The Development of a Specific Nanofiber Bioreceptor for Detection of Escherichia coli and Staphylococcus aureus from Air
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS22/199/OHK4/3T/17
Student Grant Competition of CTU
PubMed
38785708
PubMed Central
PMC11117719
DOI
10.3390/bios14050234
PII: bios14050234
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial detection, immuno-nanosensor, nanofiber biosensor, nanofibers,
- MeSH
- akrylové pryskyřice MeSH
- biosenzitivní techniky * MeSH
- Escherichia coli * izolace a purifikace MeSH
- mikrobiologie vzduchu MeSH
- monitorování životního prostředí metody MeSH
- nanovlákna * MeSH
- Staphylococcus aureus * izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akrylové pryskyřice MeSH
- polyacrylonitrile MeSH Prohlížeč
Polluted air and the presence of numerous airborne pathogens affect our daily lives. The sensitive and fast detection of pollutants and pathogens is crucial for environmental monitoring and effective medical diagnostics. Compared to conventional detection methods (PCR, ELISA, metabolic tests, etc.), biosensors bring a very attractive possibility to detect chemicals and organic particles with the mentioned reliability and sensitivity in real time. Moreover, by integrating nanomaterials into the biosensor structure, it is possible to increase the sensitivity and specificity of the device significantly. However, air quality monitoring could be more problematic even with such devices. The greatest challenge with conservative and sensing methods for detecting organic matter such as bacteria is the need to use liquid samples, which slows down the detection procedure and makes it more difficult. In this work, we present the development of a polyacrylonitrile nanofiber bioreceptor functionalized with antibodies against bacterial antigens for the specific interception of bacterial cells directly from the air. We tested the presented novel nanofiber bioreceptor using a unique air filtration system we had previously created. The prepared antibody-functionalized nanofiber membranes for air filtration and pathogen detection (with model organisms E. coli and S. aureus) show a statistically significant increase in bacterial interception compared to unmodified nanofibers. Creating such a bioreceptor could lead to the development of an inexpensive, fast, sensitive, and incredibly selective bionanosensor for detecting bacterial polluted air in commercial premises or medical facilities.
Zobrazit více v PubMed
Bhatia D., Paul S., Acharjee T., Ramachairy S.S. Biosensors and their widespread impact on human health. Sens. Int. 2024;5:100257. doi: 10.1016/j.sintl.2023.100257. DOI
Kim E.R., Joe C., Mitchell R.J., Gu M.B. Biosensors for healthcare: Current and future perspectives. Trends Biotechnol. 2023;41:374–395. doi: 10.1016/j.tibtech.2022.12.005. PubMed DOI
Murzin D., Mapps D.J., Levada K., Belyaev V., Omelyanchik A., Panina L., Rodionova V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. Sensors. 2020;20:1569. doi: 10.3390/s20061569. PubMed DOI PMC
Fiedorova K., Augustynek M., Kubicek J., Kudrna P., Bibbo D. Review of present method of glucose from human blood and body fluids assessment. Biosens. Bioelectron. 2022;211:114348. doi: 10.1016/j.bios.2022.114348. PubMed DOI
Yoon J.-Y. Introduction to Biosensors: From Electric Circuits to Immunosensors. 2nd ed. Springer; New York, NY, USA: 2016.
Yanagihara K., Kitagawa Y., Tomonaga M., Tsukasaki K., Kohno S., Seki M., Sugimoto H., Shimazu T., Tasaki O., Matsushima A., et al. Evaluation of pathogen detection from clinical samples by real-time polymerase chain reaction using a sepsis pathogen DNA detection kit. Crit. Care. 2010;14:159. doi: 10.1186/cc9234. PubMed DOI PMC
Wolk D., Mitchell S., Patel R. Principles Of Molecular Microbiology Testing Methods. Infect. Dis. Clin. N. Am. 2001;15:1157–1204. doi: 10.1016/S0891-5520(05)70190-2. PubMed DOI
Váradi L., Luo J.L., Hibbs D.E., Perry J.D., Anderson R.J., Orenga S., Groundwater P.W. Methods for the detection and identification of pathogenic bacteria: Past, present, and future. R. Soc. Chem. 2017;46:4818–4832. doi: 10.1039/C6CS00693K. PubMed DOI
Alahi M.E., Mukhopadhyay S.C. Detection Methodologies for Pathogen and Toxins: A Review. Sensors. 2017;17:1885. doi: 10.3390/s17081885. PubMed DOI PMC
Myatt C.J., Delaney M., Todorof K., Heil J. Low-Cost, Multiplexed Biosensor for Disease Diagnosis; Proceedings of the SPIE Proceedings, Frontiers in Pathogen Detection: From Nanosensors to Systems; San Jose, CA, USA. 24–29 January 2009; p. 716703. DOI
Malhotra S., Pham D.S., Lau M.P.H., Nguyen A.H., Cao H. A Low-Cost, 3D-Printed Biosensor for Rapid Detection of Escherichia coli. Sensors. 2022;22:2382. doi: 10.3390/s22062382. PubMed DOI PMC
Fernando L.M. Nanobiosensors for Detection of Pathogens; Proceedings of the 16th Engineering Research and Development for Technology Conference; Pasay, Philippines. 25 October 2019.
