Thermothelomyces thermophilus cultivated with residues from the fruit pulp industry: enzyme immobilization on ionic supports of a crude cocktail with enhanced production of lichenase
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39441457
DOI
10.1007/s12223-024-01208-6
PII: 10.1007/s12223-024-01208-6
Knihovny.cz E-zdroje
- Klíčová slova
- Thermothelomyces thermophilus, Immobilization, Lichenase, Response surface methodology,
- MeSH
- enzymy imobilizované * metabolismus chemie MeSH
- fungální proteiny * metabolismus chemie MeSH
- glykosidhydrolasy * metabolismus chemie biosyntéza MeSH
- koncentrace vodíkových iontů MeSH
- ovoce metabolismus MeSH
- semena rostlinná metabolismus MeSH
- Sordariales MeSH
- stabilita enzymů MeSH
- Tamarindus metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- enzymy imobilizované * MeSH
- fungální proteiny * MeSH
- glykosidhydrolasy * MeSH
- licheninase MeSH Prohlížeč
β-Glucans comprise a group of β-D-glucose polysaccharides (glucans) that occur naturally in the cell walls of bacteria, fungi, and cereals. Its degradation is catalyzed by β-glucanases, enzymes that catalyze the breakdown of β-glucan into cello-oligosaccharides and glucose. These enzymes are classified as endo-glucanases, exo-glucanases, and glucosidases according to their mechanism of action, being the lichenases (β-1,3;1,4-glucanases, EC 3.2.1.73) one of them. Hence, we aimed to enhance lichenase production by Thermothelomyces thermophilus through the application of response surface methodology, using tamarind (Tamarindus indica) and jatoba (Hymenaea courbaril) seeds as carbon sources. The crude extract was immobilized, with a focus on improving lichenase activity, using various ionic supports, including MANAE (monoamine-N-aminoethyl), DEAE (diethylaminoethyl)-cellulose, CM (carboxymethyl)-cellulose, and PEI (polyethyleneimine)-agarose. Regarding lichenase, the optimal conditions yielding the highest activity were determined as 1.5% tamarind seeds, cultivation at 50 °C under static conditions for 72 h. Moreover, transitioning from Erlenmeyer flasks to a bioreactor proved pivotal, resulting in a 2.21-fold increase in activity. Biochemical characterization revealed an optimum temperature of 50 °C and pH of 6.5. However, sustained stability at varying pH and temperature levels was challenging, underscoring the necessity of immobilizing lichenase on ionic supports. Notably, CM-cellulose emerged as the most effective immobilization medium, exhibiting an activity of 1.01 U/g of the derivative (enzyme plus support), marking a substantial enhancement. This study marks the first lichenase immobilization on these chemical supports in existing literature.
Department of Botany Institute of Biosciences University of São Paulo São Paulo São Paulo Brazil
Department of Systematics and Ecology Federal University of Paraiba João Pessoa Paraiba Brazil
Zobrazit více v PubMed
Ali N, Aiman A, Shamsi A, Hassan I, Shahid M, Gaur NA, Islam A (2022) Identification of thermostable xylose reductase from Thermothelomyces thermophilus: a biochemical characterization approach to meet biofuel challenges. ACS Omega 7:44241–44250 PubMed DOI PMC
Balabanova L, Seitkalieva A, Yugay Y, Rusapetova T, Slepchenko L, Podvolotskaya A, Yatsunskaya M, Vasyutkina E, Son O, Tekutyeva L, Shkryl Y (2022) Engineered fungus Thermothelomyces thermophilus producing plant storage proteins. J Fungi 8:119 DOI
