Thermo- and pH-Responsible Gels for Efficient Protein Adsorption and Desorption
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RID/SP/0032/2024/01
Minister of Science and Higher Education Republic of Poland within the programme "Regional Excellence Initiative"
ASRT-22-01
Czech Academy of Sciences
LUAUS23004
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
39459226
PubMed Central
PMC11510233
DOI
10.3390/molecules29204858
PII: molecules29204858
Knihovny.cz E-zdroje
- Klíčová slova
- hydrogels, pH sensitivity, protein adsorption, protein release, temperature-sensitivity,
- MeSH
- adsorpce MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydrogely * chemie MeSH
- koncentrace vodíkových iontů MeSH
- monoklonální protilátky chemie MeSH
- muramidasa chemie MeSH
- ovalbumin chemie MeSH
- proteiny chemie MeSH
- sérový albumin hovězí * chemie MeSH
- teplota * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydrogely * MeSH
- monoklonální protilátky MeSH
- muramidasa MeSH
- ovalbumin MeSH
- proteiny MeSH
- sérový albumin hovězí * MeSH
Protein adsorption behavior was examined on poly(N-isopropylacrylamide-co-sodium methacrylate)-based hydrogels at different temperatures: 5, 20, and 37 °C, and pH: 4.5, 7, and 9.2. The hydrogels, whose covalent skeleton contains pendant anionic units due to the presence of the sodium methacrylate co-monomer, exhibited both thermo- and pH-sensitivity with different extents, which depended on the content of ionizable moieties and the cross-linker density. The hydrogel composition, temperature, and pH influenced the zeta potential of the hydrogels and their swelling properties. The proteins selected for the study, i.e., bovine serum albumin (BSA), ovalbumin (OVA), lysozyme (LYZ), and a monoclonal antibody (mAb2), differed in their aminoacidic composition and conformation, thus in isoelectric point, molecular weight, electrostatic charge, and hydrophobicity. Therefore, the response of their adsorption behavior to changes in the solution properties and the hydrogel composition was different. LYZ exhibited the strongest adsorption of all proteins with a maximum at pH 7 (189.5 mg ggel-1); adsorption of BSA and OVA reached maximum at pH 4.5 (24.4 and 23.5 mg ggel-1), whereas mAb2 was strongly adsorbed at 9.2 (21.7 mg ggel-1). This indicated the possibility of using the hydrogels for pH-mediated separation of proteins differing in charge under mild conditions in a water-rich environment of both the liquid solution and the adsorbed phase. The adsorption affinity of all proteins increased with temperature, which was attributed to the synergistic effects of attractive electrostatic and hydrophobic interactions. That effect was particularly marked for mAb2, for which the temperature change from 5 to 37 °C caused a twentyfold increase in adsorption. In all cases, the proteins could be released from the hydrogel surface by a reduction in temperature, an increase in pH, or a combination of both. This allows for the elimination of the use of salt solution as a desorbing agent, whose presence renders the recycling of buffering solutions difficult.
