Mini review: antimicrobial compounds produced by bacteria associated with marine invertebrates
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39446239
DOI
10.1007/s12223-024-01209-5
PII: 10.1007/s12223-024-01209-5
Knihovny.cz E-zdroje
- Klíčová slova
- Antibacterial compounds, Antibiotics, Bioactive compounds, Chemical ecology, Marine microbes, Sponges,
- MeSH
- antibakteriální látky * farmakologie MeSH
- antiinfekční látky * farmakologie metabolismus chemie MeSH
- Bacteria * metabolismus izolace a purifikace chemie MeSH
- bezobratlí * mikrobiologie MeSH
- symbióza MeSH
- vodní organismy * mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky * MeSH
- antiinfekční látky * MeSH
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
Zobrazit více v PubMed
Abbas HS, Abou Baker DH, Elshimy R, Abou Elazm FI, Khan J (2024) Bacterial secondary metabolites: recent advances and agricultural applications. In: Kamel A. Abd-Elsalam, Heba I. Mohamed (eds) Nanobiotechnology for Plant Protection, Bacterial Secondary Metabolites, Elsevier, pp 399–414. https://doi.org/10.1016/B978-0-323-95251-4.00022-3
Abdelmohsen UR, Bayer K, Hentschel U (2014) Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat Prod Rep 31:381–399. https://doi.org/10.1039/C3NP70111E PubMed DOI
Achberger AM, Jones R, Jamieson J, Holmes CP, Schubotz F, Meyer NR, Dekas AE, Moriarty S, Reeves EP, Manthey A (2024) Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity. Nat Microbiol 9:657–666. https://doi.org/10.1038/s41564-024-01599-9 PubMed DOI
Águila-Ramírez RN, Arenas-González A, Hernández-Guerrero CJ, González-Acosta B, Borges-Souza JM, Véron B, Pope J, Hellio C (2012) Antimicrobial and antifouling activities achieved by extracts of seaweeds from Gulf of California, Mexico. Hidrobiológica 22:8–15
Aguila-Ramírez RN, Hernández-Guerrero CJ, González-Acosta B, Id-Daoud G, Hewitt S, Pope J, Hellio C (2014) Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni. Int Biodeter Biodegr 90:64–70. https://doi.org/10.1016/j.ibiod.2014.02.003 DOI
Aguilera-Arreola MG, Martínez-Peña MD, Hernández-Martínez F, Juárez Enriques SR, Rico Verdín B, Majalca-Martínez C, Castro-Escarpulli G, Albarrán-Fernández E, Serrano-López SC (2016) Cultivation-independent approach for the direct detection of bacteria in human clinical specimens as a tool for analysing culture-negative samples: a prospective study. Springerplus 5:1–8. https://doi.org/10.1186/s40064-016-1949-3 DOI
Al-Dhabi NA, Duraipandiyan V, Arasu MV, Ponmurugan K, Ignacimuthu S (2014) Antifungal metabolites from sponge associated marine Streptomyces sp. strain (ERIMA-01). J Pure Appl Microbiol 8:112–115
Almeida EL, Margassery LM, Kennedy J, Dobson AD (2018) Draft genome sequence of the antimycin-producing bacterium Streptomyces sp. strain SM8, isolated from the marine sponge Haliclona simulans. Genome Announc 6:e1517-1535. https://doi.org/10.1128/genomea.01535-17 DOI
Aluru RR, Koyi S, Nalluru S, Chanda C (2021) Production of biopolymer from bacteria-a review. Environ Earth Sci ResJ 8:91–96. https://doi.org/10.18280/eesrj.080205 DOI
Anand TP, Bhat AW, Shouche YS, Roy U, Siddharth J, Sarma SP (2006) Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol Res 161:252–262. https://doi.org/10.1016/j.micres.2005.09.002 PubMed DOI
Anh CV, Kwon J-H, Kang JS, Lee H-S, Heo C-S, Shin HJ (2022) New angucycline glycosides from a marine-derived bacterium Streptomyces ardesiacus. Int J Mol Sci 23:13779. https://doi.org/10.3390/ijms232213779 PubMed DOI PMC
Anteneh YS, Yang Q, Brown MH, Franco CM (2021) Antimicrobial activities of marine sponge-associated bacteria. Microorganisms 9:171. https://doi.org/10.3390/microorganisms9010171 PubMed DOI PMC
Arguelles Arias A, Craig M, Fickers P (2011) Gram-positive antibiotic biosynthetic clusters: a review. In: Science against microbial pathogens: communicating current research and technological advances Formatex Microbiology series. Spain 1:977–986
Back CR, Stennett HL, Williams SE, Wang L, Ojeda Gomez J, Abdulle OM, Duffy T, Neal C, Mantell J, Jepson MA (2021) A new Micromonospora strain with antibiotic activity isolated from the microbiome of a mid-Atlantic deep-sea sponge. Mar Drugs 19:105. https://doi.org/10.3390/md19020105 PubMed DOI PMC
Bahry MS, Pringgenies D, Trianto A (2017) Molecular identification of marine symbiont bacteria of gastropods from the waters of the Krakal coast Yogyakarta and its potential as a multi-drug resistant (MDR) antibacterial agent. In: AIP Conf Proc, AIP Publishing, 1803. https://doi.org/10.1063/1.4973146
Balansa W, Liu Y, Sharma A, Mihajlovic S, Hartwig C, Leis B, Rieuwpassa FJ, Ijong FG, Wägele H, König GM (2020) Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-76256-2 DOI
Baltz RH (2017) Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44:573–588. https://doi.org/10.1007/s10295-016-1815-x PubMed DOI
Bansal M, Tiwari N, Sharma G (2022) Revolution in microbial bioprospecting via the development of omics-based technologies. In: Bioprospecting of microbial diversity. Elsevier, pp 27–46. https://doi.org/10.1016/B978-0-323-90958-7.00008-X
Banu S, Alva S, Prabhu PJ, Krishnan S, Mani MK (2023) Detection of non-ribosomal and polyketide biosynthetic genes in bacteria from green mud crab Scylla serrata gut microbiome and their antagonistic activities. Fish Shellfish Immunol Rep 5:100–104. https://doi.org/10.1016/j.fsirep.2023.100104 DOI
Barbosa F, Pinto E, Kijjoa A, Pinto M, Sousa E (2020) Targeting antimicrobial drug resistance with marine natural products. Int J Antimicrob Agents 56:106005. https://doi.org/10.1016/j.ijantimicag.2020.106005 PubMed DOI
Barzkar N, Sukhikh S, Babich O (2024) Study of marine microorganism metabolites: new resources for bioactive natural products. Front Microbiol 14:1285902. https://doi.org/10.3389/fmicb.2023.1285902 PubMed DOI PMC
Benkendorff K (2010) Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs. Biol Rev 85:757–775. https://doi.org/10.1111/j.1469-185X.2010.00124.x PubMed DOI
Benny AM, Gopakumar ST, Janardhanan RK, Nair AV, Raj NB, Vakkachan AP, Raveendran RK, Balakrishnan SK, Karayi SN (2021) Analysis of nonribosomal peptide synthetase genes in haemolymph microbes of marine crabs. Arch Microbiol 203:1251–1258. https://doi.org/10.1007/s00203-020-02101-9 PubMed DOI
Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578. https://doi.org/10.1007/s00425-004-1307-5 PubMed DOI
Bibi F, Yasir M, Al-Sofyani A, Naseer MI, Azhar EI (2020) Antimicrobial activity of bacteria from marine sponge Suberea mollis and bioactive metabolites of Vibrio sp. EA348. Saudi J Biol Sci 27:1139–1147. https://doi.org/10.1016/j.sjbs.2020.02.002 PubMed DOI PMC
Biebl H, Pukall R, Lünsdorf H, Schulz S, Allgaier M, Tindall BJ, Wagner-Döbler I (2007) Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol 57:1095–1107. https://doi.org/10.1099/ijs.0.64821-0 PubMed DOI