Benoit I, Culleton H, Zhou M, DiFalco M, Aguilar-Osorio G, Battaglia E, Bouzid O, Brouwer CPJM, El-Bushari HBO, Coutinho PM, Gruben BS, Hildén KS, Houbraken J, Barboza LAJ, Levasseur A, Majoor E, Mäkelä MR, Narang HM, Trejo-Aguilar B, van den Brink J, van Kuyk PA, Wiebenga A, McKie V, McCleary B, Tsang A, Henrissat B, de Vries RP (2015) Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnol Biofuels 8:1–14 DOI
Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LDH, Baker SE, Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–927 PubMed DOI
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977 PubMed DOI
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 PubMed DOI
Brugnari T, Pereira MG, Bubna GA, Freitas EN, Contato AG, Corrêa RCG, Castoldi R, Souza CGM, Polizeli MLTM, Bracht A, Peralta RM (2018) A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci Total Environ 634:1346–1351 PubMed DOI
Brugnari T, Contato AG, Pereira MG, Freitas EN, Bubna GA, Aranha GM, Bracht A, Polizeli MLTM, Peralta RM (2021) Characterisation of free and immobilised laccases from Ganoderma lucidum: application on bisphenol a degradation. Biocatal Biotransformation 39:71–80 DOI
Chaari F, Chaabouni SE (2019) Fungal β-1, 3–1, 4-glucanases: production, proprieties, and biotechnological applications. J Sci Food Agric 99:2657–2664 PubMed DOI
Chaari F, Belghith-Fendri L, Blibech M, Driss D, Ellouzi SZ, Ellouz-Chaabouni S (2014) Biochemical characterization of a lichenase from Penicillium occitanis Pol6 and its potential application in the brewing industry. Process Biochem 49:1040–1046 DOI
Chaari F, Belghith-Fendri L, Ellouz-Chaabouni S (2015) Production and in vitro evaluation of oligosaccharides generated from lichenan using immobilized Penicillium occitanis lichenase. J Mol Catal B Enzym 116:153–158 DOI
Cho HJ, Jang WJ, Moon SY, Lee JM, Kim JH, Han HS, Kim KW, Lee BJ, Kong IS (2018) Immobilization of β-1, 3–1, 4-glucanase from Bacillus sp. on porous silica for production of β-glucooligosaccharides. Enzyme Microb Technol 110:30–37 PubMed DOI
Chorozian K, Karnaouri A, Karantonis A, Souli M, Topakas E (2022) Characterization of a dual cellulolytic/xylanolytic AA9 lytic polysaccharide monooxygenase from Thermothelomyces thermophilus and its utilization toward nanocellulose production in a multi-step bioprocess. ACS Sustain Chem Eng 10:8919–8929 DOI
Contato AG, Inácio FD, Brugnari T, de Araújo CAV, Maciel GM, Haminiuk CWI, Peralta RM, de Souza CGM (2020) Solid-state fermentation with orange waste: optimization of Laccase production from Pleurotus pulmonarius CCB-20 and decolorization of synthetic dyes. Acta Sci Biol Sci 42:e52699 DOI
Contato AG, de Oliveira TB, Aranha GM, de Freitas EN, Vici AC, Nogueira KMV, de Lucas RC, Scarcella ASA, Buckeridge MS, Silva RN, Polizeli MLTM (2021) Prospection of fungal lignocellulolytic enzymes produced from jatoba (Hymenaea courbaril) and tamarind (Tamarindus indica) seeds: scaling for bioreactor and saccharification profile of sugarcane bagasse. Microorganisms 9:533 PubMed DOI PMC
Contato AG, Vici AC, Pinheiro VE, de Oliveira TB, de Freitas EN, Aranha GM, Valvassora Junior AL, Vargas-Rechia CG, Buckeridge MS, Polizeli MLTM (2022) Comparison of Trichoderma longibrachiatum xyloglucanase production using tamarind (Tamarindus indica) and jatoba (Hymenaea courbaril) seeds: factorial design and immobilization on ionic supports. Fermentation 8:510 DOI
Contato AG, Nogueira KMV, Buckeridge MS, Silva RN, Polizeli MLTM (2023) Trichoderma longibrachiatum and Thermothelomyces thermophilus co-culture: improvement the saccharification profile of different sugarcane bagasse varieties. Biotechnol Lett 45:1093–1102 PubMed DOI
