (2018). PubMed PMC

Ngkelo, A., Meja, K., Yeadon, M., Adcock, I. & Kirkham, P. A. LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and Giα dependent PI-3 kinase signalling. J. Inflamm. 9, 1. 10.1186/1476-9255-9-1 (2012). PubMed PMC

Tiedje, C. et al. The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acids Res. 44, 7418–7440. 10.1093/nar/gkw474 (2016). PubMed PMC

Tiedje, C. et al. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLoS Genet. 8, e1002977. 10.1371/journal.pgen.1002977 (2012). PubMed PMC

Gueydan, C. et al. Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA. J. Biol. Chem. 274, 2322–2326. 10.1074/jbc.274.4.2322 (1999). PubMed

Ostareck, D. H. & Ostareck-Lederer, A. RNA-Binding proteins in the control of LPS-Induced Macrophage Response. Front. Genet. 10, 31. 10.3389/fgene.2019.00031 (2019). PubMed PMC

Díaz-Muñoz, M. D. & Turner, M. Uncovering the role of RNA-Binding proteins in Gene expression in the Immune System. Front. Immunol. 9, 1094. 10.3389/fimmu.2018.01094 (2018). PubMed PMC

Katsanou, V. et al. The RNA-binding protein Elavl1/HuR is essential for placental branching morphogenesis and embryonic development. Mol. Cell. Biol. 29, 2762–2776. 10.1128/MCB.01393-08 (2009). PubMed PMC

Giammanco, A. et al. Intestinal epithelial HuR modulates distinct pathways of proliferation and apoptosis and attenuates small intestinal and colonic tumor development. Cancer Res. 74, 5322–5335. 10.1158/0008-5472.CAN-14-0726 (2014). PubMed PMC

Yiakouvaki, A. et al. Myeloid cell expression of the RNA-binding protein HuR protects mice from pathologic inflammation and colorectal carcinogenesis. J. Clin. Invest. 122, 48–61. 10.1172/JCI45021 (2012). PubMed PMC

Zucal, C. et al. Targeting the multifaceted HuR protein, benefits and caveats. Curr. Drug Targets. 16, 499–515. 10.2174/1389450116666150223163632 (2015). PubMed

Assoni, G. et al. HuR-targeted agents: an insight into medicinal chemistry, biophysical, computational studies and pharmacological effects on cancer models. Adv. Drug Deliv Rev. 181, 114088. 10.1016/j.addr.2021.114088 (2022). PubMed

Wang, H. et al. The structure of the ARE-binding domains of Hu antigen R (HuR) undergoes conformational changes during RNA binding. Acta Crystallogr. D Biol. Crystallogr. 69, 373–380. 10.1107/S0907444912047828 (2013). PubMed

Rajasingh, J. The many facets of RNA-binding protein HuR. Trends Cardiovasc. Med. 25(8), 684–686. 10.1016/j.tcm.2015.03.013 (2015). PubMed PMC

Bonomo, I. et al. HuR modulation counteracts lipopolysaccharide response in murine macrophages. Dis. Model. Mech. 16, dmm.050120 (2023). 10.1242/dmm.050120 PubMed PMC

Liu, S. et al. Inhibition of RNA-binding protein HuR reduces glomerulosclerosis in experimental nephritis. Clin. Sci. 134, 1433–1448. 10.1042/CS20200193 (2020). PubMed PMC

Majumder, M., Chakraborty, P., Mohan, S., Mehrotra, S. & Palanisamy, V. HuR as a molecular target for cancer therapeutics and immune-related disorders. Adv. Drug Deliv. Rev. 188, 114442. 10.1016/j.addr.2022.114442 (2022). PubMed PMC

Muralidharan, R. et al. Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration. J. Nanobiotechnol. 14, 47. 10.1186/s12951-016-0201-1 (2016). PubMed PMC