Song M., Yang M., Hao J. Pathogenic Virus Detection by Optical Nanobiosensors. Cell Rep. Phys. Sci. 2021;2:100288. doi: 10.1016/j.xcrp.2020.100288. PubMed DOI PMC
Yang L., Li Y., Fang F., Li L., Yan Z., Zhang L., Sun Q. Highly Sensitive and Miniature Microfiber-Based Ultrasound Sensor for Photoacoustic Tomography. Opto-Electron. Adv. 2022;5:200076. doi: 10.29026/oea.2022.200076. DOI
Yu W., Yao N., Pan J., Fang W., Li X., Tong L., Zhang L. Highly Sensitive and Fast Response Strain Sensor Based on Evanescently Coupled Micro/Nanofibers. Opto-Electron. Adv. 2022;5:210101. doi: 10.29026/oea.2022.210101. DOI
Eivazzadeh-Keihan R., Noruzi E.B., Chidar E., Jafari M., Davoodi F., Kashtiaray A., Gorab M.G., Hashemi S.M., Javanshir S., Cohan R.A., et al. Applications of Carbon-Based Conductive Nanomaterials in Biosensors. Chem. Eng. J. 2022;442:136183. doi: 10.1016/j.cej.2022.136183. DOI
Štukovnik Z., Fuchs-Godec R., Bren U. Nanomaterials and Their Recent Applications in Impedimetric Biosensing. Biosensors. 2023;13:899. doi: 10.3390/bios13100899. PubMed DOI PMC
Dong T., Pires N.M.M., Yang Z., Jiang Z. Advances in Electrochemical Biosensor Based on Nanomaterials for Protein Biomarker Detection in Saliva. Adv. Sci. 2023;10:2205429. doi: 10.1002/advs.202205429. PubMed DOI PMC
Bayrak E. 21st Century Nanostructured Materials—Physics, Chemistry, Classification, and Emerging Application in Industry, Biomedicine, and Agriculture. IntechOpen; London, UK: 2022. Nanofibers: Production, Characterization, and Tissue Engineering Applications. DOI
Xue J., Xie J., Liu W., Xia Y. Electrospun nanofibers: New concepts, materials, and applications. Acc. Chem. Res. 2017;50:1976–1987. doi: 10.1021/acs.accounts.7b00218. PubMed DOI PMC
Al-Abduljabbar A., Farooq I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers. 2023;15:65. doi: 10.3390/polym15010065. PubMed DOI PMC
Chakrapani G., Ramakrishna S., Zare M. Functionalization of electrospun nanofiber for biomedical application. J. Appl. Polym. Sci. 2023;140:e53906. doi: 10.1002/app.53906. DOI
Pashchenko A., Stuchlíková S., Varvařovská L., Firment P., Staňková L., Nečasová A., Filipejová Z., Urbanová L., Jarošíková T., Nečas A., et al. Smart Nanofibres For Specific And Ultrasensitive Nanobiosensors And Drug Delivery System. Acta Vet. Brno. 2022;91:163–170. doi: 10.2754/avb202291020163. DOI
Kulkarni D., Musale S., Panzade P., Paiva-Santos A.C., Sonwane P., Madibone M., Choundhe P., Giram P., Cavalu S. Surface Functionalization of Nanofibers: The Multifaceted Approach for Advanced Biomedical Applications. Nanomaterials. 2022;12:3899. doi: 10.3390/nano12213899. PubMed DOI PMC
Gokce Z.G., Akalin P., Kok F.N., Sarac A.S. Impedimetric DNA Biosensor Based On Polyurethane/Poly(M-Anthranilic Acid) Nanofibers. Sens. Actuators B Chem. 2018;254:719–726. doi: 10.1016/j.snb.2017.07.136. DOI
Sarabaegi M., Roushani M., Hosseini H. Hollow Carbon Nanocapsules-Based Nitrogen-Doped Carbon Nanofibers With Rosary-Like Structure As A High Surface Substrate For Impedimetric Detection Of Pseudomonas Aeruginosa. Talanta. 2021;223:121700. doi: 10.1016/j.talanta.2020.121700. PubMed DOI