Zobrazit více v PubMed
Kumar A., Srivastava A., Galaev I.Y., Mattiasson B. Smart Polymers: Physical Forms and Bioengineering Applications. Prog. Polym. Sci. 2007;32:1205–1237. doi: 10.1016/j.progpolymsci.2007.05.003. DOI
Wu W., Shen J., Banerjee P., Zhou S. Core–Shell Hybrid Nanogels for Integration of Optical Temperature-Sensing, Targeted Tumor Cell Imaging, and Combined Chemo-Photothermal Treatment. Biomaterials. 2010;31:7555–7566. doi: 10.1016/j.biomaterials.2010.06.030. PubMed DOI
Ward M.A., Georgiou T.K. Thermoresponsive Polymers for Biomedical Applications. Polymers. 2011;3:1215–1242. doi: 10.3390/polym3031215. DOI
Inal S., Kölsch J.D., Sellrie F., Schenk J.A., Wischerhoff E., Laschewsky A., Neher D. A Water Soluble Fluorescent Polymer as a Dual Colour Sensor for Temperature and a Specific Protein. J. Mater. Chem. B. 2013;1:6373–6381. doi: 10.1039/c3tb21245a. PubMed DOI
Poplewska I., Muca R., Strachota A., Piątkowski W., Antos D. Adsorption Behavior of Proteins on Temperature-Responsive Resins. J. Chromatogr. A. 2014;1324:181–189. doi: 10.1016/j.chroma.2013.11.040. PubMed DOI
Wu Y., Li H., Rao Z., Li H., Wu Y., Zhao J., Rong J. Controlled Protein Adsorption and Delivery of Thermosensitive Poly(N-Isopropylacrylamide) Nanogels. J. Mater. Chem. B. 2017;5:7974–7984. doi: 10.1039/C7TB01824J. PubMed DOI
Jayaramudu T., Varaprasad K., Sadiku E.R., Amalraj J. Temperature-Sensitive Semi-IPN Composite Hydrogels for Antibacterial Applications. Colloids Surf. Physicochem. Eng. Asp. 2019;572:307–316. doi: 10.1016/j.colsurfa.2019.04.012. DOI
Di X., Kang Y., Li F., Yao R., Chen Q., Hang C., Xu Y., Wang Y., Sun P., Wu G. Poly (N-Isopropylacrylamide)/Polydopamine/Clay Nanocomposite Hydrogels with Stretchability, Conductivity, and Dual Light- and Thermo- Responsive Bending and Adhesive Properties. Colloids Surf. B Biointerfaces. 2019;177:149–159. doi: 10.1016/j.colsurfb.2019.01.058. PubMed DOI
Xu X., Liu Y., Fu W., Yao M., Ding Z., Xuan J., Li D., Wang S., Xia Y., Cao M. Poly (N-Isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers. 2020;12:580. doi: 10.3390/polym12030580. PubMed DOI PMC
Dong Y.C., Bouché M., Uman S., Burdick J.A., Cormode D.P. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater. Sci. Eng. 2021;7:4027–4047. doi: 10.1021/acsbiomaterials.0c01547. PubMed DOI PMC
Baert M., Wicht K., Hou Z., Szucs R., Prez F.D., Lynen F. Exploration of the Selectivity and Retention Behavior of Alternative Polyacrylamides in Temperature Responsive Liquid Chromatography. Anal. Chem. 2020;92:9815–9822. doi: 10.1021/acs.analchem.0c01321. PubMed DOI
Agnihotri P., Sangeeta, Aery S., Dan A. Temperature- and pH-Responsive Poly(N-Isopropylacrylamide-Co-Methacrylic Acid) Microgels as a Carrier for Controlled Protein Adsorption and Release. Soft Matter. 2021;17:9595–9606. doi: 10.1039/D1SM01197A. PubMed DOI
Liu H., Chen B., Zhu Q. Potential Application of Hydrogel to the Diagnosis and Treatment of Multiple Sclerosis. J. Biol. Eng. 2022;16:10. doi: 10.1186/s13036-022-00288-7. PubMed DOI PMC
