Enantioselective Preparation of Cyclopentene-Based Amino Acids with a Quaternary Carbon Center
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39471381
PubMed Central
PMC11574854
DOI
10.1021/acs.joc.4c01764
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Azlactone is an important starting material for synthesizing amino acids containing a quaternary α-carbon. In this study, we have developed a sequential "one-pot" procedure involving an enantioselective spirocyclization reaction followed by acidic azlactone opening, which led to amino acid derivatives. The key step of this procedure is a spirocyclization between propargylated azlactones and enals by using a cooperative catalytic approach that combines chiral secondary amine and achiral Pd(0) complexes. The final acid opening of the azlactone motif allows isolation of the corresponding amino acid derivatives as major diastereoisomers in yields ranging from 37% to 70% with enantioselectivities of 85-97% ee. These synthesized amino acid derivatives hold great potential in the pharmaceutical and bioactive compound industries. Moreover, the final amino acid products with a cyclopentene moiety can be further derivatized, opening up even more possibilities for their application.
Zobrazit více v PubMed
Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. 10.1007/s00726-009-0269-0. PubMed DOI
Cativiela C.; Díaz-de-Villegas M. D. Stereoselective synthesis of quaternary α-amino acids. Part 2: Cyclic compounds. Tetrahedron: Asymmetry 2000, 11, 645–732. 10.1016/S0957-4166(99)00565-0. DOI
Alba R. A.-N.; Rios R. Oxazolones in Organocatalysis, New Tricks for an Old Reagent. Chem. Asian J. 2011, 6, 720–734. 10.1002/asia.201000636. PubMed DOI
Goodman M.; Levine L. Peptide Synthesis via Active Esters. IV. Racemization and Ring-Opening Reactions of Opitcally Active Oxazolones. J. Am. Chem. Soc. 1964, 86, 2918–2922. 10.1021/ja01068a030. DOI
Fisk J. S.; Mosey R. A.; Tepe J. J. The diverse chemistry of oxazol-5-(4H)-ones. Chem. Soc. Rev. 2007, 36, 1432–1440. 10.1039/b511113g. PubMed DOI
de Castro P. P.; Carpanez A. G.; Amarante G. W. Azlactone Reaction Developments. Chem. Eur. J. 2016, 22, 10294–10318. 10.1002/chem.201600071. PubMed DOI
Arai S.; Bellemin-Laponnaz S.; Fu G. C. Kinetic Resolution of Amines by a Nonenzymatic Acylation Catalyst. Angew. Chem., Int. Ed. 2001, 40, 234–236. 10.1002/1521-3773(20010105)40:1<234::AID-ANIE234>3.0.CO;2-K. PubMed DOI
Berkessel A.; Cleemann F.; Mukherjee S.; Muller T. N.; Lex J. Highly Efficient Dynamic Kinetic Resolution of Azlactones by Urea-Based Bifunctional Organocatalysts. Angew. Chem., Int. Ed. 2005, 44, 807–811. 10.1002/anie.200461442. PubMed DOI
Lu G.; Birman V. B. Dynamic Kinetic Resolution of Azlactones Catalyzed by Chiral Brønsted Acids. Org. Lett. 2011, 13, 356–358. 10.1021/ol102736t. PubMed DOI