Biesalski HK (2016) Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci 1372:53–64. https://doi.org/10.1111/nyas.13145 PubMed DOI
Biswas K, Paul D, Sinha SN (2016) Marine bacteria: a potential tool for antibacterial activity. J Appl Environ Microbiol 4:25–29. https://doi.org/10.12691/jaem-4-1-3 DOI
Blackall LL, Wilson B, Van Oppen MJ (2015) Coral—the world’s most diverse symbiotic ecosystem. Mol Ecol 24:5330–5347. https://doi.org/10.1111/mec.13400 PubMed DOI
Blair JE, Hedges SB (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22:2275–2284. https://doi.org/10.1093/molbev/msi225 PubMed DOI
Böhringer N, Fisch KM, Schillo D, Bara R, Hertzer C, Grein F, Eisenbarth J-H, Kaligis F, Schneider T, Wägele H (2017) Antimicrobial potential of bacteria associated with marine sea slugs from North Sulawesi. Indonesia Front Microbiol 8:1092. https://doi.org/10.3389/fmicb.2017.01092 PubMed DOI
Burja AM, Hill RT (2001) Microbial symbionts of the Australian Great Barrier reef sponge, Candidaspongia flabellata. Hydrobiologia 461:41–47. https://doi.org/10.1023/A:1012713130404 DOI
Cao DT, Tran VH, Vu VN, Mai HDT, Le THM, Vu TQ, Nguyen HH, Chau VM, Pham VC (2019) Antimicrobial metabolites from a marine-derived actinomycete Streptomyces sp. G278. Nat Prod Res 33:3223–3230. https://doi.org/10.1080/14786419.2018.1468331 PubMed DOI
Carlson JC, Li S, Burr DA, Sherman DH (2009) Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. J Nat Prod 72:2076–2079. https://doi.org/10.1021/np9005597 PubMed DOI PMC
Castelle CJ, Banfield JF (2018) Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172:1181–1197. https://doi.org/10.1016/j.cell.2018.02.016 PubMed DOI
Chellaram C, Prem Anand T (2010) Antitumor assay using artemia toxicity of five Cyprae sp. Mollusca :60–64
Chen L, Wang X-Y, Liu R-Z, Wang G-Y (2021) Culturable microorganisms associated with sea cucumbers and microbial natural products. Mar Drugs 19:461. https://doi.org/10.3390/md19080461 PubMed DOI PMC
Chen L, Wang X-N, Bi H-Y, Wang G-Y (2022) Antimicrobial biosynthetic potential and phylogenetic analysis of culturable bacteria associated with the sponge Ophlitaspongia sp. from the Yellow Sea. China. Mar Drugs 20:588. https://doi.org/10.3390/md20100588 PubMed DOI
Cheng C, Othman EM, Reimer A, Grüne M, Kozjak-Pavlovic V, Stopper H, Hentschel U, Abdelmohsen UR (2016) Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett 57:2786–2789. https://doi.org/10.1016/j.tetlet.2016.05.042 DOI
Cheng T, Ismail N, Kamaruding N, Saidin J, Danish-Daniel M (2020) Industrial enzymes-producing marine bacteria from marine resources. Biotechnol Rep 27:e00482. https://doi.org/10.1016/j.btre.2020.e00482 DOI
Cong Z, Huang X, Liu Y, Liu Y, Wang P, Liao S, Yang B, Zhou X, Huang D, Wang J (2019) Cytotoxic anthracycline and antibacterial tirandamycin analogues from a marine-derived Streptomyces sp. SCSIO 41399. J Antibiot 72:45–49. https://doi.org/10.1038/s41429-018-0103-6 DOI
Coppola D, Buonocore C, Palisse M, Tedesco P, de Pascale D (2022) Exploring oceans for curative compounds: potential new antimicrobial and anti-virulence molecules against Pseudomonas aeruginosa. Mar Drugs 21:9. https://doi.org/10.3390/md21010009 PubMed DOI PMC
Da Rocha UN (2019) Isolation of uncultured bacteria. In: van Elsas JD, Trevors JT, Rosado AS, Nannipieri P (eds) Modern Soil Microbiology, 3rd edn. CRC Press, pp 295–305 DOI
Dashti Y, Grkovic T, Abdelmohsen UR, Hentschel U, Quinn RJ (2014) Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Mar Drugs 12:3046–3059. https://doi.org/10.3390/md12053046 PubMed DOI PMC
Defer D, Desriac F, Henry J, Bourgougnon N, Baudy-Floc HM, Brillet B, Le Chevalier P, Fleury Y (2013) Antimicrobial peptides in oyster hemolymph: the bacterial connection. Fish Shellfish Immunol 34:1439–1447. https://doi.org/10.1016/j.fsi.2013.03.357 PubMed DOI
Desriac F, Le Chevalier P, Brillet B, Leguerinel I, Thuillier B, Paillard C, Fleury Y (2014) Exploring the hologenome concept in marine bivalvia: haemolymph microbiota as a pertinent source of probiotics for aquaculture. FEMS Microbiol Lett 350:107–116. https://doi.org/10.1111/1574-6968.12308 PubMed DOI
Desriac F, El Harras A, Simon M, Bondon A, Brillet B, Le Chevalier P, Pugnière M, Got P, Destoumieux-Garzon D, Fleury Y (2020) Alterins produced by oyster-associated Pseudoalteromonas are antibacterial cyclolipopeptides with LPS-binding activity. Mar Drugs 18:630. https://doi.org/10.3390/md18120630 PubMed DOI PMC
Dong Y, Ding W, Sun C, Ji X, Ling C, Zhou Z, Chen Z, Chen X, Ju J (2020) Julichrome monomers from marine gastropod mollusk-associated Streptomyces and stereochemical revision of julichromes Q3 5 and Q3 3. Chem Biodivers 17:e2000057. https://doi.org/10.1002/cbdv.202000057 PubMed DOI
Duan L, Li J-l, Li X, Dong L, Fang B-Z, Xiao M, Mou X, Li W-J (2020) Roseibium aestuarii sp. nov., isolated from Pearl River Estuary. Int J Syst Evol Microbiol 70:2896–2900. https://doi.org/10.1099/ijsem.0.004116 PubMed DOI
Dutilh BE (2014) Metagenomic ventures into outer sequence space. Bacteriophage 4:e979664. https://doi.org/10.4161/21597081.2014.979664 PubMed DOI PMC
Eltamany EE, Abdelmohsen UR, Ibrahim AK, Hassanean HA, Hentschel U, Ahmed SA (2014) New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45. Bioorg Med Chem Lett 24:4939–4942. https://doi.org/10.1016/j.bmcl.2014.09.040 PubMed DOI
Emerson D, Tang J (2007) Nutrition and media. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, 3rd edn. ASM press, Wasington D.C., pp 200–214. https://doi.org/10.1128/9781555817497.ch10 DOI
Enomoto M, Nakagawa S, Sawabe T (2012) Microbial communities associated with holothurians: presence of unique bacteria in the coelomic fluid. Microbes Environ 27:300–305. https://doi.org/10.1264/jsme2.ME12020 PubMed DOI PMC
Eom S-H, Kim Y-M, Kim S-K (2013) Marine bacteria: potential sources for compounds to overcome antibiotic resistance. Appl Microbiol Biotechnol 97:4763–4773. https://doi.org/10.1007/s00253-013-4905-y PubMed DOI
Epstein S (2013) The phenomenon of microbial uncultivability. Curr Opin Microbiol 16:636–642. https://doi.org/10.1016/j.mib.2013.08.003 PubMed DOI
Fang Z, Chen S, Zhu Y, Li J, Khan I, Zhang Q, Zhang C (2021) A new uridine derivative and a new indole derivative from the coral-associated actinomycete Pseudonocardia sp. SCSIO 11457. Nat Prod Res 35:188–194. https://doi.org/10.1080/14786419.2019.1616729 PubMed DOI
Fang Z, Zhang Q, Zhang L, She J, Li J, Zhang W, Zhang H, Zhu Y, Zhang C (2022) Antifungal macrolides kongjuemycins from coral-associated rare actinomycete Pseudonocardia kongjuensis SCSIO 11457. Org Lett 24:3482–3487. https://doi.org/10.1021/acs.orglett.2c01089 PubMed DOI
Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1R-49R. https://doi.org/10.1039/B006897G DOI
Fdhila F, Vázquez V, Sánchez JL, Riguera R (2003) dd-Diketopiperazines: antibiotics active against Vibrio a nguillarum isolated from marine bacteria associated with cultures of Pecten maximus. J Nat Prod 66:1299–1301. https://doi.org/10.1021/np030233e PubMed DOI
