Bioactive compounds
Dotaz
Zobrazit nápovědu
Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální léková rezistence MeSH
- fytonutrienty * farmakologie chemie MeSH
- lidé MeSH
- nemoci přenášené potravou mikrobiologie prevence a kontrola farmakoterapie MeSH
- Salmonella enterica * účinky léků MeSH
- salmonelóza * mikrobiologie farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Current antibiotics and chemotherapeutics are becoming ineffective because pathogenic bacteria and tumor cells have developed multiple drug resistance. Therefore, it is necessary to find new substances that can be used in treatment, either alone or as sensitizing molecules in combination with existing drugs. Peptaibols are bioactive, membrane-active peptides of non-ribosomal origin, mainly produced by filamentous fungi such as Trichoderma spp. This study focused on producing peptaibol-rich extracts from Trichoderma atroviride O1, cultivated on malt extract agar (MA) under circadian and constant darkness conditions for 13 days. Peptaibol production was detected by MALDI-TOF mass spectrometry after six days of cultivation. The extracts demonstrated antibacterial activity against Staphylococcus aureus strains, particularly the methicillin-resistant variant, but not against the Gram-negative Pseudomonas aeruginosa. Quorum sensing interference revealed that a peptaibol-rich extract suppressed Vibrio campbellii BAA-1119's AI-2 signaling system to a degree comparable with gentamycin. Beyond antibacterial properties, the extracts exhibited notable antiproliferative activity against human ovarian cancer cells and their adriamycin-resistant subline in both 2D and 3D models. Specifically, MA-derived extracts reduced ovarian cancer cell viability by 70% at 50 μg/mL, especially under light/dark regime of cultivation. Compared to previously published results for PDA-based extracts, MA cultivation shifted the biological effects of peptaibol-containing extracts toward anticancer potential. These findings support the idea that modifying fungal cultivation parameters, the bioactivity of secondary metabolite mixtures can be tailored for specific therapeutic applications.
- MeSH
- agar * chemie MeSH
- antibakteriální látky * farmakologie metabolismus MeSH
- Hypocreales MeSH
- kultivační média chemie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nádorové buněčné linie MeSH
- peptaiboly * farmakologie metabolismus biosyntéza chemie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky * farmakologie metabolismus MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- Staphylococcus aureus účinky léků MeSH
- Trichoderma * metabolismus růst a vývoj chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Food hydrocolloids, derived from natural sources such as plants, algae, and microbes, possess bioactive properties that significantly contribute to cardiovascular health. This review focuses on six key hydrocolloids: alginate, astragalus polysaccharides, carrageenan, fucoidan, lunasin, and psyllium, while also considering other important natural hydrocoloids such as short chain fatty acids (SCFAs), plant-derived food hydrocolloids, plant-derived gums, plant-derived mucilages, pectin, modified citrus pectin, inulin, naringenin, chia seeds, gelatine, whey protein, casein, microbial exopolysaccharides and gums, ulvan, and laminarin. Alginate, from brown seaweed, aids in cardiac tissue regeneration and repair. Astragalus polysaccharides, from the Astragalus plant, provide antioxidant, anti-inflammatory, and immunomodulatory benefits. Carrageenan, sourced from red seaweed, supports lipid profile balance and heart health. Fucoidan, another brown seaweed derivative, offers antihypertensive and lipid-lowering effects. Lunasin, a peptide found in soybeans, oats, and barley, is known for its cholesterol-lowering properties and anti-inflammatory effects. Psyllium, rich in soluble fiber, helps lower LDL cholesterol and improve overall cardiovascular function. These hydrocolloids, along with other mentioned compounds, are utilized in drug formulations, cosmetics, processed foods, and dietary supplements, enhancing food texture and stability while delivering health benefits. Upon consumption, they can be absorbed into the bloodstream or metabolized by gut microbiota into bioactive metabolites. This review examines their effects on cardiovascular function, highlighting their mechanisms in regulating vascular tone, blood pressure, vascular inflammation, and cardiac function. It consolidates current research, emphasizing the potential of these hydrocolloids and related compounds in the prevention and management of cardiovascular diseases (CVDs).