Rodriguez-Docampo Z.; Quigley C.; Tallon S.; Connon S. J. The Dynamic Kinetic Resolution of Azlactones with Thiol Nucleophiles Catalyzed by Arylated, Deoxygenated Cinchona Alkaloids. J. Org. Chem. 2012, 77, 2407–2414. 10.1021/jo202662d. PubMed DOI
Palacio C.; Connon S. J. C-5′-Substituted Cinchona Alkaloid Derivatives Catalyse the First Highly Enantioselective Dynamic Kinetic Resolutions of Azlactones by Thiolysis. Eur. J. Org. Chem. 2013, 2013, 5398–5413. 10.1002/ejoc.201300451. DOI
Dong S.; Liu X.; Zhu Y.; He P.; Lin L.; Feng X. Organocatalytic Oxyamination of Azlactones: Kinetic Resolution of Oxaziridines and Asymmetric Synthesis of Oxazolin-4-ones. J. Am. Chem. Soc. 2013, 135, 10026–10029. 10.1021/ja404379n. PubMed DOI
Yu K.; Liu X.; Lin X.; Lin L.; Feng X. Organocatalytic dynamic kinetic resolution of azlactones to construct chiral N-acyl amino acid oxime esters. Chem. Commun. 2015, 51, 14897–14900. 10.1039/C5CC05534B. PubMed DOI
Tallon S.; Manoni F.; Connon S. J. A Practical Aryl Unit for Azlactone Dynamic Kinetic Resolution: Orthogonally Protected Products and A Ligation-Inspired Coupling Process. Angew. Chem., Int. Ed. 2015, 54, 813–817. 10.1002/anie.201406857. PubMed DOI
Trost B. M.; Czabaniuk L. C. Benzylic Phosphates as Electrophiles in the Palladium-Catalyzed Asymmetric Benzylation of Azlactones. J. Am. Chem. Soc. 2012, 134, 5778–5781. 10.1021/ja301461p. PubMed DOI
Trost B. M.; Czabaniuk L. C. Palladium-Catalyzed Asymmetric Benzylation of Azlactones. Chem. Eur. J. 2013, 19, 15210–15218. 10.1002/chem.201302390. PubMed DOI
Zhou H.; Yang H.; Liu M.; Xia C.; Jiang G. Brønsted Acid Accelerated Pd-Catalyzed Direct Asymmetric Allylic Alkylation of Azlactones with Simple Allylic Alcohols: A Practical Access to Quaternary Allylic Amino Acid Derivatives. Org. Lett. 2014, 16, 5350–5353. 10.1021/ol502535z. PubMed DOI
Trost B. M.; Dogra K. Synthesis of Novel Quaternary Amino Acids Using Molybdenum-Catalyzed Asymmetric Allylic Alkylation. J. Am. Chem. Soc. 2002, 124, 7256–7257. 10.1021/ja020290e. PubMed DOI
Chen W.; Hartwig J. F. Control of Diastereoselectivity for Iridium-Catalyzed Allylation of a Prochiral Nucleophile with a Phosphate Counterion. J. Am. Chem. Soc. 2013, 135, 2068–2071. 10.1021/ja311363a. PubMed DOI PMC
Wei X.; Liu D.; An Q.; Zhang W. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters. Org. Lett. 2015, 17, 5768–5771. 10.1021/acs.orglett.5b02868. PubMed DOI
Trost B. M.; Jakel C.; Plietker B. Palladium-Catalyzed Asymmetric Addition of Pronucleophiles to Allenes. J. Am. Chem. Soc. 2003, 125, 4438–4439. 10.1021/ja029190z. PubMed DOI
Liu X.; Hartwig J. F. Palladium-Catalyzed α-Arylation of Azlactones to Form Quaternary Amino Acid Derivatives. Org. Lett. 2003, 5, 1915–1918. 10.1021/ol034570q. PubMed DOI
Cabrera S.; Reyes E.; Aleman J.; Milelli A.; Kobbelgaard S.; Jørgensen K. A. Organocatalytic Asymmetric Synthesis of α,α-Disubstituted α-Amino Acids and Derivatives. J. Am. Chem. Soc. 2008, 130, 12031–12037. 10.1021/ja804567h. PubMed DOI