Fofied SKS, Sabdono A, Wijayanti DP (2018) Potential bacterial symbion of sea urchin as a multi-drug resistant (MDR) antibacterial agent against Staphylococcus aureus and Escherichia coli bacteria. Ilmu Kelautan: Indones J Mar Sci 23:131–136. https://doi.org/10.14710/ik.ijms.23.3.131-136 DOI
Freitas-Silva J, de Oliveira BFR, Vigoder FdM, Muricy G, Dobson AD, Laport MS (2021) Peeling the layers away: the genomic characterization of Bacillus pumilus 64–1, an isolate with antimicrobial activity from the marine sponge Plakina cyanorosea (Porifera, Homoscleromorpha). Front Microbiol 11:592735. https://doi.org/10.3389/fmicb.2020.592735 PubMed DOI PMC
Fu P, Kong F, Wang Y, Wang Y, Liu P, Zuo G, Zhu W (2013) Antibiotic metabolites from the coral-associated actinomycete Streptomyces sp. OUCMDZ-1703. Chin J Chem 31:100–104. https://doi.org/10.1002/cjoc.201201062 DOI
Gao C-H, Tian X-P, Qi S-H, Luo X-M, Wang P, Zhang S (2010) Antibacterial and antilarval compounds from marine gorgonian-associated bacterium Bacillus amyloliquefaciens SCSIO 00856. J Antibiot 63:191–193. https://doi.org/10.1038/ja.2010.7 DOI
Garza DR, Dutilh BE (2015) From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cell Mol Life Sci 72:4287–4308. https://doi.org/10.1007/s00018-015-2004-1 PubMed DOI PMC
Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98. https://doi.org/10.1016/j.chembiol.2011.12.014 PubMed DOI PMC
Gest H (2008) The modern myth of “unculturable” bacteria/scotoma of contemporary microbiology. https://hdl.handle.net/2022/3149
Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118. https://doi.org/10.1126/science.2781297 PubMed DOI
Giudice A, Rizzo C (2018) Bacteria associated with marine benthic invertebrates from polar environments: unexplored frontiers for biodiscovery? Diversity 10:80. https://doi.org/10.3390/d10030080 DOI
Glaze TD, Erler DV, Siljanen HM (2022) Microbially facilitated nitrogen cycling in tropical corals. ISME J 16:68–77. https://doi.org/10.1038/s41396-021-01038-1 PubMed DOI
Gottschal J, Harder W, Prins RA (1992) Principles of enrichment, isolation, cultivation, and preservation of bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K.H (eds), The Prokaryotes, 2nd edn., vol. I. Springer-Verlag, New York, N.Y, pp 149–196
Goulden EF, Hall MR, Pereg LL, Høj L (2012) Identification of an antagonistic probiotic combination protecting ornate spiny lobster (Panulirus ornatus) larvae against Vibrio owensii infection. PLoS ONE 7:e39667. https://doi.org/10.1371/journal.pone.0039667 PubMed DOI PMC
Gozari M, Bahador N, Jassbi AR, Mortazavi MS, Eftekhar E (2018) Antioxidant and cytotoxic activities of metabolites produced by a new marine Streptomyces sp. isolated from the sea cucumber Holothuria leucospilota. Iran J Fish Sci 17:413–426. https://doi.org/10.22092/ijfs.2018.116076 DOI
Graça AP, Bondoso J, Gaspar H, Xavier JR, Monteiro MC, de la Cruz M, Oves-Costales D, Vicente F, Lage OM (2013) Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS ONE 8:e7899. https://doi.org/10.1371/journal.pone.0078992 DOI
Greasham RL, Herber WK (1997) Design and optimization of growth media. In: Rhodes PM, Stanbury PF (eds) Applied microbial physiology. IRL Press, New York, pp 53–74 DOI
Gromek SM, Suria AM, Fullmer MS, Garcia JL, Gogarten JP, Nyholm SV, Balunas MJ (2016) Leisingera sp. JC1, a bacterial isolate from Hawaiian bobtail squid eggs, produces indigoidine and differentially inhibits vibrios. Front Microbiol 7:1342. https://doi.org/10.3389/fmicb.2016.01342 PubMed DOI PMC
Guo Z-K, Wang R, Chen S-Q, Chen F-X, Liu T-M, Yang M-Q (2018) Anthocidins A-D, new 5-hydroxyanthranilic acid related metabolites from the sea urchin-associated actinobacterium, Streptomyces sp. HDa1. Molecules 23:1032. https://doi.org/10.3390/molecules23051032 PubMed DOI PMC
Hamed A, Abdel-Razek AS, Frese M, Wibberg D, El-Haddad AF, Ibrahim TM, Kalinowski J, Sewald N, Shaaban M (2017) New oxaphenalene derivative from marine-derived Streptomyces griseorubens sp. ASMR4. Z Naturforsch B 72:53–62. https://doi.org/10.1515/znb-2016-0145 DOI
Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685. https://doi.org/10.1128/mmbr.68.4.669-685.2004 PubMed DOI PMC
Harborne AR, Mumby PJ, ZŻychaluk K, Hedley JD, Blackwell PG (2006) Modeling the beta diversity of coral reefs. Ecology 87:2871–2881. https://doi.org/10.1890/0012-9658(2006)87[2871:MTBDOC]2.0.CO;2 PubMed DOI
Harunari E, Doyo H, Phongsopitanun W, Tanasupawat S, Sutthacheep M, Yeemin T, Igarashi Y (2023) 1-(6-Methylsalicyloyl) glycerol from stony coral-derived Micromonospora sp. J Antibiot 76:83–87. https://doi.org/10.1038/s41429-022-00578-8 DOI
Hayakawa Y, Sone R, Aoki H, Kimata S (2018) Quinomycins H1 and H2, new cytotoxic antibiotics from Streptomyces sp. RAL404. J Antibiot 71:898–901. https://doi.org/10.1038/s41429-018-0083-6 DOI
Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177. https://doi.org/10.1111/j.1574-6941.2005.00046.x PubMed DOI
Hill M, Hill A, Lopez N, Harriott O (2006) Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar Biol 148:1221–1230. https://doi.org/10.1007/s00227-005-0164-5 DOI
Huang X, Kong F, Zhou S, Huang D, Zheng J, Zhu W (2019) Streptomyces tirandamycinicus sp. nov., a novel marine sponge-derived actinobacterium with antibacterial potential against Streptococcus agalactiae. Front Microbiol 10:482. https://doi.org/10.3389/fmicb.2019.00482 PubMed DOI PMC
Huggett MJ, Apprill A (2019) Coral microbiome database: integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep 11:372–385. https://doi.org/10.1111/1758-2229.12686 PubMed DOI
Hunter-Cevera J, Karl D, Buckley M (2020) Marine microbial diversity: the key to earth’s habitability: This report is based on a colloquium, sponsored by the American Academy of Microbiology, held April 8–10, 2005, in San Francisco, California
Hwangbo M, Chu K-H (2020) Recent advances in production and extraction of bacterial lipids for biofuel production. Sci Total Environ 734:139420. https://doi.org/10.1016/j.scitotenv.2020.139420 PubMed DOI
Irudayarajan L, Ravindran C, Raveendran HP (2024) Antimicrobial activity of coral-associated beneficial bacteria against coral disease-causing microbial pathogens. J Basic Microbiol 64:81–93. https://doi.org/10.1002/jobm.202300338 PubMed DOI
Ji X, Dong Y, Ling C, Zhou Z, Li Q, Ju J (2020) Elucidation of the tailoring steps in Julichrome biosynthesis by marine gastropod mollusk-associated Streptomyces sampsonii SCSIO 054. Org Lett 22:6927–6931. https://doi.org/10.1021/acs.orglett.0c02469 PubMed DOI
Jia J, Wang X, Sang J, Li Z, Lin S, Deng Z, Huang T (2023) An NN linked dimeric indole alkaloid from the marine sponge-associated rare actinomycetes Kocuria sp. S42. Nat Prod Res 37:3647–3653. https://doi.org/10.1080/14786419.2022.2098496 PubMed DOI
