Synthesis and Structure Determination by 3D Electron Diffraction of the Extra-large Pore Zeolite ITQ-70
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
CEX2021-001230-S
Ministerio de Ciencia e Innovación
PID2022-136934OB-100
Ministerio de Ciencia e Innovación
TED2021-130191B-C41
Ministerio de Ciencia e Innovación
BES-2016-078684
Ministerio de Ciencia e Innovación
PRE2018-083623
Ministerio de Ciencia e Innovación
PRTR-C17. I1
Ministerio de Ciencia e Innovación
Prometeo 2021/077
Generalitat Valenciana
MFA/2022/012
Generalitat Valenciana
MFA/2022/047
Generalitat Valenciana
PubMed
39431860
PubMed Central
PMC11753600
DOI
10.1002/anie.202416515
Knihovny.cz E-resources
- Keywords
- 3DED, NMR, chiral, extra-large pore zeolite, structure,
- Publication type
- Journal Article MeSH
In this study, we present the synthesis, characterization, and structural analysis of a novel zeolite, ITQ-70, using 3D electron diffraction. This unique material was synthesized under alkaline conditions, employing tetrakis(diethylamino)phosphonium as an organic structure-directing agent, leading to the formation of a pure silica zeolite. ITQ-70 is distinguished by its extra-large pore apertures, which extend along all three axes and intersect one to the other. A notable feature of this zeolite is the presence of structurally ordered defects in very high concentrations (38 % of the silicon atoms). As a result, ITQ-70 exhibits the lowest framework density (10.0 T/1000 Å3) ever reported for any zeolite except RWY (7.6 T/1000 Å3), which contains sulfur instead of oxygen connecting T-atoms.
Institute of Physics of the Czech Academy of Sciences v v i Na Slovance 2 Prague 8 182 00 Czechia
NanoMEGAS SPRL Rue Èmile Claus 49 bte 9 B 1080 Brussels Belgium
See more in PubMed
Yilmaz B., Trukhan N., Müller U., Chin. J. Catal. 2012, 33, 3.
Jiang J., Yu J., Corma A., Angew. Chem. Int. Ed. 2010, 49, 3120. PubMed
Zones S. I., Microporous Mesoporous Mater. 2011, 144, 1.
Freyhardt C. C., Tsapatsis M., Lobo R. F., Balkus K. J. Jr, Davis M. E., Nature 1996, 381, 295.
Corma A., Díaz-Cabañas M. J., Jordá J. L., Martínez C., Moliner M., Nature 2006, 443, 842. PubMed
Gao Z. R., Yu H., Chen F.-J., Mayoral A., Niu Z., Niu Z., Li X., Deng H., Márquez-Álvarez C., He H., Xu S., Zhou Y., Xu J., Xu H., Fan W., Balestra S. R. G., Ma C., Hao J., Li J., Wu P., Yu J., Camblor M. A., Nature 2024, 628, 99. PubMed
Nie C., Yan N., Liao C., Ma C., Liu X., Wang J., Li G., Guo P., Liu Z., J. Am. Chem. Soc. 2024, 146, 10257. PubMed
Camblor M. A., Gao Z. R., Yu H., Villaescusa L. A., Angew. Chem. Int. Ed. 2024, e202412170. PubMed
Davis M. E., Nature 2002, 417, 813. PubMed
Wagner P., Nakagawa Y., Lee G. S., Davis M. E., Elomari S., Medrud R. C., Zones S. I., J. Am. Chem. Soc. 2000, 122, 263.
Moliner M., Rey F., Corma A., Angew. Chem. Int. Ed. 2013, 52, 13880. PubMed
Li J., Corma A., Yu J., Chem. Soc. Rev. 2015, 44, 7112. PubMed
Cheetham A. K., Fjellvåg H., Gier T. E., Kongshaug K. O., Lillerud K. P., Stucky G. D., Stud. Surf. Sci. Catal. 2001, 135, 158.
Peng M., Zhao Y., Xu H., Jiang J., Wu P., Chem. Eur. J. 2024, 30, e202303657. PubMed
Davis M. E., Chem. Eur. J. 1997, 3, 1745.
Yamasaki Y., Tsunoji N., Takamitsu Y., Sadakane M., Sano T., Microporous Mesoporous Mater. 2016, 223,129.
Rey F., Simancas J., Struct. Bonding 2017, 176, 103.
Dorset D. L., Kennedy G. J., Strohmaier K. G., Diaz-Cabañas M. J., Rey F., Corma A., J. Am. Chem. Soc. 2006, 128, 8862. PubMed
Corma A., Diaz-Cabañas M. J., Jorda J. L., Rey F., Sastre G., Strohmaier K. G., J. Am. Chem. Soc. 2008, 130, 16482. PubMed
Yun Y., Hernandez M., Wan W., Zou X., Jorda J. L., Cantin A., Rey F., Corma A., Chem. Commun. 2015, 51, 7602. PubMed
Lin Q. F., Gao Z. R., Lin C., Zhang S., Chen J., Li Z., Liu X., Fan W., Li J., Chen X., Camblor M. A., Chen F. J., Science 2021, 374, 1605. PubMed
Li J., Gao Z. R., Lin Q. F., Liu C., Gao F., Lin C., Zhang S., Deng H., Mayoral A., Fan W., Luo S., Chen X., He H., Camblor M. A., Chen F. J., Yu J., Science 2023, 379, 283. PubMed
Huang Z., Willhammar T., Zou X., Chem. Sci. 2021, 12, 1206. PubMed PMC
https://www.iza-structure.org/.
Thomas J. M., Klinowski J., Ramdas S., Hunter B. K., Tennakoon D. B. T., Chem. Phys. Lett. 1983, 102, 158.
Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. W., Pure Appl. Chem. 2015, 87, 1051.
Horváth G., Kawazoe K., J. Chem. Eng. Japan 1983, 16, 470.
Oszlányi G., Sütő A., Acta Cryst. A 2004, 60, 134. PubMed
Palatinus L., Chapuis G. J., Appl. Crystallogr. 2007, 40, 786.
Burla M. C., Caliandro R., Carrozzini B., Cascarano G. L., Cuocci C., Giacovazzo C., Mallamo M., Mazzone A., Polidori G., J. Appl. Cryst. 2015, 48, 306.
Gálvez-Llompart M., Cantín A., Rey F., Sastre G., Z. Kristallogr. - Cryst. Mater. 2019, 234, 451.
Gale J. D., J. Chem. Soc. Faraday Trans. 1997, 93, 62.
Brunklaus G., Koller H., Zones S. I., Angew. Chem. Int. Ed. 2016, 55, 14459. PubMed
Koller H., Lobo R. F., Burkett S. L., Davis M. E., J. Phys. Chem. 1995, 99,12588.
Parker W. O., Millini R., J. Am. Chem. Soc. 2006, 128, 1450. PubMed