Open Framework Structure of the New Pure-Germania Zeolite ITQ-35 Solved by 3D Electron Diffraction
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CEX2021-001230-S
Ministerio de Ciencia e Innovación
PRTR-C17. I1
Ministerio de Ciencia e Innovación
PID2022-136934OB-100
Ministerio de Ciencia e Innovación
TED2021-130191B-C41
Ministerio de Ciencia e Innovación
SeveroOchoaPRE2018-083623
Ministerio de Ciencia e Innovación
PROMETEO2021/077
Generalitat Valenciana
MFA/2022/012
Generalitat Valenciana
MFA/2022/047
Generalitat Valenciana
TerafitCZ.02.01.01/00/22_008/0004594
Ministry of Education Youth and Science
CzechNanoLabLM2023051
Ministry of Education Youth and Science
PubMed
40685945
PubMed Central
PMC12464644
DOI
10.1002/smtd.202500860
Knihovny.cz E-zdroje
- Klíčová slova
- 3DED, diffraction, germanate, structure, zeolite,
- Publikační typ
- časopisecké články MeSH
A pure open-framework germanate material is obtained using an organic structure directing agent (OSDA) prepared by a photochemically induced[2 + 2] cycloaddition reaction. The structure of this new material, named ITQ-35, is determined by combining precession electron diffraction tomography (PEDT) and powder X-ray diffraction (PXRD) methods. This material presents tridirectional 8-ring pores connected by 12-ring channels, with one of the lowest framework densities reported until now for a pure germania zeolitic material (12.7 T/1000 Å3), and similar to that of the aluminogermanate PKU-9.
Institute of Physics of the Czech Academy of Sciences v v i Na Slovance 2 Prague 8 182 00 Czechia
NanoMEGAS SPRL Rue Èmile Claus 49 bte 9 Brussels B 1080 Belgium
Zobrazit více v PubMed
Breck D. W., Zeolite Molecular Sieves: Structure, Chemistry, and Use, Wiley, New York, 1973.
Flanigen E. M., Broach R. W., Wilson S. T., Zeolites in Industrial Separation and Catalysis, (Ed.: Kulprathipanja S.), ch. 1, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany: 2010.
Martinez C., Corma A., Coord. Chem. Rev. 2011, 255, 1558.
Zones S. I., Microporous Mesoporous Mater. 2011, 144, 1.
Cundy C. S., Cox P. A., Microporous Mesoporous Mater. 2005, 82, 1.
Li J., Corma A., Yu J., Chem. Soc. Rev. 2015, 44, 7112. PubMed
Corma A., Davis M. E., ChemPhysChem 2004, 5, 304.
Harris J. W., Bates J. S., Bukowski B. C., Greeley J., Gounder R., ACS Catal. 2020, 10, 9476.
Corma A., Diaz‐Cabañas M. J., Martinez‐Triguero J., Rey F., Rius J., Nature 2002, 418, 514. PubMed
Corma A., Navarro M. T., Rey F., Rius J., Valencia S., Angew. Chem., Int. Ed. 2001, 40, 2277. PubMed
Corma A., Rey F., Valencia S., Jorda J. L., Rius J., Nature Mater 2003, 2, 493. PubMed
Paillaud J. L., Harbuzaru B., Patarin J., Bats N., Science 2004, 304, 990. PubMed
Blasco T., Corma A., Díaz‐Cabañas M. J., Rey F., Vidal‐Moya J. A., Zicovich‐Wilson C. M., J. Phys. Chem. B 2002, 106, 2634.
Sastre G., Vidal‐Moya J. A., Blasco T., Rius J., Jordá J. L., Navarro M. T., Rey F., Corma A., Angew. Chem.‐Inter. Ed. 2002, 41, 4722. PubMed
Vidal‐Moya J. A., Blasco T., Rey F., Corma A., Puche M., Chem. Mater. 2003, 15, 3961.
Kamakoti P., Barckholtz T. A., J. Phys. Chem. C 2007, 111, 3575.
Brunner G. O., Meier W. M., Nature 1989, 337, 146.
Lobo R. F., Zones S. I., Davis M. E., J. Inclusion Phenom. Mol. Recognit. Chem. 1995, 21, 47.
Burton A. W., Zones S. I., Elomari S., Curr. Opin. Colloid Interface Sci. 2005, 10, 211.
Davis M. E., Chem. Mater. 2014, 26, 239.
Rey F., Simancas J., in Insights into the Chemistry of Organic Structure‐Directing Agents in the Synthesis of Zeolitic Materials. Structure and Bonding, (Ed.: Gómez‐Hortigüela L.), Springer, Cham, 2017.
Gies H., Marler B., Zeolites 1992, 12, 42.
Kubota Y., Helmkamp M. M., Zones S. I., Davis M. E., Microporous Mater 1996, 6, 213.
Nakagawa Y., Zones S. I., in Synthesis of Microporous Materials, (Eds.: Occelli M. L., Robson H. E.), Van Nostrand Reinhold, New York: 1992.