Kotova S., Kostjuk S., Rochev Y., Efremov Y., Frolova A., Timashev P. Phase Transition and Potential Biomedical Applications of Thermoresponsive Compositions Based on Polysaccharides, Proteins and DNA: A Review. Int. J. Biol. Macromol. 2023;249:126054. doi: 10.1016/j.ijbiomac.2023.126054. PubMed DOI
Chan Q.H., Alias S.A., Quek S.W., Ng C.Y., Ku Marsilla K.I. A Review of the Preparations, Properties, and Applications of Smart Biodegradable Polymers. Polym. Plast. Technol. Mater. 2023;62:1273–1289. doi: 10.1080/25740881.2023.2204954. DOI
Xing Y., Qiu L., Liu D., Dai S., Sheu C.-L. The Role of Smart Polymeric Biomaterials in Bone Regeneration: A Review. Front. Bioeng. Biotechnol. 2023;11:1240861. doi: 10.3389/fbioe.2023.1240861. PubMed DOI PMC
Gan D., Lyon L.A. Synthesis and Protein Adsorption Resistance of PEG-Modified Poly (N-Isopropylacrylamide) Core/Shell Microgels. Macromolecules. 2002;35:9634–9639. doi: 10.1021/ma021186k. DOI
Nolan C.M., Reyes C.D., Debord J.D., García A.J., Lyon L.A. Phase Transition Behavior, Protein Adsorption, and Cell Adhesion Resistance of Poly (Ethylene Glycol) Cross-Linked Microgel Particles. Biomacromolecules. 2005;6:2032–2039. doi: 10.1021/bm0500087. PubMed DOI
Trongsatitkul T., Budhlall B.M. Temperature Dependence of Serum Protein Adsorption in PEGylated PNIPAm Microgels. Colloids Surf. B Biointerfaces. 2013;103:244–252. doi: 10.1016/j.colsurfb.2012.10.053. PubMed DOI
Johansson C., Hansson P., Malmsten M. Mechanism of Lysozyme Uptake in Poly (Acrylic Acid) Microgels. J. Phys. Chem. B. 2009;113:6183–6193. doi: 10.1021/jp900706k. PubMed DOI
Widenbring R., Frenning G., Malmsten M. Chain and Pore-Blocking Effects on Matrix Degradation in Protein-Loaded Microgels. Biomacromolecules. 2014;15:3671–3678. doi: 10.1021/bm5009525. PubMed DOI
Xu X., Angioletti-Uberti S., Lu Y., Dzubiella J., Ballauff M. Interaction of Proteins with Polyelectrolytes: Comparison of Theory to Experiment. Langmuir. 2019;35:5373–5391. doi: 10.1021/acs.langmuir.8b01802. PubMed DOI
Heskins M., Guillet J.E. Solution Properties of Poly (N-Isopropylacrylamide) J. Macromol. Sci. Chem. 1968;2:1441–1455. doi: 10.1080/10601326808051910. DOI
Wu C., Zhou S., Au-yeung S.C.F., Jiang S. Volume Phase Transition of Spherical Microgel Particles. Angew. Makromol. Chem. 1996;240:123–136. doi: 10.1002/apmc.1996.052400111. DOI
Zhu X., Gu X., Zhang L., Kong X.-Z. Preparation and Characterization of Nanosized P (NIPAM-MBA) Hydrogel Particles and Adsorption of Bovine Serum Albumin on Their Surface. Nanoscale Res. Lett. 2012;7:519. doi: 10.1186/1556-276X-7-519. PubMed DOI PMC
Bikram M., Gobin A.M., Whitmire R.E., West J.L. Temperature-Sensitive Hydrogels with SiO2–Au Nanoshells for Controlled Drug Delivery. J. Control. Release. 2007;123:219–227. doi: 10.1016/j.jconrel.2007.08.013. PubMed DOI
Teles H., Vermonden T., Eggink G., Hennink W.E., de Wolf F.A. Hydrogels of Collagen-Inspired Telechelic Triblock Copolymers for the Sustained Release of Proteins. J. Control. Release. 2010;147:298–303. doi: 10.1016/j.jconrel.2010.07.098. PubMed DOI