Hayashi Y.; Obi K.; Ohta Y.; Okamura D.; Ishikawa H. Diphenylprolinol Silyl Ether as a Catalyst in an Enantioselective, Catalytic Michael Reaction for the Formation of α,α-Disubstituted α-Amino Acid Derivatives. Chem. Asian J. 2009, 4, 246–249. 10.1002/asia.200800394. PubMed DOI
Aleman J.; Milelli A.; Cabrera S.; Reyes E.; Jørgensen K. A. Asymmetric 1,4-Addition of Oxazolones to Nitroalkenes by Bifunctional Cinchona Alkaloid Thiourea Organocatalysts: Synthesis of α,α-Disubstituted α-Amino Acids. Chem. Eur. J. 2008, 14, 10958–10966. 10.1002/chem.200802030. PubMed DOI
Badiola E.; Fiser B.; Gomez-Bengoa E.; Mielgo A.; Olaizola I.; Urruzuno I.; Garcia J. M.; Odriozola J. M.; Razkin J.; Oiarbide M.; Palomo C. Enantioselective Construction of Tetrasubstituted Stereogenic Carbons through Brønsted Base Catalyzed Michael Reactions: α′-Hydroxy Enones as Key Enoate Equivalent. J. Am. Chem. Soc. 2014, 136, 17869–17881. 10.1021/ja510603w. PubMed DOI
Alba A.-N. R.; Companyo X.; Valero G.; Moyano A.; Rios R. Enantioselective Organocatalytic Addition of Oxazolones to 1,1-Bis(phenylsulfonyl)ethylene: A Convenient Asymmetric Synthesis of Quaternary α-Amino Acids. Chem. Eur. J. 2010, 16, 5354–5361. 10.1002/chem.200903025. PubMed DOI
Bravo N.; Alba A.-N. R.; Valero G.; Companyo X.; Moyano A.; Rios R. Asymmetric organocatalytic Michael addition of azlactones to cis-1,2-bis(phenylsulfonyl)ethene. A simple entry to quaternary α-amino acids. New J. Chem. 2010, 34, 1816–1820. 10.1039/c0nj00321b. DOI
Alba A.-N. R.; Valero G.; Calbet T.; Font-Bardia M.; Moyano A.; Rios R. Enantioselective Organocatalytic Addition of Azlactones to Maleimides: A Highly Stereocontrolled Entry to 2,2-Disubstituted-2H-oxazol-5-ones. Chem. Eur. J. 2010, 16, 9884–9889. 10.1002/chem.201000239. PubMed DOI
Zhang G.; Yin Y.; Zhao X.; Jiang Z. Organocatalytic Asymmetric Tandem Conjugate Addition–Protonation of Azlactones to N-Itaconimides. Synlett 2017, 28, 1310–1314. 10.1055/s-0036-1588960. DOI
Yang J.; Sun W.; He Z.; Yu C.; Bao G.; Li Y.; Liu Y.; Hong L.; Wang R. Access to α,γ-Diamino Diacid Derivatives via Organocatalytic Asymmetric 1,4-Addition of Azlactones and Dehydroalanines. Org. Lett. 2018, 20, 7080–7084. 10.1021/acs.orglett.8b03020. PubMed DOI
Li W.; Xu X.; Liu Y.; Gao H.; Cheng Y.; Li P. Enantioselective Organocatalytic 1,6-Addition of Azlactones to para-Quinone Methides: An Access to α,α-Disubstituted and β,β-Diaryl-α-amino acid Esters. Org. Lett. 2018, 20, 1142–1145. 10.1021/acs.orglett.8b00072. PubMed DOI
Yan J.; Chen M.; Sung H. H.-Y.; Williams I. D.; Sun J. An Organocatalytic Asymmetric Synthesis of Chiral β,β-Diaryl-α-amino Acids via Addition of Azlactones to In Situ Generated para-Quinone Methides. Chem. Asian J. 2018, 13, 2440–2444. 10.1002/asia.201800569. PubMed DOI
Zhang P.; Huang Q.; Cheng Y.; Li R.; Li P.; Li W. Remote Stereocontrolled Construction of Vicinal Axially Chiral Tetrasubstituted Allenes and Heteroatom-Functionalized Quaternary Carbon Stereocenters. Org. Lett. 2019, 21, 503–507. 10.1021/acs.orglett.8b03801. PubMed DOI