- MeSH
- algináty * chemie farmakologie MeSH
- karagenan * chemie farmakologie MeSH
- kardiovaskulární nemoci * prevence a kontrola MeSH
- kardiovaskulární systém * účinky léků MeSH
- koloidy chemie farmakologie MeSH
- lidé MeSH
- polysacharidy * chemie farmakologie MeSH
- psyllium * chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Novel antimicrobial agents are urgently needed to combat antimicrobial resistance from multidrug-resistant organisms. Actinobacteria are key sources of bioactive metabolites with diverse biological activities. Despite their contributions to drug discovery, the process from strain identification to drug manufacturing faces many challenges, especially the rediscovery of known compounds. Recent technological and scientific advancements have accelerated drug development. Efforts to isolate and screen rare actinobacterial species could yield novel bioactive compounds. This review summarizes techniques for selectively isolating rare actinobacteria, improving bioactive metabolite production, and discovering potential strains. Notably, new genomic strategies and new discoveries regarding spectroscopic signature-based bioactive natural products containing specific structural motifs are also discussed. Furthermore, this review updates the compounds derived from rare actinobacteria and their biological applications.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A significant increase in interest in new, naturally occurring sources of antioxidants is evident not only in the food industry but also in the pharmaceutical and cosmetic industries. Plant sources such as fruits, both traditional and less common, are often investigated. Goji berries (Lycium barbarum, Lycium chinense, and Lycium ruthenicum) represent fruits rich in polyphenols, especially phenolic acids (38.91 to 455.57 mg/kg FW) and flavonoids, with black goji berries (L. ruthenicum) containing a predominance of anthocyanins (119.60 to 1112.25 mg/kg FW). In this review, a comparison of polyphenol occurrence and content in the orange-red and black berries of L. barbarum, L. chinense, and L. ruthenicum is described. Goji berries represent a valuable source of nutrients and bioactive compounds that manifest a wide range of health-promoting effects. These benefits represent antioxidant, neuroprotective, and cytoprotective impacts, with effects on the metabolic control of glucose and lipids. This review is focused on an overview of the polyphenolic compounds occurring in these fruits, as well as their antioxidant activity and health benefits.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Neurodegenerative disorders (NDs) are typically characterized by progressive loss of neuronal function and the deposition of misfolded proteins in the brain and peripheral organs. They are molecularly classified based on the specific proteins involved, underscoring the critical role of protein-processing systems in their pathogenesis. Alpha-synuclein (α-syn) is a neural protein that is crucial in initiating and progressing various NDs by directly or indirectly regulating other ND-associated proteins. Therefore, reducing the α-syn aggregation can be an excellent option for combating ND initiation and progression. This study presents an in silico phytochemical-based approach for discovering novel neuroprotective agents from bioactive compounds of the Lamiaceae family, highlighting the potential of computational methods such as functional networking, pathway enrichment analysis, molecular docking, and simulation in therapeutic discovery. Functional network and enrichment pathway analysis established the direct or indirect involvement of α-syn in various NDs. Furthermore, molecular docking interaction and simulation studies were conducted to screen 85 major bioactive compounds of the Lamiaceae family against the α-syn aggregation. The results showed that five compounds (α-copaene, γ-eudesmol, carnosol, cedryl acetate, and spathulenol) had a high binding affinity towards α-syn with potential inhibitory activity towards its aggregation. MD simulations validated the stability of the molecular interactions determined by molecular docking. In addition, in silico pharmacokinetic analysis underscores their potential as promising drug candidates, demonstrating excellent blood-brain barrier (BBB) permeability, bioactivity, and reduced toxicity. In summary, this study identifies the most suitable compounds for targeting the α-syn aggregation and recommends these compounds as potential therapeutic agents against various NDs, pending further in vitro and in vivo validation.
- Publikační typ
- časopisecké články MeSH
The objective of our in vitro study was to quantify the biochemical profile where the total polyphenol, flavonoid and phenolic acid content was determined. The antioxidant potential of microgreen extract from Trigonella foenum-graecum L., was measured molybdenum reducing power assay. Specifically, the study assessed parameters such as metabolic activity (AlamarBlueTM assay), membrane integrity (CFDA-AM assay), mitochondrial potential (JC-1 assay), as well as reactive oxygen species generation (NBT assay). In addition, the steroid hormone release in TM3 murine Leydig cells after 12 h and 24 h exposures were quantified by enzyme-linked immunosorbent assay. The gained results indicate the highest value in total flavonoid content (182.59+/-2.13 mg QE) determination, supported by a significant (108.25+/-1.27 mg TE) antioxidant activity. The effects on metabolic activity, cell membrane integrity, and mitochondrial membrane potential were found to be both time- and dose-dependent. Notably, a significant suppression in reactive oxygen species generation was confirmed at 150, 200 and 250 microg/ml after 24 h exposure. In addition, progesterone and testosterone release was stimulated up to 250 microg/ml dose of Trigonella, followed by a decline in both steroid production at 300 and 1000 microg/ml. Our results indicate, that Trigonella at lower experimental doses (up to 250 microg/ml) may positively affect majority of monitored cell parameters in TM3 Leydig cells. Overleaf, increasing experimental doses may negatively affect the intracellular parameters already after 12 h of in vitro exposure. Key words Microgreens, Trigonella foenum-graecum L., Fenugreek, Leydig cells, Male reproduction.