Jiao W-H, Yuan W, Li Z-Y, Li J, Li L, Sun J-B, Gui Y-H, Wang J, Ye B-P, Lin H-W (2018) Anti-MRSA actinomycins D1–D4 from the marine sponge-associated Streptomyces sp. LHW52447. Tetrahedron 74:5914–5919. https://doi.org/10.1016/j.tet.2018.08.023 DOI
Jimeno J, Faircloth G, Sousa-Faro J, Scheuer P, Rinehart K (2004) New marine derived anticancer therapeutics─a journey from the sea to clinical trials. Mar Drugs 2:14–29. https://doi.org/10.3390/md201014 DOI PMC
Jiravanichpaisal P, Lee BL, Söderhäll K (2006) Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiol 211:213–236. https://doi.org/10.1016/j.imbio.2005.10.015 DOI
Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria–an essential prerequisite for biodiscovery. Microb Biotechnol 3:564–575. https://doi.org/10.1111/j.1751-7915.2010.00188.x PubMed DOI PMC
Jun J-Y, Jung M-J, Jeong I-H, Yamazaki K, Kawai Y, Kim B-M (2018) Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Mar Drugs 16:301. https://doi.org/10.3390/md16090301 PubMed DOI PMC
Jung D, Liu L, He S (2021) Application of in situ cultivation in marine microbial resource mining. Mar Life Sci Technol 3:148–161. https://doi.org/10.1007/s42995-020-00063-x PubMed DOI
Kalinovskaya NI, Kalinovsky AI, Romanenko LA, Dmitrenok PS, Kuznetsova TA (2010) New angucyclines and antimicrobial diketopiperazines from the marine mollusk-derived actinomycete Saccharothrix espanaensis An 113. Nat Prod Commun 5:597–602. https://doi.org/10.1177/1934578X1000500420 PubMed DOI
Karim MRU, Harunari E, Oku N, Akasaka K, Igarashi Y (2020a) Bulbimidazoles A-C, antimicrobial and cytotoxic alkanoyl lmidazoles from a marine Gammaproteobacterium Microbulbifer species. J Nat Prod 83:1295–1299. https://doi.org/10.1021/acs.jnatprod.0c00082 PubMed DOI
Karim MRU, Harunari E, Sharma AR, Oku N, Akasaka K, Urabe D, Sibero MT, Igarashi Y (2020b) Nocarimidazoles C and D, antimicrobial alkanoylimidazoles from a coral-derived actinomycete Kocuria sp.: application of 1JC, H coupling constants for the unequivocal determination of substituted imidazoles and stereochemical diversity of anteisoalkyl chains in microbial metabolites. Beilstein J Org Chem 16:2719–2727. https://doi.org/10.3762/bjoc.16.222 PubMed DOI PMC
Keller AG, Apprill A, Lebaron P, Robbins J, Romano TA, Overton E, Rong Y, Yuan R, Pollara S, Whalen KE (2021) Characterizing the culturable surface microbiomes of diverse marine animals. FEMS Microbiol Ecol 97:fiab040. https://doi.org/10.1093/femsec/fiab040 PubMed DOI PMC
Kelman D, Kashman Y, Rosenberg E, Kushmaro A, Loya Y (2006) Antimicrobial activity of Red Sea corals. Mar Biol 149:357–363. https://doi.org/10.1007/s00227-005-0218-8 DOI
Kennedy J, Baker P, Piper C, Cotter PD, Walsh M, Mooij MJ, Bourke MB, Rea MC, O’Connor PM, Ross RP (2009) Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. Mar Biotechnol 11:384–396. https://doi.org/10.1007/s10126-008-9154-1 DOI
Kongkapan T, Suanyuk N, Kiriratnikom S (2021) Isolation and production of prodigiosin and cycloprodigiosin from marine sponges-associated bacteria of the Andaman coast of Thailand. Songklanakarin J Sci Technol 43
Kowalewski M, Finnegan S (2010) Theoretical diversity of the marine biosphere. Paleobiology 36:1–15. https://doi.org/10.1666/0094-8373-36.1.1 DOI
Kuek FW, Motti CA, Zhang J, Cooke IR, Todd JD, Miller DJ, Bourne DG, Raina J-B (2022) DMSP production by coral-associated bacteria. Front Mar Sci 9:869574. https://doi.org/10.3389/fmars.2022.869574 DOI
Kurhekar JV (2020) Antimicrobial lead compounds from marine plants. In Phytochemicals as Lead Compounds for New Drug Discovery. In: Egbuna C, Kumar S, Ifemeje JC, Ezzat SM, Kaliyaperumal S (eds) Elsevier, pp 257–274 https://doi.org/10.1016/B978-0-12-817890-4.00017-2
Kvennefors ECE, Sampayo E, Kerr C, Vieira G, Roff G, Barnes AC (2012) Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb Ecol 63:605–618. https://doi.org/10.1007/s00248-011-9946-0 PubMed DOI
Lacerna NM, Miller BW, Lim AL, Tun JO, Robes JMD, Cleofas MJB, Lin Z, Salvador-Reyes LA, Haygood MG, Schmidt EW (2019) Mindapyrroles A-C, pyoluteorin analogues from a shipworm-associated bacterium. J Nat Prod 82:1024–1028. https://doi.org/10.1021/acs.jnatprod.8b00979 PubMed DOI PMC
Lagier J-C, Edouard S, Pagnier I, Mediannikov O, Drancourt M, Raoult D (2015) Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 28:208–236. https://doi.org/10.1128/cmr.00110-14 PubMed DOI PMC
Leal MC, Puga J, Serôdio J, Gomes NC, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades–where and what are we bioprospecting? PLoS ONE 7:e30580. https://doi.org/10.1371/journal.pone.0030580 PubMed DOI PMC
León-Palmero E, Joglar V, Álvarez PA, Martín-Platero A, Llamas I, Reche I (2018) Diversity and antimicrobial potential in sea anemone and holothurian microbiomes. PLoS ONE 13:e0196178. https://doi.org/10.1371/journal.pone.0196178 PubMed DOI PMC
Li W, Ding L, Li J, Wen H, Liu Y, Tan S, Yan X, Shi Y, Lin W, Lin H-W (2022) Novel antimycin analogues with agricultural antifungal activities from the sponge-associated actinomycete Streptomyces sp. NBU3104. J Agric Food Chem 70:8309–8316. https://doi.org/10.1021/acs.jafc.2c02626 PubMed DOI
Li J, Zhang Y, Sun J, Thompson F, Zhang Y (2023) Interaction between marine invertebrates and symbiotic microbes in a changing environment: community structure and ecological functions. Front Mar Sci 9:1128906. https://doi.org/10.3389/fmars.2022.1128906 DOI
Lin Z, Koch M, Pond CD, Mabeza G, Seronay RA, Concepcion GP, Barrows LR, Olivera BM, Schmidt EW (2014) Structure and activity of lobophorins from a turrid mollusk-associated Streptomyces sp. J Antibiot 67:121–126. https://doi.org/10.1038/ja.2013.115 DOI
Liu J, Wang Y, Yang X, Sun Z, Ren Q, Zhang Y, Liu J, Zhang X-H (2017) Roseibium sediminis sp. nov., isolated from sea surface sediment. Int J Syst Evol Microbiol 67:2862–2867. https://doi.org/10.1099/ijsem.0.002034 PubMed DOI
Liu L, Zheng Y-Y, Shao C-L, Wang C-Y (2019) Metabolites from marine invertebrates and their symbiotic microorganisms: molecular diversity discovery, mining, and application. Mar Life Sci Technol 1:60–94. https://doi.org/10.1007/s42995-019-00021-2 DOI
Liu S, Moon CD, Zheng N, Huws S, Zhao S, Wang J (2022) Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome 10:76. https://doi.org/10.1186/s40168-022-01272-5 PubMed DOI PMC
Lo Giudice A, Rizzo C (2022) Bacteria associated with benthic invertebrates from extreme marine environments: promising but underexplored sources of biotechnologically relevant molecules. Mar Drugs 20:617. https://doi.org/10.3390/md20100617 PubMed DOI PMC
Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277. https://doi.org/10.1126/science.aaf4507 PubMed DOI
Lu X, Cao X, Liu X, Jiao B (2010) Marine microbes-derived anti-bacterial agents. Mini Rev Med Chem 10:1077–1090. https://doi.org/10.2174/138955710793177467 PubMed DOI
