Surface-functionalized PAN fiber membranes for the sensitive detection of airborne specific markers
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39465161
PubMed Central
PMC11512550
DOI
10.7717/peerj.18077
PII: 18077
Knihovny.cz E-zdroje
- Klíčová slova
- Air detection, Airborne pathogen detection, Antibody-based nanobiosensor, Functionalized PAN nanofibers, Nanofiber biosensors,
- MeSH
- Bacteria izolace a purifikace MeSH
- biologické markery analýza MeSH
- biosenzitivní techniky metody MeSH
- membrány umělé * MeSH
- mikrobiologie vzduchu * MeSH
- monitorování životního prostředí metody přístrojové vybavení MeSH
- povrchové vlastnosti MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- membrány umělé * MeSH
PAN fibers are characterized by having a large surface-to-volume ratio and small pores, which are beneficial for applications in filtration and specific molecular detection systems. Naturally, larger items are filtered, and a lower ratio between specific and nonspecific binding is expected since small pores do not allow larger elements to penetrate through membranes; thus, nonspecific binding is enhanced. We prepared and tested fiber membranes (diameter cca 700 nm) functionalized with a specific antibody to prove that even microscopic systems such as bacteria could be specifically identified. In addition, we established a methodology that enabled the effective binding of bacteria in not only an aqueous environment but also air. Our data clearly prove that even large systems such as bacteria could be specifically identified by fiber membranes surface-functionalized with a specific antibody. This research opens the door to the construction of biosensors for the fast, inexpensive, and sensitive identification of airborne bacterial contaminants and other airborne pollutants.
Zobrazit více v PubMed
Al-Taie A, Han X, Williams CM, Abdulwhhab M, Abbott AP, Goddard A, Wegrzyn M, Garton NJ, Barer MR, Pan J. 3-D printed polyvinyl alcohol matrix for detection of airborne pathogens in respiratory bacterial infections. Microbiological Research. 2020;241:126587. doi: 10.1016/j.micres.2020.126587. PubMed DOI
Armstrong B. Antigen-antibody reactions. Special Issue: Introduction to the Blood Transfusion Technology. 2008;3(2):21–32. doi: 10.1111/j.1751-2824.2008.00185.x. DOI
Atik G, Kilic NM, Horzum N, Odaci D, Timur S. Antibody-conjugated electrospun nanofibers for electrochemical detection of methamphetamine. ACS Applied Materials & Interfaces. 2023;15(20):24109–24119. doi: 10.1021/acsami.3c0226. PubMed DOI PMC
Awad R, Mamaghani AH, Boluk Y, Hashisho Z. Synthesis and characterization of electrospun PAN-based activated carbon nanofibers reinforced with cellulose nanocrystals for adsorption of VOCs. Chemical Engineering Journal. 2021;410(7):128412. doi: 10.1016/j.cej.2021.128412. DOI
Bayrak E. Nanofibers: production, characterization, and tissue engineering applications. 21st century nanostructured materials; London. 2022. DOI
Bhardwaj SK, Bhardwaj N, Kumar V, Bhatt D, Azzouz A, Bhaumik J, Kim K-H, Deep A. Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. Environment International. 2021;146:106183. doi: 10.1016/j.envint.2020.106183. PubMed DOI
Borrebaeck CAK. Antibodies in diagnostics—from immunoassays to protein chips. Immunology Today. 2000;21(8):379–382. doi: 10.1016/s0167-5699(00)01683-2. PubMed DOI
Brown PJ, Stevens K, editors. Nanofibers and nanotechnology in textiles. Woodhead Publishing; Cambridge: 2007.
Byrne B, Stack E, Gilmartin N, O’Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors. 2009;9(6):4407–4445. doi: 10.3390/s90604407. PubMed DOI PMC
Canalli Bortolassi AC, Guerra VG, Aguiar ML, Soussan L, Cornu D, Miele P, Bechelany M. Composites based on nanoparticle and pan electrospun nanofiber membranes for air filtration and bacterial removal. Nanomaterials. 2019;9(12):1740. doi: 10.3390/nano9121740. PubMed DOI PMC
Deng Y, Lu T, Cui J, Samal SK, Xiong R, Huang C. Bio-based electrospun nanofiber as building block for a novel eco-friendly air filtration membrane: a review. Separation and Purification Technology. 2021;277:119623. doi: 10.1016/j.seppur.2021.119623. DOI
Elbing KL, Brent R. Recipes and tools for culture of Escherichia coli. Current Protocols in Molecular Biology. 2018;125(1):e83. doi: 10.1002/cpmb.83. PubMed DOI PMC
Eltzov E, Pavluchov V, Burstin M, Marks RS. Creation of fiber optic based biosensor for air toxicity monitoring. Sensors and Actuators B: Chemical. 2011;155(2):859–867. doi: 10.1016/j.snb.2011.01.062. DOI
Ghasemi R, Mirahmadi-zare SZ, Allafchian A, Behmanesh M. Fast fluorescent screening assay and dual electrochemical sensing of bacterial infection agent (Streptococcus agalactiae) based on a fluorescent-immune nanofibers. Sensors and Actuators: B. Chemical. 2022;325:130968. doi: 10.1016/j.snb.2021.130968. DOI
Halicka K, Cabaj J. Electrospun nanofibers for sensing and biosensing applications—a review. International Journal of Molecular Sciences. 2021;22(12):6357. doi: 10.3390/ijms22126357. PubMed DOI PMC
Holford TJR, Davis F, Higson SPJ. Recent trends in antibody based sensors. Biosensors and Bioelectronics. 2012;34:12–24. doi: 10.1016/j.bios.2011.10.023. PubMed DOI
Hu M, Li C, Li X, Zhou M, Sun J, Sheng F, Shi S, Lu L. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology. 2017;46(6):1248–1257. doi: 10.1080/21691401.2017.1366339. PubMed DOI
Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. Immunobiology: the immune system in health and disease. 5th edition Garland Science; New York: 2001. The interaction of the antibody molecule with specific antigen.