He P., Tang Z., Lin L., Deng M., Pang X., Zhuang X., Chen X. Novel Biodegradable and pH-Sensitive Poly(Ester Amide) Microspheres for Oral Insulin Delivery. Macromol. Biosci. 2012;12:547–556. doi: 10.1002/mabi.201100358. PubMed DOI
Su W., Yang M., Zhao K., Ngai T. Influence of Charged Groups on the Structure of Microgel and Volume Phase Transition by Dielectric Analysis. Macromolecules. 2016;49:7997–8008. doi: 10.1021/acs.macromol.6b00809. DOI
Tan B.H., Ravi P., Tam K.C. Synthesis and Characterization of Novel pH-Responsive Polyampholyte Microgels. Macromol. Rapid Commun. 2006;27:522–528. doi: 10.1002/marc.200500830. DOI
Kodlekere P., Cartelle A.L., Lyon L.A. Design of Functional Cationic Microgels as Conjugation Scaffolds. RSC Adv. 2016;6:31619–31631. doi: 10.1039/C6RA00809G. DOI
Echeverría C., Aragón-Gutiérrez A., Fernández-García M., Muñoz-Bonilla A., López D. Thermoresponsive Poly (N-Isopropylacrylamide-Co-Dimethylaminoethyl Methacrylate) Microgel Aqueous Dispersions with Potential Antimicrobial Properties. Polymers. 2019;11:606. doi: 10.3390/polym11040606. PubMed DOI PMC
Wei J., Li Y., Ngai T. Tailor-Made Microgel Particles: Synthesis and Characterization. Colloids Surf. Physicochem. Eng. Asp. 2016;489:122–127. doi: 10.1016/j.colsurfa.2015.10.042. DOI
Brugger B., Richtering W. Emulsions Stabilized by Stimuli-Sensitive Poly (N-Isopropylacrylamide)-Co-Methacrylic Acid Polymers: Microgels versus Low Molecular Weight Polymers. Langmuir. 2008;24:7769–7777. doi: 10.1021/la800522h. PubMed DOI
Nigro V., Angelini R., Bertoldo M., Buratti E., Franco S., Ruzicka B. Chemical-Physical Behaviour of Microgels Made of Interpenetrating Polymer Networks of PNIPAM and Poly (Acrylic Acid) Polymers. 2021;13:1353. doi: 10.3390/polym13091353. PubMed DOI PMC
Nigro V., Angelini R., Rosi B., Bertoldo M., Buratti E., Casciardi S., Sennato S., Ruzicka B. Study of Network Composition in Interpenetrating Polymer Networks of Poly (N Isopropylacrylamide) Microgels: The Role of Poly (Acrylic Acid) J. Colloid. Interface Sci. 2019;545:210–219. doi: 10.1016/j.jcis.2019.03.004. PubMed DOI
Thorne J., Snowden M. Microgel Applications and Commercial Considerations. Colloid. Polym. Sci. 2011;289:625–646. doi: 10.1007/s00396-010-2369-5. DOI
Kocak G., Tuncer C., Butun V. pH-Responsive Polymers. Polym. Chem. 2017;8:144–176. doi: 10.1039/C6PY01872F. DOI
Pérez-Chávez N.A., Albesa A.G., Longo G.S. Investigating the Impact of Network Functionalization on Protein Adsorption to Polymer Nanogels. J. Phys. Chem. B. 2024;128:371–380. doi: 10.1021/acs.jpcb.3c07283. PubMed DOI
Kawaguchi H., Fujimoto K., Mizuhara Y. Hydrogel Microspheres III. Temperature-Dependent Adsorption of Proteins on Poly-N-Isopropylacrylamide Hydrogel Microspheres. Colloid. Polym. Sci. 1992;270:53–57. doi: 10.1007/BF00656929. DOI
Such-Sanmartín G., Ventura-Espejo E., Jensen O.N. Depletion of Abundant Plasma Proteins by Poly (N-Isopropylacrylamide-Acrylic Acid) Hydrogel Particles. Anal. Chem. 2014;86:1543–1550. doi: 10.1021/ac403749j. PubMed DOI