Lu Q-P, Ye J-J, Huang Y-M, Liu D, Liu L-F, Dong K, Razumova EA, Osterman IA, Sergiev PV, Dontsova OA (2019) Exploitation of potentially new antibiotics from mangrove actinobacteria in maowei sea by combination of multiple discovery strategies. Antibiotics 8:236. https://doi.org/10.3390/antibiotics8040236 PubMed DOI PMC
Lu J, Shu Y, Zhang H, Zhang S, Zhu C, Ding W, Zhang W (2023a) The landscape of global ocean microbiome: from bacterioplankton to biofilms. Int J Mol Sci 24:6491. https://doi.org/10.3390/ijms24076491 PubMed DOI PMC
Lu Q, Wu G, Hao X, Hu X, Cai H, Liu X, You X, Guo H, Sun C (2023) Isolation, structure elucidation, and first total synthesis of quinomycins K and L, two new octadepsipeptides from the Maowei sea mangrove-derived Streptomyces sp. B475. Mar Drugs 21:143. https://doi.org/10.3390/md21030143 PubMed DOI PMC
Lukman AL, Nordin NFH, Kamarudin KR (2014) Microbial population in the coelomic fluid of Stichopus chloronotus and Holothuria leucospilota (Mertensiothuria) collected from Malaysian waters. Sains Malays 43:1013–1021
Maher RL, Epstein HE, Vega Thurber R (2022) Dynamics of bacterial communities on coral reefs: implications for conservation. In: van Oppen MJH, Aranda Lastra M (eds) Coral Reef Conservation and Restoration in the Omics Age. Coral Reefs of the World, vol 15. Springer, Cham, pp 97–116. https://doi.org/10.1007/978-3-031-07055-6_7
Maldonado M, López-Acosta M, Busch K, Slaby BM, Bayer K, Beazley L, Hentschel U, Kenchington E, Rapp HT (2021) A microbial nitrogen engine modulated by bacteriosyncytia in hexactinellid sponges: ecological implications for deep-sea communities. Front Mar Sci 8:638505. https://doi.org/10.3389/fmars.2021.638505 DOI
Maldonado M, Bayer K, López-Acosta M (2024) Nitrogen and phosphorus cycling through marine sponges: physiology, cytology, genomics, and ecological lmplications frontiers in invertebrate physiology: a collection of reviews. Apple Academic Press, p 197–288
Maloof AC, Rose CV, Beach R, Samuels BM, Calmet CC, Erwin DH, Poirier GR, Yao N, Simons FJ (2010) Possible animal-body fossils in pre-marinoan limestones from South Australia. Nat Geosci 3:653–659. https://doi.org/10.1038/ngeo934 DOI
Maltseva AL, Varfolomeeva MA, Gafarova ER, Panova MA, Mikhailova NA, Granovitch AI (2021) Divergence together with microbes: a comparative study of the associated microbiomes in the closely related Littorina species. PLoS ONE 16:e0260792. https://doi.org/10.1371/journal.pone.0260792 PubMed DOI PMC
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E (2023) Microalgae, seaweeds and aquatic bacteria, archaea, and yeasts: sources of carotenoids with potential antioxidant and anti-inflammatory health-promoting actions in the sustainability era. Mar Drugs 21:340. https://doi.org/10.3390/md21060340 PubMed DOI PMC
Margulia L, Schwartz KV (1998) Five kingdoms: an illustrated guide to the phyla of life on earth. Freeman, New York, W.H, p 520
Martín J, Sousa DS, Crespo G, Palomo S, González I, Tormo JR, De la Cruz M, Anderson M, Hill RT, Vicente F (2013) Kocurin, the true structure of PM181104, an anti-methicillin-resistant Staphylococcus aureus (MRSA) thiazolyl peptide from the marine-derived bacterium Kocuria palustris. Mar Drugs 11:387–398. https://doi.org/10.3390/md11020387 PubMed DOI PMC
Matroodi S, Siitonen V, Baral B, Yamada K, Akhgari A, Metsä-Ketelä M (2020) Genotyping-guided discovery of persiamycin A from sponge-associated halophilic Streptomonospora sp. PA3. Front Microbiol 11:1237. https://doi.org/10.3389/fmicb.2020.01237 PubMed DOI PMC
McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJ, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72. https://doi.org/10.1196/annals.1419.005 PubMed DOI
Mehbub MF, Lei J, Franco C, Zhang W (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12:4539–4577. https://doi.org/10.3390/md12084539 PubMed DOI PMC
Meyer CE (1971) Tirandamycin, a new antibiotic isolation and characterization. J Antibiot 24:558–560. https://doi.org/10.7164/antibiotics.24.558 DOI
Mitova MI, Lang G, Wiese J, Imhoff JF (2008) Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. J Nat Prod 71:824–827. https://doi.org/10.1021/np800032a PubMed DOI
Miura N, Motone K, Takagi T, Aburaya S, Watanabe S, Aoki W, Ueda M (2019) Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-dependent pathogen Vibrio coralliilyticus. Mar Biotechnol 21:1–8. https://doi.org/10.1007/s10126-018-9853-1 DOI
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA (2023) The coral microbiome: towards an understanding of the molecular mechanisms of coral–microbiota interactions. FEMS Microbiol Rev 47:1–26. https://doi.org/10.1093/femsre/fuad005 DOI
Mohan G, Thangappanpillai AKT, Ramasamy B (2016) Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island. Lakshadweep Archipelago Biotechnol Rep 11:44–52. https://doi.org/10.1016/j.btre.2016.06.001 DOI
Mondal S, Mondal D, Mondal T, Malik J (2022) Application of probiotic bacteria for the management of fish health in aquaculture. In: Dar GH, Bhat RA, Qadri H, Al-Ghamdy KM, Hakeem KR (eds) Bacterial Fish Diseases. Academic Press, Elsevier, pp 351–378 DOI
Morgado F, Vieira LR (2020) Marine bioprospecting to improve knowledge of the biological sciences and industrial processes. In: Leal Filho W, Marisa Azul A, Brandli L, Lange Salvia A, Wall T (eds) Affordable and Clean Energy. Encyclopedia of the UN Sustainable Development Goals, Springer, Cham, pp 1–14
Morris JJ, Lenski RE, Zinser ER (2012) The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. Mbio 3:10–1128. https://doi.org/10.1128/mbio.00036-12 DOI
Muller EE, Glaab E, May P, Vlassis N, Wilmes P (2013) Condensing the omics fog of microbial communities. Trends Microbiol 21:325–333. https://doi.org/10.1016/j.tim.2013.04.009 PubMed DOI
Nawaz MZ, Subin Sasidharan R, Alghamdi HA, Dang H (2022) Understanding interaction patterns within deep-sea microbial communities and their potential applications. Mar Drugs 20:108. https://doi.org/10.3390/md20020108 PubMed DOI PMC
Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, Wu D, Paez-Espino D, Chen I-M, Huntemann M (2021) A genomic catalog of earth’s microbiomes. Nat Biotechnol 39:499–509. https://doi.org/10.1038/s41587-020-0718-6 PubMed DOI
Nithyanand P, Manju S, Karutha Pandian S (2011) Phylogenetic characterization of culturable actinomycetes associated with the mucus of the coral Acropora digitifera from Gulf of Mannar. FEMS Microbiol Lett 314:112–118. https://doi.org/10.1111/j.1574-6968.2010.02149.x PubMed DOI
Offret C, Desriac F, Le Chevalier P, Mounier J, Jégou C, Fleury Y (2016) Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Mar Drugs 14:129. https://doi.org/10.3390/md14070129 PubMed DOI PMC
Pan X, Raaijmakers JM, Carrión VJ (2023) Importance of Bacteroidetes in host–microbe interactions and ecosystem functioning. Trends Microbiol 31:959–971. https://doi.org/10.1016/j.tim.2023.03.018 PubMed DOI
Pereira L, Pardal MA (2024) Oceanography: relationships of the oceans with the continents, their biodiversity and the atmosphere. Intech Open, pp 140.