Contato AG, Inácio FD, Bueno PSA, Nolli MM, Janeiro V, Peralta RM, de Souza CGM (2023) Pleurotus pulmonarius: a protease-producing white rot fungus in lignocellulosic residues. Int Microbiol 26:43–50 PubMed DOI
Contato AG, Borelli TC, Buckeridge MS, Rogers J, Hartson S, Prade RA, Polizeli MLTM (2024) Secretome analysis of Thermothelomyces thermophilus LMBC 162 cultivated with Tamarindus indica seeds reveals CAZymes for degradation of lignocellulosic biomass. J Fungi 10:121 DOI
Culleton H, McKie V, de Vries RP (2013) Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus? Biotechnol J 8:884–894 PubMed DOI
Danby PM, Withers SG (2016) Advances in enzymatic glycoside synthesis. ACS Chem Biol 11:1784–1794 PubMed DOI
de Farias DC, Eduardo M, Mata RMC, Duarte MEM, Lima AKVDO (2006) Qualidade fisiológica de sementes de jatobá submetidas a diferentes temperaturas criogênicas. Rev Bras Prod Agroindustriais 8:67–74
Dias LS, Luzia DM, Jorge N (2013) Physicochemical and bioactive properties of Hymenaea courbaril L. pulp and seed lipid fraction. Ind Crops Prod 49:610–618 DOI
Elgharbi F, Hmida-Sayari A, Sahnoun M, Kammoun R, Jlaeil L, Hassairi H, Bejar S (2013) Purification and biochemical characterization of a novel thermostable lichenase from Aspergillus niger US368. Carbohydr Polym 98:967–975 PubMed DOI
Ezeilo UR, Wahab RA, Mahat NA (2020) Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew Energ 156:1301–1312 DOI
Gao DY, Sun XB, Fang Y, He B, Wang JH, Liu JX, Wang JK, Wang Q (2022) Heterologous expression and characterization of two novel glucanases derived from sheep rumen microbiota. World J Microbiol Biotechnol 38:87 PubMed DOI
Goldenkova-Pavlova IV, Tyurin AA, Mustafaev ON (2018) The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications. Appl Microbiol Biotechnol 102:3951–3965 PubMed DOI
Gonçalves GR, Gandolfi OR, Bonomo RCF, Fontan RDCI, Veloso CM (2021) Synthesis of activated carbon from hydrothermally carbonized tamarind seeds for lipase immobilization: characterization and application in aroma ester synthesis. J Chem Technol Biotechnol 96:3316–3329 DOI
Harris PJ, Smith BG (2006) Plant cell walls and cell-wall polysaccharides: structures, properties and uses in food products. Int J Food Sci 41:129–143 DOI
Israel KS, Murthy C, Patil BL, Hosamani RM (2019) Study the trend in area, production and productivity of tamarind. J Pharmacogn Phytochem 8:283–289
Jana UK, Suryawanshi RK, Prajapati BP, Soni H, Kango N (2018) Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. Bioresour Technol 268:308–314 PubMed DOI
Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20:801–821 DOI
Jin X, Wang JK, Wang Q (2023) Microbial β-glucanases: production, properties, and engineering. World J Microbiol Biotechnol 39:106 PubMed DOI
Khanna P, Sundari SS, Kumar NJ (1995) Production, isolation, and partial purification of xylanases from an Aspergillus sp. World J Microbiol Biotechnol 11:242–243 PubMed DOI
Kim YR, Kim EY, Lee JM, Kim JK, Kong IS (2013) Characterisation of a novel Bacillus sp. SJ-10 β-1, 3–1, 4-glucanase isolated from jeotgal, a traditional Korean fermented fish. Bioprocess Biosyst Eng 36:721–727 PubMed DOI
Kumar CS, Bhattacharya S (2008) Tamarind seed: properties, processing and utilization. Crit Rev Food Sci Nutr 48:1–20 PubMed DOI
Kumar N, Sharma R, Saharan V, Yadav A, Aggarwal NK (2023) Enhanced xylanolytic enzyme production from Parthenium hysterophorus through assessment of the RSM tool and their application in saccharification of lignocellulosic biomass. Biotech 13:396