Sarabaegi M., Roushani M., Hosseini H., Saedi Z., Lemraski E.G. A Novel Ultrasensitive Biosensor Based On Nico-Mof Nanostructure And Confined To Flexible Carbon Nanofibers With High-Surface Skeleton To Rapidly Detect Helicobacter Pylori. Mater. Sci. Semicond. Process. 2021;139:106351. doi: 10.1016/j.mssp.2021.106351. DOI
Ghasemi R., Mirahmadi-Zare S.Z., Allafchian A., Behmanesh M. Fast fluorescent screening assay and dual electrochemical sensing of bacterial infection agent (streptococcus agalactiae) based on fluorescent-immune nanofibers. Sens. Actuators B. Chem. 2022;352:130968. doi: 10.1016/j.snb.2021.130968. DOI
Rajamanickam S., Yoon Lee N. Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Anal. Chim. Acta. 2022;1234:340297. doi: 10.1016/j.aca.2022.340297. PubMed DOI PMC
Al-Taie A., Han X., Williams C.M., Abdulwhhab M., Abbott A.P., Goddard A., Wegrzyn M., Garton N.J., Barer M.R., Pan J. 3-D printed polyvinyl alcohol matrix for detection of airborne pathogens in respiratory bacterial infections. Microbiol. Res. 2020;241:126587. doi: 10.1016/j.micres.2020.126587. PubMed DOI
Bhardwaj S.K., Bhardwaj N., Kumar V., Bhatt D., Azzouz A., Bhaumik J., Kim K.-H., Deep A. Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. Environ. Int. 2021;146:106183. doi: 10.1016/j.envint.2020.106183. PubMed DOI
Triadó-Margarit X., Cáliz J., Casamayor E.O. A long-term atmospheric baseline for intercontinental exchange of airborne pathogens. Environ. Int. 2022;158:106916. doi: 10.1016/j.envint.2021.106916. PubMed DOI
Varvařovská L., Kudrna P., Jarošíková T. Advances in Digital Health and Medical Bioengineering, Proceedings of the 11th International Conference on E-Health and Bioengineering (EHB-2023), Bucharest, Romania, 9–10 November 2023. Springer Nature Publishing AG; Cham, Switzerland: 2024. The development of a specific nanofiber bioreceptor for bacterial detection.
Ramakrishna S. An Introduction to Electrospinning and Nanofibers. World Scientific; Hackensack, NJ, USA: 2005. DOI
Lim C.T. Nanofiber Technology: Current Status and Emerging Developments. Prog. Polym. Sci. 2017;70:1–17. doi: 10.1016/j.progpolymsci.2017.03.002. DOI
Mercante L.A., Pavinatto A., Pereira T.S., Migliorini F.L., dos Santos D.M., Correa D.S. Nanofibers interfaces for biosensing: Design and applications. Sens. Actuators Rep. 2021;3:100048. doi: 10.1016/j.snr.2021.100048. DOI
Lasenko I., Grauda D., Butkauskas D., Sanchaniya J.V., Viluma-Gudmona A., Lusis V. Testing the physical and mechanical properties of polyacrylonitrile nanofibers reinforced with succinite and silicon dioxide nanoparticles. Textiles. 2022;2:162–173. doi: 10.3390/textiles2010009. DOI
Sanchaniya J.V., Kanukuntla K. Morphology and mechanical properties of PAN nanofiber Mat. J. Phys. Conf. Ser. 2022;2423:012018. doi: 10.1088/1742-6596/2423/1/012018. DOI
Senthil R., Sumathi V., Tamilselvi A., Kavukcu S.B., Aruni A.W. Functionalized electrospun nanofibers for high efficiency removal of particulate matter. Sci. Rep. 2022;12:8411. doi: 10.1038/s41598-022-12505-w. PubMed DOI PMC
Haris P.I. Encyclopedia of Biophysics. Springer; Berlin/Heidelberg, Germany: 2013. Infrared Spectroscopy of Protein Structure.