Pinzón-Espinosa A, Martinez-Matamoros D, Castellanos L, Duque C, Rodríguez J, Jiménez C, Ramos FA (2017) Cereusitin A, a cyclic tetrapeptide from a Bacillus cereus strain isolated from the soft coral Antillogorgia elisabethae (syn. Pseudopterogorgia). Tetrahedron Lett 58:634–637. https://doi.org/10.1016/j.tim.2023.03.018 DOI
Pivkin MV (2000) Filamentous fungi associated with holothurians from the Sea of Japan, off the Primorye Coast of Russia. Biol Bull 198:101–109. https://doi.org/10.2307/1542808 PubMed DOI
Pringgenies D, Santosa GW, Djunaedi A, Susanto A (2021) Potential of bioactive compounds of holothuria atra-associated bacteria as a raw material in bioindustry. New Visions Biol Sci 4:66–75. https://doi.org/10.9734/bpi/nvbs/v4/4436F DOI
Proksch P, Ebel R, Edrada R, Schupp P, Lin W, Sudarsono WV, Steube K (2003a) Detection of pharmacologically active natural products using ecology. Selected examples from lndopacific marine invertebrates and sponge-derived fungi. Pure Appl Chem 75:343–352. https://doi.org/10.1351/pac200375020343 DOI
Proksch P, Edrada-Ebel R, Ebel R (2003) Drugs from the sea-opportunities and obstacles. Mar Drugs 1:5–17. https://doi.org/10.3390/md101005 DOI PMC
Rai T, Kaushik N, Malviya R, Sharma PK (2024) A review on marine source as anticancer agents. J Asian Nat Prod Res 26:415–451. https://doi.org/10.1080/10286020.2023.2249825 PubMed DOI
Raina J-B, Tapiolas DM, Forêt S, Lutz A, Abrego D, Ceh J, Seneca FO, Clode PL, Bourne DG, Willis BL (2013) DMSP biosynthesis by an animal and its role in coral thermal stress response. Nat 502:677–680. https://doi.org/10.1038/nature12677 DOI
Raina J-B, Tapiolas D, Motti CA, Foret S, Seemann T, Tebben J, Willis BL, Bourne DG (2016) Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 4:e2275. https://doi.org/10.7717/peerj.2275 PubMed DOI PMC
Raj Sharma A, Zhou T, Harunari E, Oku N, Trianto A, Igarashi Y (2019) Labrenzbactin from a coral-associated bacterium Labrenzia sp. J Antibiot 72:634–639. https://doi.org/10.1038/s41429-019-0192-x DOI
Rajasabapathy R, Ghadi SC, Manikandan B, Mohandass C, Surendran A, Dastager SG, Meena RM, James RA (2020) Antimicrobial profiling of coral reef and sponge associated bacteria from southeast coast of India. Microb Pathog 141:103972. https://doi.org/10.1016/j.micpath.2020.103972 PubMed DOI
Rakhmawatie MD, Marfuati N, Barsaliputri B, Fikriyah AZ, Ethica SN (2023) Antibacterial activity and GC-MS profile of secondary metabolites of Bacillus subtilis subsp subtilis HSFI-9 associated with Holothuria scabra. Biodivers J Biol Div 24:2843–2849. https://doi.org/10.13057/biodiv/d240538 DOI
Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A, Sogin ML, Vanreusel A (2014) Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J 8:1198–1209. https://doi.org/10.1038/ismej.2013.227 PubMed DOI PMC
Rigogliuso S, Campora S, Notarbartolo M, Ghersi G (2023) Recovery of bioactive compounds from marine organisms: focus on the future perspectives for pharmacological, biomedical and regenerative medicine applications of marine collagen. Molecules 28:1152. https://doi.org/10.3390/molecules28031152 PubMed DOI PMC
Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14. https://doi.org/10.3354/meps322001 DOI
Rix L, Ribes M, Coma R, Jahn MT, de Goeij JM, Van Oevelen D, Escrig S, Meibom A, Hentschel U (2020) Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J 14:2554–2567. https://doi.org/10.1038/s41396-020-0706-3 PubMed DOI PMC
Rizzo C, Lo Giudice A (2018) Marine invertebrates: underexplored sources of bacteria producing biologically active molecules. Diversity 10:52. https://doi.org/10.3390/d10030052 DOI
Rodríguez V, Martín J, Sarmiento-Vizcaíno A, De la Cruz M, García LA, Blanco G, Reyes F (2018) Anthracimycin B, a potent antibiotic against gram-positive bacteria isolated from cultures of the deep-sea actinomycete Streptomyces cyaneofuscatus M-169. Mar Drugs 16:406. https://doi.org/10.3390/md16110406 PubMed DOI PMC
Rohwer F, Kelley S (2004) Culture-independent analyses of coral-associated microbes coral health and disease. Springer, Berlin Heidelberg, pp 265–277
Romanenko LA, Uchino M, Kalinovskaya NI, Mikhailov VV (2008) Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities. Microbiol Res 163:633–644. https://doi.org/10.1016/j.micres.2006.10.001 PubMed DOI
Rosado PM, Leite DC, Duarte GA, Chaloub RM, Jospin G, Nunes da Rocha U, Saraiva JP, Dini-Andreote F, Eisen JA, Bourne DG (2019) Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J 13:921–936. https://doi.org/10.1038/s41396-018-0323-6 PubMed DOI
Roy R, Samanta S, Pandit S, Naaz T, Banerjee S, Rawat JM, Chaubey KK, Saha RP (2024) An overview of bacteria-mediated heavy metal bioremediation strategies. Appl Biochem Biotechnol 196:1712–1751. https://doi.org/10.1007/s12010-023-04614-7 PubMed DOI
Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39. https://doi.org/10.1111/j.1462-2920.2009.02027.x PubMed DOI
Sabdono A, Radjasa O, Trianto A, Korshunova T, Martynov A, Sibero M (2022) Diversity and antimicrobial activity of marine nudibranch associated bacteria against tropical human skin pathogens. F1000Res 11:421. https://doi.org/10.12688/f1000research.108857.2 DOI
Saini R, Ali MI, Pant M, Warghane A (2024) Current status of potential antiviral drugs derived from plant, marine, and microbial sources. Anti-Inf Agents 22:61–73. https://doi.org/10.2174/0122113525272349231210055403 DOI
Salam N, Xian W-D, Asem MD, Xiao M, Li W-J (2021) From ecophysiology to cultivation methodology: filling the knowledge gap between uncultured and cultured microbes. Mar Life Sci Technol 3:132–147. https://doi.org/10.1007/s42995-020-00064-w PubMed DOI
Santosa GW, Djunaedi A, Susanto A, Pringgenies D, Ariyanto D (2020) Characteristics of bioactive compounds of Holothuria atra (Jaeger, 1833) associated bacteria. AACL Bioflux 13:2161–2169
Santosa SF, Nazaruddin N, Sari WE, Febriani F (2023) Polyketide synthase gene domain exploration of marine sponge symbiont bacteria collected from Weh island. Biosaintifika: J Biol Biol Educ 15:246–254. https://doi.org/10.15294/biosaintifika.v15i2.42980 DOI
Satheesh S, Ba-Akdah MA, Al-Sofyani AA (2016) Natural antifouling compound production by microbes associated with marine macroorganisms—a review. Electron J Biotechnol 21:26–35. https://doi.org/10.1016/j.ejbt.2016.02.002 DOI
Sato S, Iwata F, Fukae T, Katayama M (2014) Neomacquarimicin: a new macquarimicin analog from marine-derived actinomycete. J Antibiot 67:479–482. https://doi.org/10.1038/ja.2014.17 DOI
Schneemann I, Kajahn I, Ohlendorf B, Zinecker H, Erhard A, Nagel K, Wiese J, Imhoff JF (2010) Mayamycin, a cytotoxic polyketide from a Streptomyces strain isolated from the marine sponge Halichondria panicea. J Nat Prod 73:1309–1312. https://doi.org/10.1021/np100135b PubMed DOI
Schneemann I, Ohlendorf B, Zinecker H, Nagel K, Wiese J, Imhoff JF (2010) Nocapyrones A−D, γ-pyrones from a Nocardiopsis strain isolated from the marine sponge Halichondria panicea. J Nat Prod 73:1444–1447. https://doi.org/10.1021/np100312f PubMed DOI
Selvin J, Ninawe A, Seghal Kiran G, Lipton A (2010) Sponge-microbial interactions: ecological implications and bioprospecting avenues. Crit Rev Microbiol 36:82–90. https://doi.org/10.3109/10408410903397340 PubMed DOI
Seo E-Y, Jung D, Epstein SS, Zhang W, Owen JS, Baba H, Yamamoto A, Harada M, Nakashimada Y, Kato S (2023) A targeted liquid cultivation method for previously uncultured non-colony forming microbes. Front Microbiol 14:1194466. https://doi.org/10.3389/fmicb.2023.1194466 PubMed DOI PMC
Sharma D, Ravindran C (2020) Diseases and pathogens of marine invertebrate corals in Indian reefs. J Invertebr Pathol 173:107373. https://doi.org/10.1016/j.jip.2020.107373 PubMed DOI