Manzoni, L. et al. Interfering with HuR-RNA Interaction: Design, synthesis and Biological characterization of Tanshinone Mimics as Novel, effective HuR inhibitors. J. Med. Chem. 61, 1483–1498. 10.1021/acs.jmedchem.7b01176 (2018). PubMed

D’Agostino, V. G. et al. Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function. Sci. Rep. 5, 16478. 10.1038/srep16478 (2015). PubMed PMC

Meisner, N. C. et al. Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nat. Chem. Biol. 3, 508–515. 10.1038/nchembio.2007.14 (2007). PubMed

Wu, X. et al. Identification and validation of novel small molecule disruptors of HuR-mRNA interaction. ACS Chem. Biol. 10, 1476–1484. 10.1021/cb500851u (2015). PubMed PMC

Wu, X. et al. Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun. Biol. 3, 193. 10.1038/s42003-020-0933-1 (2020). PubMed PMC

Wu, X. & Xu, L. The RNA-binding protein HuR in human cancer: A friend or foe? Adv. Drug Deliv. Rev. 184, 114179 (2022). PubMed PMC

Jampilek, J. Heterocycles in medicinal chemistry. Molecules. 24, 3839. 10.3390/molecules24213839 (2019). PubMed PMC

Mathis, G. HTRF(R) technology. J. Biomol. Screen. 4, 309–314. 10.1177/108705719900400605 (1999). PubMed

Degorce, F. et al. HTRF: A technology tailored for drug discovery—A review of theoretical aspects and recent applications. Curr. Chem. Genom. 3, 22–32. 10.2174/1875397300903010022 (2009). PubMed PMC

Branko, S. J. Suitability of furan, pyrrole and thiophene as dienes for Diels–Alder reactions viewed through their stability and reaction barriers for reactions with acetylene, ethylene and cyclopropene. An AM1 semiempirical and B3LYP hybrid density functional theory study. J. Mol. Struct. Theochem. 454, 105–116. 10.1016/S0166-1280(98)00281-4 (1998).

Horner, K. E. & Karadakov, P. B. Chemical bonding and aromaticity in furan, pyrrole, and thiophene: A magnetic shielding study. J. Org. Chem. 78, 8037–8043. 10.1021/jo401319k (2013). PubMed

Kim, H. S. et al. Different modes of interaction by TIAR and HuR with target RNA and DNA. Nucleic Acids Res. 39, 1117–1130. 10.1093/nar/gkq837 (2011). PubMed PMC

Piotr, C. An ab initio study on nucleic acid bases aromaticities. J. Mol. Struct. Theochem. 714, 29–34. 10.1016/j.theochem.2004.10.030 (2005).

Taro, U. Theoretical analysis on the aromaticity of uracil: Important electronic configurations and solvent effect on the aromaticity. Chem. Phys. Lett. 637, 115–119. 10.1016/j.cplett.2015.07.057 (2015).

Wang, W., Caldwell, M. C., Lin, S., Furneaux, H. & Gorospe, M. HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J. 19, 2340–2350. 10.1093/emboj/19.10.2340 (2000). PubMed PMC

Osma-Garcia, I. C. et al. The RNA-binding protein HuR is required for maintenance of the germinal centre response. Nat. Commun. 12, 6556. 10.1038/s41467-021-26908-2 (2021). PubMed PMC

Muralidharan, R. et al. HuR-targeted small molecule inhibitor exhibits cytotoxicity towards human lung cancer cells. Sci. Rep. 10.1038/s41598-017-07787-4 (2017). PubMed PMC

Krishnamurthy, P. et al. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ. Res. 104, e9–e18. 10.1161/CIRCRESAHA.108.188243 (2009). PubMed PMC

Zhou, C. et al. ELAVL1 promotes LPS-induced endothelial cells injury through modulation of cytokine storm. Immunobiology. 228, 152412. 10.1016/j.imbio.2023.152412 (2023). PubMed