Tatulian S.A. FTIR Analysis of Proteins and Protein-Membrane Interactions. Methods Mol. Biol. 2019;2003:281–325. doi: 10.1007/978-1-4939-9512-7_13. PubMed DOI
Varvařovská L., Sopko B., Gášková D., Bartl T., Amler E., Jarošíková T. Surface-Functionalized PAN Nanofiber Membranes for the Sensitive Detection of Airborne Specific Markers. PeerJ. 2024 accepted . PubMed PMC
Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–458. doi: 10.1038/bmt.2012.244. PubMed DOI PMC
Varvařovská L., Sopko B., Divín R., Pashschenko A., Fedačko J., Sabo J., Nečas A., Amler E., Jarošíková T. Bacteria trapping effectivity on nanofibre membrane in liquids is exponentially dependent on the surface density. Acta Vet. Brno. 2023;92:435–441. doi: 10.2754/avb202392040435. DOI
Wang J., Yiu B., Obermeyer J., Filipe C.D.M., Brennan J.D., Pelton R. Effects of Temperature and Relative Humidity on the Stability of Paper-Immobilized Antibodies. Biomacromolecules. 2012;13:559–564. doi: 10.1021/bm2017405. PubMed DOI
Slocik J.M., Dennis P.B., Kuang Z., Pelton A., Naik R.R. Creation of stable water-free antibody based protein liquids. Commun. Mater. 2021;2:118. doi: 10.1038/s43246-021-00222-2. DOI
Zhou Y., Liu Y., Zhang M., Feng Z., Yu D.-G., Wang K. Electrospun Nanofiber Membranes for Air Filtration: A Review. Nanomaterials. 2022;12:1077. doi: 10.3390/nano12071077. PubMed DOI PMC
Ventura B.D., Cennamo M., Minopoli A., Campanile R., Censi S.B., Terracciano D., Portella G., Velotta R. Colorimetric test for fast detection of SARS-CoV-2 in nasal and throat swabs. ACS Sens. 2020;5:3043–3048. doi: 10.1021/acssensors.0c01742. PubMed DOI PMC
Ménard-Moyon C., Bianco A., Kalantar-Zadeh K. Two-dimensional material-based biosensors for virus detection. ACS Sens. 2020;5:3739–3769. doi: 10.1021/acssensors.0c01961. PubMed DOI
Prieto-Simón B., Bandaru N.M., Saint C., Voelcker N.H. Tailored carbon nanotube immunosensors for the detection of microbial contamination. Biosens. Bioelectron. 2015;67:642–648. doi: 10.1016/j.bios.2014.09.089. PubMed DOI
Liu Q., Zhang X., Yao Y., Jing W., Liu S., Sui G. A novel microfluidic module for rapid detection of airborne waterborne pathogens. Sens. Actuators B Chem. 2018;258:1138–1145. doi: 10.1016/j.snb.2017.11.113. DOI
Eltzov E., Pavluchov V., Burstin M., Marks R.S. Creation of fiber optic based biosensor for air toxicity monitoring. Sens. Actuators B Chem. 2011;155:859–867. doi: 10.1016/j.snb.2011.01.062. DOI
Kim H.-J., Park S.J., Park C.S., Le T.-H., Lee S.H., Ha T.H., Kim H.-I., Kim J., Lee C.-S., Yoon H., et al. Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. Chem. Eng. J. 2018;339:204–213. doi: 10.1016/j.cej.2018.01.121. DOI
Shuvo S.N., Gomez A.M.U., Mishra A., Chen W.Y., Dongare A.M., Stanciu L.A. Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sens. 2020;5:2915–2924. doi: 10.1021/acssensors.0c01287. PubMed DOI
Deng Y., Lu T., Cui J., Samal S.K., Xiong R., Huang C. Bio-based electrospun nanofiber as building block for a novel eco-friendly air filtration membrane: A review. Sep. Purif. Technol. 2021;277:119623. doi: 10.1016/j.seppur.2021.119623. DOI
Zhu M., Han J., Wang F., Shao W., Xiong R., Zhang Q., Pan H., Yang Y., Samal S.K., Zhang F., et al. Electrospun nanofiber membranes for effective air filtration. Macromol. Mater. Eng. 2016;302:1600353. doi: 10.1002/mame.201600353. DOI
Bortolassi A.C.C., Guerra V.G., Aguiar M.L., Soussan L., Cornu D., Miele P., Bechelany M. Composites Based on Nanoparticle and Pan Electrospun Nanofiber Membranes for Air Filtration and Bacterial Removal. Nanomaterials. 2019;9:1740. doi: 10.3390/nano9121740. PubMed DOI PMC
Fahimirad S., Fahimirad Z., Sillanpää M. Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci. Total Environ. 2021;751:141673. doi: 10.1016/j.scitotenv.2020.141673. PubMed DOI PMC