Sharma A, Zhou T, Harunari E, Oku N, Trianto A, Igarashi Y (2019) Labrenzbactin from a coral-associated bacterium Labrenzia sp. J Antibiot 72:634–639. https://doi.org/10.1038/s41429-019-0192-x DOI
Sharma AR, Harunari E, Oku N, Matsuura N, Trianto A, Igarashi Y (2020) Two antibacterial and PPARα/γ-agonistic unsaturated keto fatty acids from a coral-associated actinomycete of the genus Micrococcus. Beilstein J Org Chem 16:297–304. https://doi.org/10.3762/bjoc.16.29 PubMed DOI PMC
Shen T, Li L-M, Xu Z-Y, Wang Y-D, Xie W-D (2021) Julichrome derivatives and gliotoxin from a soil derived Streptomyces sp. Nat Prod Res 35:34–40. https://doi.org/10.1080/14786419.2019.1611814 PubMed DOI
Shi T, Li Y-J, Wang Z-M, Wang Y-F, Wang B, Shi D-Y (2023) New pyrroline isolated from antarctic krill-derived actinomycetes Nocardiopsis sp. LX-1 combining with molecular networking. Mar Drugs 21:127. https://doi.org/10.3390/md21020127 PubMed DOI PMC
Shnit-Orland M, Kushmaro A (2008) Coral mucus bacteria as a source for antibacterial activity. In Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 1:257–259
Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67:371–380. https://doi.org/10.1111/j.1574-6941.2008.00644.x PubMed DOI
Sibero MT, Igarashi Y, Radjasa OK, Sabdono A, Trianto A, Zilda DS, Wijaya YJ (2019) Sponge-associated fungi from a mangrove habitat in Indonesia: species composition, antimicrobial activity, enzyme screening and bioactive profiling. Int Aquat Res 11:173–186. https://doi.org/10.1007/s40071-019-0227-8 DOI
Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4:333–342. https://doi.org/10.1158/1535-7163.333.4.2 PubMed DOI
Singh S, Prasad P, Subramani R, Aalbersberg W (2014) Production and purification of a bioactive substance against multi-drug resistant human pathogens from the marine-sponge-derived Salinispora sp. Asian Pac J Trop Biomed 4:825–831. https://doi.org/10.12980/APJTB.4.2014C1154 DOI
Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7:1–14. https://doi.org/10.1007/s13205-017-0942-z DOI
Singh M, Chaudhary P, Bhutani S, Bhasin S, Mehra A, Tripathi K (2023) Overview of microbial associations and their role under aquatic ecosystems. In: Soni R, Suyal DC, Morales-Oyervides L, Sungh Chauhan J (eds) Current status of fresh water microbiology. Springer, Singapore, pp 77–115 DOI
Smith LC, Ghosh J, Buckley KM, Clow LA, Dheilly NM, Haug T, Henson JH, Li C, Lun CM, Majeske AJ (2010) Echinoderm immunity. In: Söderhäll K (ed) Invertebrate immunity. Advances in experimental medicine and biology, vol 708. Springer, Boston, MA, pp 260–301
Spanoghe J, Vermeir P, Vlaeminck SE (2021) Microbial food from light, carbon dioxide and hydrogen gas: kinetic, stoichiometric and nutritional potential of three purple bacteria. Bioresour Technol 337:125364. https://doi.org/10.1016/j.biortech.2021.125364 PubMed DOI
Srinivasan R, Kannappan A, Shi C, Lin X (2021) Marine bacterial secondary metabolites: a treasure house for structurally unique and effective antimicrobial compounds. Mar Drugs 19:530. https://doi.org/10.3390/md19100530 PubMed DOI PMC
Stincone P, Brandelli A (2020) Marine bacteria as source of antimicrobial compounds. Crit Rev Biotechnol 40:306–319. https://doi.org/10.1080/07388551.2019.1710457 PubMed DOI
Stincone P, Andreazza R, Demarco CF, Afonso TF, Brandelli A (2023) Marine bacteria for bioremediation. In: Encarnação T, Canelas Pais A (eds) Marine organisms: A solution to environmental pollution? Environmental challenges and solutions, Springer, Cham, pp 147–188 DOI
Sun W, Peng C, Zhao Y, Li Z (2012) Functional gene-guided discovery of type II polyketides from culturable actinomycetes associated with soft coral Scleronephthya sp. PLoS ONE 7:e42847. https://doi.org/10.1371/journal.pone.0042847 PubMed DOI PMC
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A (2015) Structure and function of the global ocean microbiome. Science 348:1261359. https://doi.org/10.1126/science.1261359 PubMed DOI
Suria AM, Tan KC, Kerwin AH, Gitzel L, Abini-Agbomson L, Bertenshaw JM, Sewell J, Nyholm SV, Balunas MJ (2020) Hawaiian bobtail squid symbionts inhibit marine bacteria via production of specialized metabolites, including new bromoalterochromides BAC-D/D′. Msphere 5:e00120-00166. https://doi.org/10.1128/msphere.00166-20 DOI
Suzuki T, Muroga Y, Takahama M, Nishimura Y (2000) Roseigium denhamense gen. nov., sp. nov. and Roseibium hemelinense sp. nov. aerobic bacteriochlorophyll-containing bacteria isolated from the east and west coasts of Australia. Int J Syst Evol Microbiol 50:2151–2156. https://doi.org/10.1099/00207713-50-6-2151 PubMed DOI
Takagi M, Motohashi K, Khan ST, Hashimoto J, Shin-Ya K (2010) JBIR-65, a new diterpene, isolated from a sponge-derived Actinomadura sp. SpB081030SC-15. J Antibiot 63:401–403. https://doi.org/10.1038/ja.2010.61 DOI
Taşğın E (2017) Macronutrients and micronutrients in nutrition. Int J Innov Res Rev 1:10–15
Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130. https://doi.org/10.1046/j.1462-2920.2003.00545.x PubMed DOI
Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347. https://doi.org/10.1128/mmbr.00040-06 PubMed DOI PMC
Thawabteh AM, Swaileh Z, Ammar M, Jaghama W, Yousef M, Karaman RA, Bufo S, Scrano L (2023) Antifungal and antibacterial activities of isolated marine compounds. Toxins (Basel) 15:93. https://doi.org/10.3390/toxins15020093 PubMed DOI
Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association—a review. Mar Drugs 8:1417–1468. https://doi.org/10.3390/md8041417 PubMed DOI PMC
Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB, Erwin PM, López-Legentil S, Luter H (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:1–12. https://doi.org/10.1038/ncomms11870 DOI
Thompson JR, Rivera HE, Closek CJ, Medina M (2015) Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 4:176. https://doi.org/10.3389/fcimb.2014.00176 PubMed DOI PMC
Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, Gibbons SM, Ackermann G (2017) A communal catalogue reveals earth’s multiscale microbial diversity. Nat 551:457–463. https://doi.org/10.1038/nature24621 DOI
Thoms C, Horn M, Wagner M, Hentschel U, Proksch P (2003) Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar Biol 142:685–692. https://doi.org/10.1007/s00227-002-1000-9 DOI
Tian RM, Wang Y, Bougouffa S, Gao ZM, Cai L, Bajic V, Qian PY (2014) Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge. Environ Microbiol 16:3548–3561. https://doi.org/10.1111/1462-2920.12586 PubMed DOI
Unkles S (1977) Bacterial flora of the sea urchin Echinus esculentus. Appl Environ Microbiol 34:347–350. https://doi.org/10.1128/aem.34.4.347-350.1977 PubMed DOI PMC
Unson MD, Holland N, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11. https://doi.org/10.1007/BF00350100 DOI
Uthicke S, Schaffelke B, Byrne M (2009) A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24. https://doi.org/10.1890/07-2136.1 DOI
Van Soest R, Boury-Esnault N, Hooper J, Rützler Kd, De Voogd N, Alvarez de Glasby B, Hajdu E, Pisera A, Manconi R, Schoenberg C (2018) World porifera database. The World Register of Marine Species (WoRMS) Available online: http://www.marinespecies.org/porifera (accessed on 25 October 2012).
Vartoukian SR (2016) Cultivation strategies for growth of uncultivated bacteria. J Oral Biosci 58:143–149. https://doi.org/10.1016/j.job.2016.08.001 DOI
Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’bacteria. FEMS Microbiol Lett 309:1–7. https://doi.org/10.1111/j.1574-6968.2010.02000.x PubMed DOI
Vendrasco MJ (2012) Early evolution of molluscs. Mollusks: morphology, behavior and ecology. In: Fyodorov A, Yakovlev H (eds) Hauppauge, Nova Science Publishers, pp 1–43.