Zheng Y.; Deng L. Catalytic asymmetric direct aldol reaction of α-alkyl azlactones and aliphatic aldehydes. Chem. Sci. 2015, 6, 6510–6514. 10.1039/C5SC02116B. PubMed DOI PMC
Žabka M.; Malastová A.; Šebesta R. Enantioselective addition of oxazolones to N-protected imines catalysed by chiral thioureas. RSC Adv. 2015, 5, 12890–12893. 10.1039/C5RA00092K. DOI
Zhang W.-Q.; Cheng L.-F.; Yu J.; Gong L.-Z. A Chiral Bis(betaine) Catalyst for the Mannich Reaction of Azlactones and Aliphatic Imines. Angew. Chem., Int. Ed. 2012, 51, 4085–4088. 10.1002/anie.201107741. PubMed DOI
Uraguchi D.; Ueki Y.; Ooi T. Chiral Tetraaminophosphonium Carboxylate-Catalyzed Direct Mannich-Type Reaction. J. Am. Chem. Soc. 2008, 130, 14088–14089. 10.1021/ja806311e. PubMed DOI
Avila E. P.; Justo R. M. S.; Goncalves V. P.; Pereira A. A.; Diniz R.; Amarante G. W. Chiral Brønsted Acid-Catalyzed Stereoselective Mannich-Type Reaction of Azlactones with Aldimines. J. Org. Chem. 2015, 80, 590–594. 10.1021/jo5024975. PubMed DOI
Terada M.; Tanaka H.; Sorimachi K. Enantioselective Direct Aldol-Type Reaction of Azlactone via Protonation of Vinyl Ethers by a Chiral Brønsted Acid Catalyst. J. Am. Chem. Soc. 2009, 131, 3430–3431. 10.1021/ja8090643. PubMed DOI
Qiao B.; Liu X.; Duan S.; Yan L.; Jiang Z. Highly Enantioselective Organocatalytic α-Sulfenylation of Azlactones. Org. Lett. 2014, 16, 672–675. 10.1021/ol403303k. PubMed DOI
Sun W.; Zhu G.; Wu C.; Li G.; Hong L.; Wang R. Organocatalytic Diastereo- and Enantioselective 1,3-Dipolar Cycloaddition of Azlactones and Methyleneindolinones. Angew. Chem., Int. Ed. 2013, 52, 8633–8637. 10.1002/anie.201302831. PubMed DOI
Zhang Z.; Sun W.; Zhu G.; Yang J.; Zhang M.; Hong L.; Wang R. Chiral phosphoric acid catalyzed enantioselective 1,3-dipolar cycloaddition reaction of azlactones. Chem. Commun. 2016, 52, 1377–1380. 10.1039/C5CC08989A. PubMed DOI
Ma C.; Zhou J.-Y.; Zhang Y.-Z.; Mei G.-J.; Shi F. Catalytic Asymmetric [2 + 3] Cyclizations of Azlactones with Azonaphthalenes. Angew. Chem., Int. Ed. 2018, 57, 5398–5402. 10.1002/anie.201801349. PubMed DOI
Yu X.-Y.; Chen J.-R.; Wei Q.; Cheng H.-G.; Liu Z.-C.; Xiao W.-J. Catalytic Asymmetric Cycloaddition of In Situ-Generated ortho-Quinone Methides and Azlactones by a Triple Brønsted Acid Activation Strategy. Chem. Eur. J. 2016, 22, 6774–6778. 10.1002/chem.201601227. PubMed DOI
Zhang Y.-C.; Zhu Q.-N.; Yang X.; Zhou L.-J.; Shi F. Merging Chiral Brønsted Acid/Base Catalysis: An Enantioselective [4 + 2] Cycloaddition of o-Hydroxystyrenes with Azlactones. J. Org. Chem. 2016, 81, 1681–1688. 10.1021/acs.joc.6b00078. PubMed DOI
Allen A. E.; MacMillan D. W. C. Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chem. Sci. 2012, 3, 633–658. 10.1039/c2sc00907b. PubMed DOI PMC
