Fused Filament Fabrication 3D Printing Parameters Affecting the Translucency of Polylactic Acid Parts

. 2024 Oct 10 ; 16 (20) : . [epub] 20241010

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39458689

Grantová podpora
GAJU 104/2022/T University of South Bohemia in České Budějovice
GAJU 097/2023/T University of South Bohemia in České Budějovice

The effect of 3D printing parameters by Fused Filament Fabrication (FFF) on the translucency of polylactic acid (PLA) parts was investigated. Six different printing parameters were studied: object orientation, layer height, nozzle temperature, fan speed, extrusion multiplier, and printing speed. The commercially available Plasty Mladeč PLA filament and the Original Prusa MK4 3D printer were used for the experiments. The translucency of the printed samples of 50 × 25 × 1 mm dimensions was measured using a luxmeter in an integrating sphere. A total of 32 sample combinations were created. Each sample was printed ten times. The results show that all investigated parameters significantly affect the optical properties of PLA parts. The best measured translucency values were obtained when printing in portrait mode, with a layer height of 0.30 mm, nozzle temperature of 240 °C, fan speed of 100%, 0.75 set extrusion multiplier, and a speed of 40 mm/s. ANOVA was used to statistically evaluate the effect of each parameter on translucency, and statistically significant differences were found between different combinations of parameters (p < 0.05). Scanning Electron Microscope (SEM) analysis provided detailed images of the surface structure of the printed samples, allowing for a better discussion of the microscopic properties affecting the translucency. The best print setting has an efficiency of 88% compared to the default setting of 65%. The ability of visible light to pass through the print (translucency) improved by 23%.

Zobrazit více v PubMed

Haleem A., Javaid M. Additive Manufacturing Applications in Industry 4.0: A Review. J. Ind. Integr. Manag. 2019;04 doi: 10.1142/S2424862219300011. DOI

Dilberoglu U.M., Gharehpapagh B., Yaman U., Dolen M. The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manuf. 2017;11:545–554. doi: 10.1016/j.promfg.2017.07.148. DOI

Baechle-Clayton M., Loos E., Taheri M., Taheri H. Failures and Flaws In Fused Deposition Modeling (FDM) Additively Manufactured Polymers And Composites. J. Compos. Sci. 2022;6:202. doi: 10.3390/jcs6070202. DOI

Năstase M.-S., Costea M., Jiga G., Alexandru T.G. Comparative Studies between Two Plastic Materials Used in 3D Printing. Macromol. Symp. 2023;411:2200178. doi: 10.1002/masy.202200178. DOI

Souza D.H.S., Santoro P.V., Dias M.L. Isothermal Crystallization Kinetics of Poly(Lactic Acid) Stereocomplex/Graphene Nanocomposites. Mater. Res. 2018;21 doi: 10.1590/1980-5373-mr-2017-0352. DOI

Taib R.M., Yin T.C. Determination of the Equilibrium Melting Temperature of Polylactic Acid/Ethylene Acrylate Copolymer Blends. Mater. Today. 2019;17:1112–1116. doi: 10.1016/j.matpr.2019.06.531. DOI

Pyda M., Bopp R., Wunderlich B. Heat capacity of poly(lactic acid) J. Chem. Thermodyn. 2004;36:731–742. doi: 10.1016/j.jct.2004.05.003. DOI

Blanco I., Cicala G., Recca G., Tosto C. Specific Heat Capacity and Thermal Conductivity Measurements of PLA-Based 3D-Printed Parts with Milled Carbon Fiber Reinforcement. Entropy. 2022;24:654. doi: 10.3390/e24050654. PubMed DOI PMC

Topcu İ. Mechanical Properties of PLA and ABS Parts Produced with Fused Filament Fabrication Method. J. Ceram. Process. Res. 2021;22:143–148. doi: 10.36410/jcpr.2021.22.2.143. DOI

Tymrak B.M., Kreiger M., Pearce J.M. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 2014;58:242–246. doi: 10.1016/j.matdes.2014.02.038. DOI

Algarni M., Ghazali S. Comparative Study of the Sensitivity of PLA, ABS, PEEK, and PETG’s Mechanical Properties to FDM Printing Process Parameters. Crystals. 2021;11:995. doi: 10.3390/cryst11080995. DOI

Kristiawan R.B., Imaduddin F., Ariawan D., Ubaidillah, Arifin Z. A Review on the Fused Deposition Modeling (FDM) 3D Printing: Filament Processing, Materials, and Printing Parameters. Open Eng. 2021;11:639–649. doi: 10.1515/eng-2021-0063. DOI