Khodayari P, Jalilian N, Ebrahimzadeh H, Amini S. Trace-level monitoring of anti-cancer drug residues in wastewater and biological samples by thin-film solid-phase micro-extraction using electrospun polyfam/Co-MOF-74 composite nanofibers prior to liquid chromatography analysis. Journal of Chromatography A. 2021;1655:462484. doi: 10.1016/j.chroma.2021.462484. PubMed DOI
Kim HJ, Park SJ, Park CS, Le T-H, Lee SH, Ha TH, Kim H-I, Kim J, Lee CS, Yoon H, Kwon OS. Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. Chemical Engineering Journal. 2018;339:204–213. doi: 10.1016/j.cej.2018.01.121. DOI
Lin T, editor. Nanofibers: production, properties and functional applications. InTech; Croatia: 2011.
Liu Q, Zhang X, Yao Y, Jing W, Liu S, Sui G. A novel microfluidic module for rapid detection of airborne waterborne pathogens. Sensors and Actuators B: Chemical. 2018;258:1138–1145. doi: 10.1016/j.snb.2017.11.113. DOI
Mao K, Zhang H, Pan Y, Yang Z. Biosensors for wastewater-based epidemiology for monitoring public health. Water Research. 2021;191:116787. doi: 10.1016/j.watres.2020.116787. PubMed DOI
Mao K, Zhang K, Du W, Ali W, Feng X, Zhang H. The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science and Health. 2020;17:1–7. doi: 10.1016/j.coesh.2020.04.006. PubMed DOI PMC
Markosian CH, Mirzoyan N. Wastewater-based epidemiology as a novel assessment approach for population-level metal exposure. Science of the Total Environment. 2019;689:1125–1132. doi: 10.1016/j.scitotenv.2019.06.419. PubMed DOI
Matulevicius J, Kliucininkas L, Prasauskas T, Buivydiene D, Martuzevicius D. The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. Journal of Aerosol Science. 2016;92:27–37. doi: 10.1016/j.jaerosci.2015.10.006. DOI
Ménard-Moyon C, Bianco A, Kalantar-Zadeh K. Two-dimensional material-based biosensors for virus detection. ACS Sensors. 2020;5(12):3739–3769. doi: 10.1021/acssensors.0c01961. PubMed DOI
Mercante LA, Pavinatto A, Pereira TS, Migliorini TFL, Dos Santos DM, Correa DS. Nanofibers interfaces for biosensing: design and applications. Sensors and Actuators Reports. 2021;3:100048. doi: 10.1016/j.snr.2021.100048. DOI
Noor R, Islam Z, Munshi SK, Rahman F. Influence of temperature on Escherichia coli growth in different culture media. Journal of Pure and Applied Microbiology. 2013;7(2):899–904.
Petrovszki D, Valkai S, Gora E, Tanner M, Bányai A, Fürjes P, Dér A. An integrated electro-optical biosensor system for rapid, low-cost detection of bacteria. Microelectronic Engineering. 2021;239-240:111523. doi: 10.1016/j.mee.2021.111523. DOI
Prieto-Simón B, Bandaru NM, Saint C, Voelcker NH. Tailored carbon nanotube immunosensors for the detection of microbial contamination. Biosensors and Bioelectronics. 2015;67:642–648. doi: 10.1016/j.bios.2014.09.089. PubMed DOI
Rajamanickam S, Yoon Lee N. Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Analytica Chimica Acta. 2022;1234:340297. doi: 10.1016/j.aca.2022.340297. PubMed DOI PMC
Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z. An introduction to electrospinning and nanofibers. World Scientific; New Jersey: 2005.