Katsanou, V. et al. HuR as a negative posttranscriptional modulator in inflammation. Mol. Cell. 19, 777–789. 10.1016/j.molcel.2005.08.007 (2005). PubMed

Christodoulou-Vafeiadou, E. et al. Divergent innate and epithelial functions of the RNA-Binding protein HuR in intestinal inflammation. Front. Immunol. 9, 2732. 10.3389/fimmu.2018.02732 (2018). PubMed PMC

Lal, P. et al. Regulation of HuR structure and function by dihydrotanshinone-I. Nucleic Acids Res. 45, 9514–9527. 10.1093/nar/gkx623 (2017). PubMed PMC

Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652. 10.1063/1.464913 (1993).

Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234. 10.1007/s10822-013-9644-8 (2013). PubMed

Jacobson, M. P. et al. A hierarchical approach to all-atom protein loop prediction. Proteins. 55, 351–367. 10.1002/prot.10613 (2004). PubMed

Jacobson, M. P., Friesner, R. A., Xiang, Z. & Honig, B. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol. 320, 597–608. 10.1016/s0022-2836(02)00470-9 (2002). PubMed

Olsson, M. H., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: Consistent treatment of Internal and Surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537. 10.1021/ct100578z (2011). PubMed

Banks, J. L. et al. Integrated modeling program, applied chemical theory (IMPACT). J. Comput. Chem. 26, 1752–1780. 10.1002/jcc.20292 (2005). PubMed PMC

Greenwood, J. R., Calkins, D., Sullivan, A. P. & Shelley, J. C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 24, 591–604. 10.1007/s10822-010-9349-1 (2010). PubMed

Shelley, J. C. et al. Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 21, 681–691. 10.1007/s10822-007-9133-z (2007). PubMed

Friesner, R. A. et al. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196. 10.1021/jm051256o (2006). PubMed

Friesner, R. A. et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749. 10.1021/jm0306430 (2004). PubMed

Halgren, T. A. et al. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759. 10.1021/jm030644s (2004). PubMed

Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791. 10.1002/jcc.21256 (2009). PubMed PMC

Maier, J. A. et al. ff14SB: Improving the Accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713. 10.1021/acs.jctc.5b00255 (2015). PubMed PMC

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174. 10.1002/jcc.20035 (2004). PubMed

Bayly, C., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 97, 10269–10280. 10.1021/j100142a004 (1993).

Roothaan, C. C. J. New developments in molecular orbital theory. Rev. Mod. Phys. 23, 69. 10.1103/RevModPhys.23.69 (1951).

Gordon, J. C., Fenley, A. T. & Onufriev, A. An analytical approach to computing biomolecular electrostatic potential. II. Validation and applications. J. Chem. Phys. 129, 075102. 10.1063/1.2956499 (2008). PubMed PMC

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935. 10.1063/1.445869 (1983).

Joung, I. S. & Cheatham, T. E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 112, 9020–9041. 10.1021/jp8001614 (2008). PubMed PMC

Joung, I. S. & Cheatham, T. E. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J. Phys. Chem. B. 113, 13279–13290. 10.1021/jp902584c (2009). PubMed PMC

Bekker, H. et al. GROMACS—A Parallel Computer for Molecular-Dynamics Simulations. (World Sci. Publishing, 1993), 252–256.

Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593. 10.1063/1.470117 (1995).

Hockney, R. W., Goel, S. P. & Eastwood, J. W. Quiet high-resolution computer models of a plasma. J. Computat Phys. 14, 148–158. 10.1016/0021-9991(74)90010-2 (1974).

Hess, B. et al. A linear constraint solver for molecular simulations. J. Computat Chem. 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H (1998).

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690. 10.1063/1.448118 (1984).

Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101. 10.1063/1.2408420 (2007). PubMed

Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190. 10.1063/1.328693 (1981).

Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38. 10.1016/0263-7855(96)00018-5 (1996). PubMed

Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82. 10.1002/pro.3943 (2021). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...