- MeSH
- antioxidancia farmakologie MeSH
- buněčné linie MeSH
- fytonutrienty farmakologie MeSH
- Leydigovy buňky * účinky léků metabolismus MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- myši MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné extrakty * farmakologie MeSH
- testosteron metabolismus MeSH
- Trigonella * chemie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Platinum(IV) compounds possess distinct properties that set them apart from platinum(II) compounds. Often designed as prodrugs, they are reduced within cancer cells to their active platinum(II) form, enabling their cytotoxic effects. Their versatility also lies in their ability to be functionalized and conjugated with bioactive molecules to enhance cancer cell targeting. This report introduces new prodrugs that combine antitumor cisplatin with axially coordinated eugenol, leveraging their synergistic action to target cancer stem cells. A third bioactive ligand, 4-phenylbutyrate or octanoate, was added to further enhance biological activity, creating 'triple action' prodrugs. These new platinum(IV) prodrugs offer a novel approach to cancer therapy by improving targeting, increasing efficacy, overcoming drug resistance, and reducing tumor invasiveness while sparing healthy tissue.
- MeSH
- cisplatina * farmakologie MeSH
- eugenol * farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorové kmenové buňky * účinky léků patologie MeSH
- nádory tračníku * farmakoterapie patologie MeSH
- prekurzory léčiv * farmakologie chemie MeSH
- protinádorové látky * farmakologie chemie MeSH
- synergismus léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Infections caused by antibiotic-drug-resistant microorganisms are a major global health concern, and they result in millions of deaths every year. Methicillin-resistant Staphylococcus aureus (MRSA) is one of such drug-resistant microbial strains, and new and effective antimicrobial agents are desperately needed to combat infections caused by MRSA. In the search for effective anti-MRSA agents, the leaves of Citrus grandis (Rutaceae), also known as C. maxima, were investigated. Implementing a bioassay-guided approach, sinensetin (2), which is a polymethoxyflavone, was isolated as a promising anti-MRSA compound, showing inhibitory activity against three (EMRSA-15, MRSA340802 and MRSA274819; MIC values 128-256 μg/mL) of five MRSA strains tested in the present study. Five other flavonoids 6,7,8,3',4'-pentamethoxyflavone (1), cirsilineol (3), nobiletin (4), 5-desmethylsinensetin (5) and hesperidin (6) were isolated from the dichloromethane extract of this plant. They displayed varied levels of antimicrobial activities against the tested microbial strains, Micrococcus luteus NCTC 7508, Escherichia coli NCTC 12241 and Pseudomonas aeruginosa NCTC 12903, and a fungal strain, Candida albicans ATCC 90028, but not against Staphylococcus aureus NCTC 12981. Sinensetin (2) also exhibited strong antimicrobial activity against the fungal strain C. albicans with an MIC value of 0.0625 mg/mL. The chemical structures of all isolated compounds were unequivocally elucidated by spectroscopic means (1D and 2D NMR and HR-ESIMS). The present study revealed sinensetin (2) as a potential structural template for generating structural analogues and developing anti-MRSA agents and provided scientific evidence supporting the traditional uses of C. grandis in the treatment of microbial infections.
- MeSH
- antibakteriální látky farmakologie izolace a purifikace chemie MeSH
- Candida albicans účinky léků MeSH
- Citrus * chemie MeSH
- flavonoidy * farmakologie izolace a purifikace MeSH
- fytonutrienty farmakologie izolace a purifikace MeSH
- listy rostlin * chemie MeSH
- methicilin rezistentní Staphylococcus aureus * účinky léků MeSH
- mikrobiální testy citlivosti * MeSH
- molekulární struktura MeSH
- rostlinné extrakty farmakologie chemie MeSH
- Publikační typ
- časopisecké články MeSH
Onosma riedliana Binzet & Orcan, a traditionally used plant species, has been explored for its therapeutic potential in this study. The work presented here is the first report on the phenolic profile and biological activity of this species. Three extracts of varying polarity were prepared, with the methanolic extract containing the highest phenolic content (97.62 ± 0.20 mgGAE/g). Key phenolic compounds identified included pinoresinol, hesperidin, 4-hydroxybenzoic acid, and p-coumaric acid. The methanolic extract exhibited exceptional antioxidant properties, rivaling Trolox as a positive control, primarily attributed to hesperidin and luteolin. Moreover, the ethyl acetate extract demonstrated remarkable inhibition of cholinesterase and tyrosinase enzymes, while the methanolic extract displayed potent activity against carbohydrate hydrolytic enzymes, α-amylase and α-glucosidase. Again, phenolic compounds were shown to be responsible for the inhibition of cholinesterases and tyrosinase, but not for α-amylase and α-glucosidase. These findings underscore Onosma riedliana's potential for incorporation into diverse pharmaceutical formulations, given its multifaceted bioactivity.