Hagemann A., Giussi J.M., Longo G.S. Use of pH Gradients in Responsive Polymer Hydrogels for the Separation and Localization of Proteins from Binary Mixtures. Macromolecules. 2018;51:8205–8216. doi: 10.1021/acs.macromol.8b01876. DOI
Zheng A., Wu D., Fan M., Wang H., Liao Y., Wang Q., Yang Y. Injectable Zwitterionic Thermosensitive Hydrogels with Low-Protein Adsorption and Combined Effect of Photothermal-Chemotherapy. J. Mater. Chem. B. 2020;8:10637–10649. doi: 10.1039/D0TB01763A. PubMed DOI
Kleinen J., Klee A., Richtering W. Influence of Architecture on the Interaction of Negatively Charged Multisensitive Poly (N-Isopropylacrylamide)-Co-Methacrylic Acid Microgels with Oppositely Charged Polyelectrolyte: Absorption vs Adsorption. Langmuir. 2010;26:11258–11265. doi: 10.1021/la100579b. PubMed DOI
Kato K., Sano S., Ikada Y. Protein Adsorption onto Ionic Surfaces. Colloids Surf. B Biointerfaces. 1995;4:221–230. doi: 10.1016/0927-7765(94)01172-2. DOI
Garrett Q., Chatelier R.C., Griesser H.J., Milthorpe B.K. Effect of Charged Groups on the Adsorption and Penetration of Proteins onto and into Carboxymethylated Poly (HEMA) Hydrogels. Biomaterials. 1998;19:2175–2186. doi: 10.1016/S0142-9612(98)00125-2. PubMed DOI
Liu Y., Xing L., Zhang Q., Mu Q., Liu P., Chen K., Chen L., Zhang X., Wang K., Wei Y. Thermo- and Salt-Responsive Poly (NIPAm-Co-AAc-Brij-58) Microgels: Adjustable Size, Stability under Salt Stimulus, and Rapid Protein Adsorption/Desorption. Colloid. Polym. Sci. 2016;294:617–628. doi: 10.1007/s00396-015-3819-x. DOI
Huo D., Li Y., Qian Q., Kobayashi T. Temperature–pH Sensitivity of Bovine Serum Albumin Protein-Microgels Based on Cross-Linked Poly (N-Isopropylacrylamide-Co-Acrylic Acid) Colloids Surf. B Biointerfaces. 2006;50:36–42. doi: 10.1016/j.colsurfb.2006.03.020. PubMed DOI
Taniguchi T., Duracher D., Delair T., Elaïssari A., Pichot C. Adsorption/Desorption Behavior and Covalent Grafting of an Antibody onto Cationic Amino-Functionalized Poly (Styrene-N-Isopropylacrylamide) Core-Shell Latex Particles. Colloids Surf. B Biointerfaces. 2003;29:53–65. doi: 10.1016/S0927-7765(02)00176-5. DOI
Byrne M.E., Oral E., Zachary Hilt J., Peppas N.A. Networks for Recognition of Biomolecules: Molecular Imprinting and Micropatterning Poly (Ethylene Glycol)-Containing Films. Polym. Adv. Technol. 2002;13:798–816. doi: 10.1002/pat.272. DOI
Hu T., Gao J., Auweter H., Iden R., Lueddecke E., Wu C. Adsorption of Gelatins on Surfactant-Free PS Nanoparticles. Polymer. 2002;43:5545–5550. doi: 10.1016/S0032-3861(02)00353-1. DOI
Su Y., Gu L., Zhang Z., Chang C., Li J., McClements D.J., Yang Y. Encapsulation and Release of Egg White Protein in Alginate Microgels: Impact of pH and Thermal Treatment. Food Res. Int. 2019;120:305–311. doi: 10.1016/j.foodres.2019.02.048. PubMed DOI
Tae H., Lee S., Ki C.S. β-Glucan Hybridized Poly (Ethylene Glycol) Microgels for Macrophage-Targeted Protein Delivery. J. Ind. Eng. Chem. 2019;75:69–76. doi: 10.1016/j.jiec.2019.02.014. DOI