Otieno D.B., Bosire G.O., Onyari J.M., Mwabora J.M. Comparative analysis of 3D-printed polylactic acid and acrylonitrile butadiene styrene: Experimental and Materials-Studio-based theoretical studies. J. Polym. Res. 2022;29:1–14. doi: 10.1007/s10965-022-03075-6. DOI

Hutchinson M.H., Dorgan J.R., Knauss D.M., Hait S.B. Optical Properties of Polylactides. J. Polym. Environ. 2006;14:119–124. doi: 10.1007/s10924-006-0001-z. DOI

Clark A.T., Federici J.F., Gatley I., Kong L.B. Effect of 3D Printing Parameters on the Refractive Index, Attenuation Coefficient, and Birefringence of Plastics in Terahertz Range. Adv. Mater. Sci. Eng. 2021;2021 doi: 10.1155/2021/8276378. DOI

Squires A.D., Constable E., Lewis R.A. 3D Printed Terahertz Diffraction Gratings and Lenses. J. Infrared Millim. Terahertz Waves. 2015;36:72–80. doi: 10.1007/s10762-014-0122-8. DOI

Murr L.E. Frontiers of 3D Printing/Additive Manufacturing: From Human Organs to Aircraft Fabrication. J. Mater. Sci. Technol. 2016;32:987–995. doi: 10.1016/j.jmst.2016.08.011. DOI

Paolini A., Kollmannsberger S., Rank E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit. Manuf. 2019;30:100894. doi: 10.1016/j.addma.2019.100894. DOI

Ghaffar S.H., Corker J., Fan M. Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Autom. Constr. 2018;93:1–11. doi: 10.1016/j.autcon.2018.05.005. DOI

Ji S., Guvendiren M. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Front. Bioeng. Biotechnol. 2017;5:23. doi: 10.3389/fbioe.2017.00023. PubMed DOI PMC

Jang H., Jang H.W., Kim A.Y., Youk J.H. Partially Bio-Based Colorless and Transparent Poly(Amide-Imide)s Derived from 2,5-Furandicarboxylic Acid. Fibers Polym. 2020;21:2161–2165. doi: 10.1007/s12221-020-1380-9. DOI

Bansal N., Tanwer A.K., Karnwal S., Singh A.P. Robotic Arm by Using 3D Printing and Polylactic Acid (PLA) Wire—Challenges and Solutions; Proceedings of the 2023 1st International Conference on Intelligent Computing and Research Trends (ICRT); Roorkee, India. 3–4 February 2023; pp. 1–11.

Chen Q., Li C., Hao X. A micro quadruped crawling robot manufactured from PLA material. Vibroengineering PROCEDIA. 2023;53:91–96. doi: 10.21595/vp.2023.23694. DOI

Doshi M., Mahale A., Singh S.K., Deshmukh S. Printing parameters and materials affecting mechanical properties of FDM-3D printed Parts: Perspective and prospects. Mater. Today Proc. 2021;50:2269–2275. doi: 10.1016/j.matpr.2021.10.003. DOI

Cojocaru V., Frunzaverde D., Miclosina C.-O., Marginean G. The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication—A Review. Polymers. 2022;14:886. doi: 10.3390/polym14050886. PubMed DOI PMC

Cele H., Ojijo V., Chen H., Kumar S., Land K., Joubert T., de Villiers M., Ray S. Effect of nanoclay on optical properties of PLA/clay composite films. Polym. Test. 2014;36:24–31. doi: 10.1016/j.polymertesting.2014.03.010. DOI

Jacquez J.A., Kuppenheim H.F. Theory of the Integrating Sphere. J. Opt. Soc. Am. 1955;45:460–470. doi: 10.1364/JOSA.45.000460. PubMed DOI

Poh A.H., Jamaludin M.F., Fadzallah I.A., Ibrahim N.M.J.N., Yusof F., Adikan F., Moghavvemi M. Diffuse reflectance spectroscopic analysis of barium sulfate as a reflection standard within 173–2500 nm: From pure to sintered form. J. Near Infrared Spectrosc. 2019;27:393–401. doi: 10.1177/0967033519868241. DOI

Buj-Corral I., Domínguez-Fernández A., Durán-Llucià R. Influence of Print Orientation on Surface Roughness in Fused Deposition Modeling (FDM) Processes. Materials. 2019;12:3834. doi: 10.3390/ma12233834. PubMed DOI PMC

Bintara R.D., Lubis D.Z., Pradana Y.R.A. The effect of layer height on the surface roughness in 3D Printed Polylactic Acid (PLA) using FDM 3D printing. IOP Conf. Ser. Mater. Sci. Eng. 2021;1034:012096. doi: 10.1088/1757-899X/1034/1/012096. DOI

Aliheidari N., Tripuraneni R., Hohimer C., Christ J., Ameli A., Nadimpalli S. The impact of nozzle and bed temperatures on the fracture resistance of FDM printed materials; Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; Portland, OR, USA. 26–28 March 2017; p. 1016512.