Li J, Zhang Y, Li J, Sun T, Tian C (2020) Metabolic engineering of the cellulolytic thermophilic fungus Myceliophthora thermophila to produce ethanol from cellobiose. Biotechnol Biofuels 13:1–15 DOI
Liu X, Jiang Z, Ma S, Yan Q, Chen Z, Liu H (2020) High-level production and characterization of a novel β-1, 3–1, 4-glucanase from Aspergillus awamori and its potential application in the brewing industry. Process Biochem 92:252–260 DOI
Lyu X, Gonzalez R, Horton A, Li T (2021) Immobilization of enzymes by polymeric materials. Catalysts 11:1211 DOI
Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability, and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463 DOI
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428 DOI
Monteiro LMO, Pereira MG, Vici AC, Heinen PR, Buckeridge MS, Polizeli MLTM (2019) Efficient hydrolysis of wine and grape juice anthocyanins by Malbranchea pulchella β-glucosidase immobilized on MANAE-agarose and ConA-Sepharose supports. Int J Biol Macromol 136:1133–1141 PubMed DOI
Mori FA, Mendes LM, Trugilho PF (2003) Utilização de eucaliptos e de madeiras nativas no armazenamento da aguardente de cana-de-açúcar. Food Sci Technol 23:396–400 DOI
Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG (2020) β-glucan metabolic and immunomodulatory properties and potential for clinical application. J Fungi 6:356 DOI
Naidu Y, Siddiqui Y, Idris AS (2020) Comprehensive studies on optimization of ligno-hemicellulolytic enzymes by indigenous white rot hymenomycetes under solid-state cultivation using agro-industrial wastes. J Environ Manage 259:110056 PubMed DOI
Novaes CG, Yamaki RT, de Paula VF, do Nascimento BB Jr, Barreto JA, Valasques GS, Bezerra MA (2017) Otimização de métodos analíticos usando metodologia de superfícies de resposta-Parte I: variáveis de processo. Rev Virtual De Quimica 9:1284–1215
Pereira MG, Facchini FDA, Filó LEC, Polizeli AM, Vici AC, Jorge JA, Fernandez-Lorente G, Pessela BC, Guisan JM, Polizeli MLTM (2015) Immobilized lipase from Hypocrea pseudokoningii on hydrophobic and ionic supports: determination of thermal and organic solvent stabilities for applications in the oleochemical industry. Process Biochem 50:561–570 DOI
Pereira SS (2017) Compostos Bioativos e Caracterização de Sementes de Frutas Tropicais. Master’s Thesis, Universidade Federal de Lavras, Lavras, Brazil
Perez CL, Casciatori FP, Thomeo JC (2019) Strategies for scaling-up packed-bed bioreactors for solid-state fermentation: the case of cellulolytic enzymes production by a thermophilic fungus. J Chem Eng 361:1142–1151 DOI
Ramesh T, Rajalaksmi N, Dhatathrevan KS (2015) Activated carbons derived from tamarind seeds for hydrogen storage. J Energy Storage 4:89–95 DOI
Reis PMCL, Dariva C, Vieira GAB, Hense H (2016) Extraction and evaluation of antioxidant potential of the extracts obtained from tamarind seeds (Tamarindus indica), sweet variety. J Food Eng 173:116–123 DOI
Rodrigues MI, Iemma AF (eds) (2009) Planejamento de Experimentos & Otimização de Processos, 2nd edn. Editora Cárita, Campinas,Brazil
Teixeira N, Melo JC, Batista LF, Paula-Souza J, Fronza P, Brandao MG (2019) Edible fruits from Brazilian biodiversity: a review on their sensorial characteristics versus bioactivity as tool to select research. Food Res Int 119:325–348 PubMed DOI
Wahab RA, Elias N, Abdullah F, Ghoshal SK (2020) On the taught new tricks of enzymes immobilization: an all-inclusive overview. React Funct Polym 152:104613 DOI
Xiao Y, Poovaiah C, Coleman HD (2016) Expression of glycosyl hydrolases in lignocellulosic feedstock: an alternative for affordable cellulosic ethanol production. BioEnergy Res 9:1290–1304 DOI