Byrne M.E., Park K., Peppas N.A. Molecular Imprinting within Hydrogels. Recent. Dev. Hydrogels. 2002;54:149–161. doi: 10.1016/S0169-409X(01)00246-0. PubMed DOI
Wu J.-Y., Liu S.-Q., Heng P.W.-S., Yang Y.-Y. Evaluating Proteins Release from, and Their Interactions with, Thermosensitive Poly (N-Isopropylacrylamide) Hydrogels. J. Control. Release. 2005;102:361–372. doi: 10.1016/j.jconrel.2004.10.008. PubMed DOI
Chacon D., Hsieh Y.-L., Kurth M.J., Krochta J.M. Swelling and Protein Absorption/Desorption of Thermo-Sensitive Lactitol-Based Polyether Polyol Hydrogels. Polymer. 2000;41:8257–8262. doi: 10.1016/S0032-3861(00)00208-1. DOI
Malmsten M., Bysell H., Hansson P. Biomacromolecules in Microgels—Opportunities and Challenges for Drug Delivery. Curr. Opin. Colloid. Interface Sci. 2010;15:435–444. doi: 10.1016/j.cocis.2010.05.016. DOI
Strachota B., Oleksyuk K., Strachota A., Šlouf M. Porous Hybrid Poly (N-Isopropylacrylamide) Hydrogels with Very Fast Volume Response to Temperature and pH. Eur. Polym. J. 2019;120:109213. doi: 10.1016/j.eurpolymj.2019.109213. DOI
Elyashevich G.K., Bel’nikevich N.G., Vesnebolotskaya S.A. Swelling-Contraction of Sodium Polyacrylate Hydrogels in Media with Various pH Values. Polym. Sci. Ser. A. 2009;51:550–553. doi: 10.1134/S0965545X09050095. DOI
Boddu V.M., Naismith N.K., Patel H.R. Environmentally Responsive Poly (N-Isopropylacrylamide)-Co-Poly (Acrylic Acid) Hydrogels for Separation of Toxic Metals and Organic Explosive Compounds from Water. J. Polym. Environ. 2019;27:571–580. doi: 10.1007/s10924-018-1352-y. DOI
Synytska A., Svetushkina E., Puretskiy N., Stoychev G., Berger S., Ionov L., Bellmann C., Eichhorn K.-J., Stamm M. Biocompatible Polymeric Materials with Switchable Adhesion Properties. Soft Matter. 2010;6:5907–5914. doi: 10.1039/c0sm00414f. DOI
Sidoli U., Tee H.T., Raguzin I., Mühldorfer J., Wurm F.R., Synytska A. Thermo-Responsive Polymer Brushes with Side Graft Chains: Relationship Between Molecular Architecture and Underwater Adherence. Int. J. Mol. Sci. 2019;20:6295. doi: 10.3390/ijms20246295. PubMed DOI PMC
Al Mahrouqi D., Vinogradov J., Jackson M.D. Temperature Dependence of the Zeta Potential in Intact Natural Carbonates. Geophys. Res. Lett. 2016;43:11–578. doi: 10.1002/2016GL071151. DOI
Strachotová B., Strachota A., Uchman M., Šlouf M., Brus J., Pleštil J., Matějka L. Super Porous Organic–Inorganic Poly (N-Isopropylacrylamide)-Based Hydrogel with a Very Fast Temperature Response. Polymer. 2007;48:1471–1482. doi: 10.1016/j.polymer.2007.01.042. DOI
Feng X.D., Guo X.Q., Qiu K.Y. Study of the Initiation Mechanism of the Vinyl Polymerization with the System Persulfate/N,N,N′,N′-Tetramethylethylenediamine. Makromol. Chem. 1988;189:77–83. doi: 10.1002/macp.1988.021890108. DOI
Strachota B., Strachota A., Horodecka S., Šlouf M., Dybal J. Monolithic Nanocomposite Hydrogels with Fast Dual T- and pH- Stimuli Responsiveness Combined with High Mechanical Properties. J. Mater. Res. Technol. 2021;15:6079–6097. doi: 10.1016/j.jmrt.2021.11.018. DOI