Nakagawa Y., Surf. Sci. Catal. 1994, 84, 323
Cantín A., Corma A., Leiva S., Rey F., Rius J., Valencia S., J. Am. Chem. Soc. 2005, 127, 11560. PubMed
Cantín A., Leiva S., Jordá J. L., Valencia S., Rey F., Corma A., Stud. Surf. Sci. Catal. 2007, 107, 330.
Palomino M., Cantín A., Corma A., Leiva S., Rey F., Valencia S., Chem. Commun. 2007, 12, 1233. PubMed
Kolb U., Gorelik T., Kübel C., Otten M. T., Hubert D., Ultramicroscopy 2007, 107, 507. PubMed
Kolb U., Gorelik T., Otten M. T., Ultramicroscopy 2008, 108, 763. PubMed
Zhang D., Oleynikov P., Hovmöller S., Zou X., Z. Kristallogr. 2010, 225, 94.
Tirado J. I., Das P. P., Jorda J. L., Palatinus L., Plana‐Ruiz S., Simancas J., Simancas R., Nicolopoulos S., Valencia S., Rey F., Microporous Mesoporous Mater. 2025, 382, 113392.
Tirado J. I., Sala A., Bordes A., Pratim Das P., Palatinus L. S., Nicolopoulos S., Jordá J. L., Vidal‐Moya A., Blasco T., Sastre G., Valencia S., Rey F., Angew. Chem., Int. Ed. 2025, 64, 202416515. PubMed PMC
Dorset D. L., Gilmore C. J., Jorda J. L., Nicolopoulos S., Ultramicroscopy 2007, 107, 462. PubMed
Mugnaioli E., Gorelik T., Kolb U., Ultramicroscopy 2009, 109, 758. PubMed
Ge M., Yang T., Xu H., Zou X., Huang J., J. Am. Chem. Soc. 2022, 144, 15165. PubMed PMC
Brázda P., Palatinus L., Babor M., Science 2019, 364, 667. PubMed
Gruene T., Wennmacher J. T. C., Zaubitzer C., Holstein J. J., Heidler J., Fecteau‐Lefebvre A., De Carlo S., Müller E., Goldie K. N., Regeni I., Li T., Santiso‐Quinones G., Steinfeld G., Handschin S., van Genderen E., van Bokhoven J. A., Clever G. H., Pantelic R., Angew. Chem., Int. Ed. 2018, 57, 16313. PubMed PMC
Jones C. G., Martynowycz M. W., Hattne J., Fulton T. J., Stoltz B. M., Rodriguez J. A., Nelson H. M., Gonen T., ACS Cent. Sci. 2018, 4, 1587. PubMed PMC
Moliner M., González J., Portilla M. T., Willhammar T., Rey F., Llopis F. J., Zou X., Corma A., J. Am. Chem. Soc. 2011, 133, 9497. PubMed
Huang Z., Grape E. S., Li J., Inge A. K., Zou X., Coord. Chem. Rev. 2021, 427, 213583.
Cho J., Willhammar T., Zou X., Microporous Mesoporous Mater. 2023, 358, 112400.
Luo Y., Fu W., Wang B., Yuan Z., Sun J., Zou X., Yang W., Inorg. Chem. 2022, 61, 4371. PubMed PMC
Wang Y., Song J., Gies H., Solid State Sci. 2003, 5, 1421.
Liu X., Chu Y., Wang Q., Wang W., Wang C., Xu J., Deng F., Solid State Nucl. Magn. Reson. 2017, 87, 1. PubMed
Kasian N., Tuel A., Verheyen E., Kirschhock C. E. A., Taulelle F., Martens J. A., Chem. Mater. 2014, 26, 5556.
Villaescusa L., Camblor A., Chem. Mater. 2016, 28, 7544.
Palatinus L., Brázda P., Jelínek M., Hrdá J., Steciuk G., Klementová M., Acta Cryst. 2019, 75, 512. PubMed
Petříček V., Dušek M., Palatinus L., Z. Kristallogr. 2014, 229, 345.
Palatinus L., Chapuis G., Appl. Cryst. 2007, 40, 786.
Bu X., Feng P., Gier T. E., Zhao D., Stucky G. D., J. Am. Chem. Soc. 1998, 120, 13389.
Gálvez‐Llompart M., Cantín A., Rey F., Sastre G., Z. Kristallogr. – Cryst. Mater. 2019, 234, 451.
Waitt C., Gao X., Gounder R., Debellis A., Prasad S., Moini A., Schneider W. F., Phys. Chem. C 2023, 127, 22740.
Rodríguez‐Carvajal J., Commission on Powder Diffraction (IUCr). Newsletter 2001, 26, 12.
Mathieu Y., Paillaud J.‐L., Caullet P., Bats N., Microporous Mesoporous Mat 2004, 75, 13.
Li H., Yaghi O. M., J. Am. Chem. Soc. 1998, 120, 10569.
Sala A., Pérez‐Botella E., Jordá J. L., Cantín A., Rey F., Valencia S., Angew. Chem., Int. Ed. 2021, 60, 11745. PubMed
Conradsson T., Dadachov M. S., Zou X. D., Microporous Mesoporous Mater. 2000, 41, 183.
Su J., Wang Y., Wang Z., Lin J., J. Am. Chem. Soc. 2009, 131, 6080. PubMed