Inamdar S. M.; Shinde V. S.; Patil N. T. Enantioselective cooperative catalysis. Org. Biomol. Chem. 2015, 13, 8116–8162. 10.1039/C5OB00986C. PubMed DOI
Afewerki S.; Córdova A. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. Chem. Rev. 2016, 116, 13512–13570. 10.1021/acs.chemrev.6b00226. PubMed DOI
Del Vecchio A.; Sinibaldi A.; Nori V.; Giorgianni G.; Di Carmine G.; Pesciaioli F. Synergistic Strategies in Aminocatalysis. Chem. Eur. J. 2022, 28, e202200810.1002/chem.202200818. PubMed DOI PMC
Kamlar M.; Urban M.; Veselý J. Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transition-Metal Catalysis. Chem. Rec. 2023, 23, e20220028410.1002/tcr.202200284. PubMed DOI
Cao Z.-Y.; Zhao Y.-L.; Zhou J. Sequential Au(I)/chiral tertiary amine catalysis: a tandem C–H functionalization of anisoles or a thiophene/asymmetric Michael addition sequence to quaternary oxindoles. Chem. Commun. 2016, 52, 2537–2540. 10.1039/C5CC10096H. PubMed DOI
Simlandy A. K.; Ghosh B.; Mukherjee S. Enantioselective [4 + 2]-Annulation of Azlactones with Copper-Allenylidenes under Cooperative Catalysis: Synthesis of α-Quaternary α-Acylaminoamides. Org. Lett. 2019, 21, 3361–3366. 10.1021/acs.orglett.9b01103. PubMed DOI
Sun; Wan X.; Zhou S.-J.; Mei G.-J.; Shi F. Iridium and a Brønsted acid cooperatively catalyzed chemodivergent and stereoselective reactions of vinyl benzoxazinones with azlactones. Chem. Commun. 2019, 55, 1283–1286. 10.1039/C8CC08962K. PubMed DOI
Narancic T.; Almahboub S. A.; O’Connor K. E. Unnatural amino acids: production and biotechnological potential. World J. Microbiol. Biotechnol. 2019, 35, 67.10.1007/s11274-019-2642-9. PubMed DOI
Meazza M.; Kamlar M.; Jašíková L.; Formánek B.; Mazzanti A.; Roithová J.; Veselý J.; Rios R. Synergistic formal ring contraction for the enantioselective synthesis of spiropyrazolones. Chem. Sci. 2018, 9, 6368–6373. 10.1039/C8SC00913A. PubMed DOI PMC
Kamlar M.; Franc M.; Císařová I.; Gyepes R.; Veselý J. Formal [3 + 2] cycloaddition of vinylcyclopropane azlactones to enals using synergistic catalysis. Chem. Commun. 2019, 55, 3829–3832. 10.1039/C8CC06500D. PubMed DOI
Putatunda S.; Alegre-Requena J. V.; Meazza M.; Franc M.; Rohal’ová D.; Vemuri P.; Císařová I.; Herrera R. P.; Rios R.; Veselý J. Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis. Chem. Sci. 2019, 10, 4107–4115. 10.1039/C8SC05258A. PubMed DOI PMC
Franc M.; Císařová I.; Veselý J. Enantioselective Synthesis of Spirothiazolones via Cooperative Catalysis. Adv. Synth. Catal. 2021, 363, 4349–4353. 10.1002/adsc.202100571. DOI
Franc M.; Císařová I.; Veselý J. Enantioselective synthesis of spiroimidazolones by synergistic catalysis. Catal. Today 2024, 428, 11444310.1016/j.cattod.2023.114443. DOI
Žabka M.; Kocian A.; Bilka S.; Andrejčák S.; Šebesta R. Transformation of Racemic Azlactones into Enantioenriched Dihydropyrroles and Lactones Enabled by Hydrogen-Bond Organocatalysis. Eur. J. Org. Chem. 2019, 2019, 6077–60. 10.1002/ejoc.201901052. DOI