Jerez-Mesa R., Gomez-Gras G., Travieso-Rodriguez J., Garcia-Plana V. A comparative study of the thermal behavior of three different 3D printer liquefiers. Mechatronics. 2018;56:297–305. doi: 10.1016/j.mechatronics.2017.06.008. DOI

Buonamici F., Carfagni M., Furferi R., Governi L., Saccardi M., Volpe Y. Optimizing Fabrication Outcome in Low-Cost FDM Machines. Part 2—Tests. Manuf. Technol. 2018;18:552–558. doi: 10.21062/ujep/136.2018/a/1213-2489/MT/18/4/552. DOI

Ansari A.A., Kamil M. Effect of Print Speed and Extrusion Temperature on Properties of 3D Printed PLA Using Fused Deposition Modeling Process. Mater. Today Proc. 2021;45:5462–5468. doi: 10.1016/j.matpr.2021.02.137. DOI

Fatimatuzahraa A., Farahaina B., Yusoff W. The effect of employing different raster orientations on the mechanical properties and microstructure of Fused Deposition Modeling parts; Proceedings of the 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA); Langkawi, Malaysia. 25–28 September 2011; pp. 22–27. DOI

Rankouhi B., Javadpour S., Delfanian F., Letcher T. Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation. J. Fail. Anal. Prev. 2016;16:467–481. doi: 10.1007/s11668-016-0113-2. DOI

Hozdić E. Characterization and Comparative Analysis of Mechanical Parameters of FDM- and SLA-Printed ABS Materials. Appl. Sci. 2024;14:649. doi: 10.3390/app14020649. DOI

Naveed N. Investigating the Material Properties and Microstructural Changes of Fused Filament Fabricated PLA and Tough-PLA Parts. Polymers. 2021;13:1487. doi: 10.3390/polym13091487. PubMed DOI PMC

Kumar M.S., Farooq M.U., Ross N.S., Yang C.-H., Kavimani V., Adediran A.A. Achieving effective interlayer bonding of PLA parts during the material extrusion process with enhanced mechanical properties. Sci. Rep. 2023;13:1–21. doi: 10.1038/s41598-023-33510-7. PubMed DOI PMC

Chaidas D., Kechagias J.D. An investigation of PLA/W parts quality fabricated by FFF. Mater. Manuf. Process. 2021;37:582–590. doi: 10.1080/10426914.2021.1944193. DOI

Liu Z., Wang Y., Wu B., Cui C., Guo Y., Yan C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 2019;102:2877–2889. doi: 10.1007/s00170-019-03332-x. DOI

Rismalia M., Hidajat S.C., Permana I.G.R., Hadisujoto B., Muslimin M., Triawan F. Infill Pattern and Density Effects on the Tensile Properties of 3D Printed PLA Material. J. Phys. Conf. Ser. 2019;1402:044041. doi: 10.1088/1742-6596/1402/4/044041. DOI

Kovan V., Altan G., Topal E.S. Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints. J. Mech. Sci. Technol. 2017;31:2197–2201. doi: 10.1007/s12206-017-0415-7. DOI

Zaldivar R.J., Witkin D.B., Mclouth T., Patel D.N., Schmitt K., Nokes J.P. Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material. Addit. Manuf. 2017;13:71–80. doi: 10.1016/j.addma.2016.11.007. DOI

Spoerk M. Ph.D. Thesis. Montanuniversität Leoben; Leoben, Steiermark, Austria: Nov 28, 2018. Optimisation of the Mechanical Properties and Processing of Polypropylene and Poly(Lactic Acid) Parts Produced by Extrusion-Based Additive Manufacturing.