Vicente J, Stewart AK, Van Wagoner RM, Elliott E, Bourdelais AJ, Wright JL (2015) Monacyclinones, new angucyclinone metabolites isolated from Streptomyces sp. M7_15 associated with the Puerto rican sponge Scopalina ruetzleri. Mar Drugs 13:4682–4700. https://doi.org/10.3390/md13084682 PubMed DOI PMC
Vozzo M, Doropoulos C, Silliman B, Steven A, Reeves S, Ter Hofstede R, Van Koningsveld M, Van De Koppel J, McPherson T, Ronan M (2023) To restore coastal marine areas, we need to work across multiple habitats simultaneously. Proc Nati Acad Sci 120:e2300546120. https://doi.org/10.1073/pnas.2300546120 DOI
Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346. https://doi.org/10.1111/j.1462-2920.2011.02460.x PubMed DOI
Webster N, Thomas T (2016) The Sponge Hologenome Mbio 7:00116–00135. https://doi.org/10.1128/mbio.00135-16 DOI
Webster NS, Luter HM, Soo RM, Botté ES, Simister RL, Abdo D, Whalan S (2013) Same, same but different: symbiotic bacterial associations in GBR sponges. Front Microbiol 3:444. https://doi.org/10.3389/fmicb.2012.00444 PubMed DOI PMC
Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719. https://doi.org/10.1111/j.1462-2920.2007.01383.x PubMed DOI
Weiler BA, Verhoeven JT, Dufour SC (2018) Bacterial communities in tissues and surficial mucus of the cold-water coral Paragorgia arborea. Front Mar Sci 5:378. https://doi.org/10.3389/fmars.2018.00378 DOI
Wibowo JT, Kellermann MY, Versluis D, Putra MY, Murniasih T, Mohr KI, Wink J, Engelmann M, Praditya DF, Steinmann E (2019) Biotechnological potential of bacteria isolated from the sea cucumber Holothuria leucospilota and Stichopus vastus from Lampung. Indonesia Mar Drugs 17:635. https://doi.org/10.3390/md17110635 PubMed DOI
Wibowo JT, Kellermann MY, Köck M, Putra MY, Murniasih T, Mohr KI, Wink J, Praditya DF, Steinmann E, Schupp PJ (2021) Anti-infective and antiviral activity of valinomycin and its analogues from a sea cucumber-associated bacterium, Streptomyces sp. SV 21. Mar Drugs 19:81. https://doi.org/10.3390/md19020081 PubMed DOI PMC
Wibowo JT, Kellermann MY, Petersen L-E, Alfiansah YR, Lattyak C, Schupp PJ (2022) Characterization of an insoluble and soluble form of melanin produced by Streptomyces cavourensis SV 21, a sea cucumber associated bacterium. Mar Drugs 20:54. https://doi.org/10.3390/md20010054 PubMed DOI PMC
Wibowo JT, Octaviana S, Murniasih T (2023) The potentials of cultivable sea cucumber associated bacteria. In AIP Conf Proc, 2023. AIP Publishing, vol 2972. 6pp
Wibowo JT (2022) Anti-infective properties of a sea cucumber associated actinobacteria Kocuria sp. HL 55. In Proceedings of 7th International Conference on Biological Science (ICBS 2021), Atlantis Press, pp 565–567.
Wiese J, Abdelmohsen UR, Motiei A, Humeida UH, Imhoff JF (2018) Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis. Biorg Med Chem Lett 28:558–561. https://doi.org/10.1016/j.bmcl.2018.01.062 DOI
Wijaya A, Sabdono A, Sibero M, Trianto A, Radjasa O (2022) Screening of the antifungal potential of nudibranch Chromodoris lineolata associated bacteria against Candida albicans. IOP Conf Ser: Earth Environ Sci 967:012043 DOI
Wijaya AP, Sabdono A, Sibero MT, Trianto A, Radjasa OK (2022) Antimicrobial activity of nudibranch Chromodoris lineolata associated bacteria against skin diseases pathogens from Jepara Coastal Waters, Indonesia. Biodivers J Biol Div 23:1911–1919. https://doi.org/10.13057/biodiv/d230425 DOI
Woyke T, Doud DF, Schulz F (2017) The trajectory of microbial single-cell sequencing. Nat Methods 14:1045–1054. https://doi.org/10.1038/nmeth.4469 PubMed DOI
Xie B-B, Li M, Anantharaman K, Ravin NV (2021) The uncultured microorganisms: novel technologies and applications. Front Microbiol 12:756287. https://doi.org/10.3389/fmicb.2021.756287 PubMed DOI PMC
Xu D, Nepal KK, Chen J, Harmody D, Zhu H, McCarthy PJ, Wright AE, Wang G (2018) Nocardiopsistins AC: new angucyclines with anti-MRSA activity isolated from a marine sponge-derived Nocardiopsis sp. HB-J378. Synth Syst Biotechnol 3:246–251. https://doi.org/10.1016/j.synbio.2018.10.008 PubMed DOI PMC
Xu F, Wu Y, Zhang C, Davis KM, Moon K, Bushin LB, Seyedsayamdost MR (2019) A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol 15:161–168. https://doi.org/10.1038/s41589-018-0193-2 PubMed DOI PMC
Xu M, Cai Z, Cheng K, Chen G, Zhou J (2024) Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 90:e02223-02274. https://doi.org/10.1128/aem.02274-23 DOI
Yalla SK, Cherian T, Mohanraju R (2018) Antimicrobial potential of secondary metabolites extracted from Vibrio furnissii, a luminescent bacteria associated with squid Uroteuthis duvauceli. Int J of Pharm and Biol Sci 8:530–534
Yang S, Sun W, Tang C, Jin L, Zhang F, Li Z (2013) Phylogenetic diversity of actinobacteria associated with soft coral Alcyonium gracllimum and stony coral Tubastraea coccinea in the East China Sea. Microb Ecol 66:189–199. https://doi.org/10.1007/s00248-013-0205-4 PubMed DOI
Yao CB, Zereini WA, Fotso S, Anke H, Laatsch H (2010) Aqabamycins A-G: novel nitro maleimides from a marine Vibrio species: II. Structure Elucidation J Antibiot 63:303–308. https://doi.org/10.1038/ja.2010.35 DOI
Yoshida T, Katagiri K (1967) Influence of isoleucine upon quinomycin biosynthesis by Streptomyces sp. 732. J Bacteriol 93:1327–1331. https://doi.org/10.1128/jb.93.4.1327-1331.1967 PubMed DOI PMC
Yu H, Chen S, Li H, Wang R, Jiang Y, Yan L, Sun P (2022) Fluvirucins B 7–B 10, new antifungal macrolactams from a marine-derived Nonomuraea sp. MYH522. RSC Adv 12:15479–15485. https://doi.org/10.1039/D2RA01701F PubMed DOI PMC
Zhang X-Y, He F, Wang G-H, Bao J, Xu X-Y, Qi S-H (2013) Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the South China Sea gorgonian corals. World J Microbiol Biotechnol 29:1107–1116. https://doi.org/10.1007/s11274-013-1279-3 PubMed DOI
Zhang Y, Xu Y, Chen L, Hu J, Zhang X, Fang W, Fang Z, Xiao Y (2016) Isolation, identification and structural characterization of secondary metabolites from amarine sponge-derived rare actinobacterium Dermacoccus sp. X4. Chin J Biotechnol 32:599–609. https://doi.org/10.13345/j.cjb.150391 DOI
Zhang F, Braun DR, Rajski SR, DeMaria D, Bugni TS (2019a) Enhypyrazinones A and B, pyrazinone natural products from a marine-derived myxobacterium Enhygromyxa sp. Mar Drugs 17:698. https://doi.org/10.3390/md17120698 PubMed DOI PMC
Zhang X-H, Liu J, Liu J, Yang G, Xue C-X, Curson AR, Todd JD (2019b) Biogenic production of DMSP and its degradation to DMS—their roles in the global sulfur cycle. Sci China Life Sci 62:1296–1319. https://doi.org/10.1007/s11427-018-9524-y PubMed DOI
Zhang Z, Zhou T, Harunari E, Oku N, Igarashi Y (2020) Iseolides A-C, antifungal macrolides from a coral-derived actinomycete of the genus Streptomyces. J Antibiot 73:534–541. https://doi.org/10.1038/s41429-020-0304-7 DOI
Zhang D, Ma Z, Chen H, Ma W, Zhou J, Wang Q, Min C, Lu Y, Chen X (2022) Efficient production of valinomycin by the soil bacterium, Streptomyces sp. ZJUT-IFE-354. 3 Biotech 12:2. https://doi.org/10.1007/s13205-021-03055-5 PubMed DOI
Zhen X, Gong T, Liu F, Zhang P-C, Zhou W-Q, Li Y, Zhu P (2015) A new analogue of echinomycin and a new cyclic dipeptide from a marine-derived Streptomyces sp. LS298. Mar Drugs 13:6947–6961. https://doi.org/10.3390/md13116947 PubMed DOI PMC
Zhou Z, Wu Q, Xie Q, Ling C, Zhang H, Sun C, Ju J (2020) New borrelidins from Onchidium sp. associated Streptomyces olivaceus SCSIO LO13. Chem Biodivers 17:e1900560. https://doi.org/10.1002/cbdv.201900560 PubMed DOI
Zote J, Passari AK, Siddaiah CN, Kumar NS, Abd Allah EF, Hashem A, Alqarawi AA, Malik JA, Singh BP (2018) Phylogenetic affiliation and determination of bioactive compounds of bacterial population associated with organs of mud crab, Scylla olivacea. Saudi J Biol Sci 25:1743–1754. https://doi.org/10.1016/j.sjbs.2018.08.025 PubMed DOI PMC