Ranjbar S, Shahrokhian S. Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry. 2018;2018(123):70–76. doi: 10.1016/j.bioelechem.2018.04.018. PubMed DOI
Reverberi R, Reverberi L. Factors affecting the antigen-antibody reaction. Blood Transfusion. 2007;5(4):227–240. PubMed PMC
Sarabaegi M, Roushani M, Hosseini H. Hollow carbon nanocapsules-based nitrogen-doped carbon nanofibers with rosary-like structure as a high surface substrate for impedimetric detection of Pseudomonas aeruginosa. Talanta. 2021;223:121700. doi: 10.1016/j.talanta.2020.121700. PubMed DOI
Scheller F, Wollenberger U, Warsinke A, Lisdat F. Research and development in biosensors. Current Opinion in Biotechnology. 2001;21(1):35–40. doi: 10.1016/S0958-1669(00)00169-5. PubMed DOI
Senthil R, Sumathi V, Tamilselvi A, Kavukcu SB, Aruni AW. Functionalized electrospun nanofibers for high efficiency removal of particulate matter. Scientific Reports. 2022;12:8411. doi: 10.1038/s41598-022-12505-w. PubMed DOI PMC
Shuvo SN, Gomez AMU, Mishra A, Chen WY, Dongare AM, Stanciu LA. Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sensors. 2020;5(9):2915–2924. doi: 10.1021/acssensors.0c01287. PubMed DOI
Slocik JM, Dennis PB, Kuang Z, Pelton A, Naik RR. Creation of stable water-free antibody based protein liquids. Communication Materials. 2021;2:118. doi: 10.1038/s43246-021-00222-2. DOI
Su S, Wu W, Gao J, Lu J, Fan C. Nanomaterials-based sensors for application in environmental monitoring. Journal of Materials Chemistry. 2012;35:18101–18110. doi: 10.1039/C2JM33284A. DOI
Thakur A, Kumar A. Recent advances of rapid detection and remediation of environmental pollutants utilizing nanomaterial-based (bio)sensor. Science of the Total Environment. 2022;834:155219. doi: 10.1016/j.scitotenv.2022.155219. PubMed DOI
Triadó-Margarit X, Cáliz J, Casamayor EO. A long-term atmosferic baseline for intercontinental exchange of airborne pathogens. Environment International. 2022;158:106916. doi: 10.1016/j.envint.2021.106916. PubMed DOI
Van Alst AJ, LeVeque RM, Martin N, Di Rita VJ. Growth curves: generating growth curves using colony forming units and optical density measurements. JoVE. 2023 Epub ahead of print Apr 30 2023.
Van Oss CJ, Good RJ, Chaudhury MK. Nature of the antigen-antibody interaction. Primary and secondary bonds: optimal conditions for association and dissociation. Journal of Chromatography. 1986;376:111–119. doi: 10.1016/S0378-4347(00)80828-2. PubMed DOI
Ventura BD, Cennamo M, Minopoli A, Campanile R, Censi SB, Terracciano D, Portella G, Velotta R. Colorimetric test for fast detection of SARS-CoV-2 in nasal and throat swabs. ACS Sensors. 2020;5(10):3043–3048. doi: 10.1021/acssensors.0c01742. PubMed DOI PMC
Wang J, Yiu B, Obermeyer J, Filipe CDM, Brenan JD, Pelton R. Effects of temperature and relative humidity on the stability of paper-immobilized antibodies. Biomacromolecules. 2012;13:559–564. doi: 10.1021/bm2017405. PubMed DOI
Willner MR, Vikesland PJ. Nanomaterial enabled sensors for environmental contaminants. Journal of Nanobiotechnology. 2018;16:95. doi: 10.1186/s12951-018-0419-1. PubMed DOI PMC
Yang Y, Zhang Z, Wan M, Wang Z, Zhao Y, Sun L. Highly sensitive surface-enhanced raman spectroscopy substrates of Ag@PAN electrospinning nanofibrous membranes for direct detection of bacteria. ACS Omega. 2020;5(31):19834–19843. doi: 10.1021/acsomega.0c02735. PubMed DOI PMC
Yardimci AI, Yagmurcukardes N, Yagmurcukardes M, Capan I, Erdogan M, Capan R, Tarhan O, Acikbas Y. Electrospun polyacrylonitrile (PAN) nanofiber: preparation, experimental characterization, organic vapor sensing ability and theoretical simulations of binding energies. Applied Physics A. 2022;128:173. doi: 10.1007/s00339-022-05314-5. DOI
Yasri S, Wiwanitkit V. Sustainable materials and COVID-19 detection biosensor: a brief review. Sensors International. 2022;3:100171. doi: 10.1016/j.sintl.2022.100171. PubMed DOI PMC
Zendehel R, Goli F, Hajibabaei M. Comparing the microbial inhibition of nanofibres with multi-metal ion exchanged nano-zeolite Y in air sampling. Journal of Applied Microbiology. 2019;128(1):202–208. doi: 10.1111/jam.14455. PubMed DOI