Elhattab K., Bhaduri S.B., Sikder P. Influence of Fused Deposition Modelling Nozzle Temperature on the Rheology and Mechanical Properties of 3D Printed β-Tricalcium Phosphate (TCP)/Polylactic Acid (PLA) Composite. Polymers. 2022;14:1222. doi: 10.3390/polym14061222. PubMed DOI PMC

Alsoufi M.S., Alhazmi M.W., Suker D.K., Alghamdi T.A., Sabbagh R.A., Felemban M.A., Bazuhair F.K. Experimental Characterization of the Influence of Nozzle Temperature in FDM 3D Printed Pure PLA and Advanced PLA+ Am. J. Mech. Eng. 2019;7:45–60. doi: 10.12691/ajme-7-2-1. DOI

Schiavone N., Verney V., Askanian H. Effect of 3D Printing Temperature Profile on Polymer Materials Behavior. 3D Print. Addit. Manuf. 2020;7:311–325. doi: 10.1089/3dp.2020.0175. PubMed DOI PMC

Mishra A.A., Momin A., Strano M., Rane K. Implementation of viscosity and density models for improved numerical analysis of melt flow dynamics in the nozzle during extrusion-based additive manufacturing. Prog. Addit. Manuf. 2021;7:41–54. doi: 10.1007/s40964-021-00208-z. DOI

Altan M., Eryildiz M., Gumus B., Kahraman Y. Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): Surface roughness and tensile strength. Mater. Test. 2018;60:471–477. doi: 10.3139/120.111178. DOI

Thumsorn S., Prasong W., Ishigami A., Kurose T., Kobayashi Y., Ito H. Influence of Ambient Temperature and Crystalline Structure on Fracture Toughness and Production of Thermoplastic by Enclosure FDM 3D Printer. J. Manuf. Mater. Process. 2023;7:44. doi: 10.3390/jmmp7010044. DOI

Bala A.S., bin Wahab S., Ahmad M.B. Elements and Materials Improve the FDM Products: A Review. Adv. Eng. Forum. 2016;16:33–51. doi: 10.4028/www.scientific.net/AEF.16.33. DOI

Yang L., Li S., Li Y., Yang M., Yuan Q. Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts. J. Mater. Eng. Perform. 2018;28:169–182. doi: 10.1007/s11665-018-3784-x. DOI

Lendvai L., Fekete I., Rigotti D., Pegoretti A. Experimental study on the effect of filament-extrusion rate on the structural, mechanical and thermal properties of material extrusion 3D-printed polylactic acid (PLA) products. Prog. Addit. Manuf. 2024:1–11. doi: 10.1007/s40964-024-00646-5. DOI

Ghorbani J., Koirala P., Shen Y.-L., Tehrani M. Eliminating voids and reducing mechanical anisotropy in fused filament fabrication parts by adjusting the filament extrusion rate. J. Manuf. Process. 2022;80:651–658. doi: 10.1016/j.jmapro.2022.06.026. DOI

Bail R. Extrusion Temperature and Flow Rate Effects on Tensile Properties of Additively Processed Poly(Ethylene-co-Trimethylene Terephthalate) Defect Diffus. Forum. 2018;382:104–108. doi: 10.4028/www.scientific.net/DDF.382.104. DOI

Vidakis N., David C., Petousis M., Sagris D., Mountakis N., Moutsopoulou A. The effect of six key process control parameters on the surface roughness, dimensional accuracy, and porosity in material extrusion 3D printing of polylactic acid: Prediction models and optimization supported by robust design analysis. Adv. Ind. Manuf. Eng. 2022;5:100104. doi: 10.1016/j.aime.2022.100104. DOI

Yamaguchi M., Lee S., Manaf M.E.A., Tsuji M., Yokohara T. Modification of orientation birefringence of cellulose ester by addition of poly(lactic acid) Eur. Polym. J. 2010;46:2269–2274. doi: 10.1016/j.eurpolymj.2010.10.014. DOI

Buber A. Science and values: Pythagorean Cup of Justice activity. Sci. Act. Classr. Proj. Curric. Ideas. 2024;61:44–55. doi: 10.1080/00368121.2024.2302990. DOI

Kasper L., Vogt P. Uncorking the Physics of Wine. Springer; Berlin/Heidelberg, Germany: 2024. Magic Tricks and Wonders: Acrobatic Mechanics; pp. 103–135. DOI

Oettinger N. Linguistic and Cultural Interactions between Greece and Anatolia. BRILL; Leiden, The Netherlands: 2021. pp. 116–130.

Vochozka V. 3D Tisk Ve Výuce Fyziky. SPN; Praha, Czech Republic: 2022. pp. 181–198.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...