Enantioselective Preparation of Cyclopentene-Based Amino Acids with a Quaternary Carbon Center

. 2024 Nov 15 ; 89 (22) : 16522-16530. [epub] 20241029

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39471381

Azlactone is an important starting material for synthesizing amino acids containing a quaternary α-carbon. In this study, we have developed a sequential "one-pot" procedure involving an enantioselective spirocyclization reaction followed by acidic azlactone opening, which led to amino acid derivatives. The key step of this procedure is a spirocyclization between propargylated azlactones and enals by using a cooperative catalytic approach that combines chiral secondary amine and achiral Pd(0) complexes. The final acid opening of the azlactone motif allows isolation of the corresponding amino acid derivatives as major diastereoisomers in yields ranging from 37% to 70% with enantioselectivities of 85-97% ee. These synthesized amino acid derivatives hold great potential in the pharmaceutical and bioactive compound industries. Moreover, the final amino acid products with a cyclopentene moiety can be further derivatized, opening up even more possibilities for their application.

Zobrazit více v PubMed

Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. 10.1007/s00726-009-0269-0. PubMed DOI

Cativiela C.; Díaz-de-Villegas M. D. Stereoselective synthesis of quaternary α-amino acids. Part 2: Cyclic compounds. Tetrahedron: Asymmetry 2000, 11, 645–732. 10.1016/S0957-4166(99)00565-0. DOI

Alba R. A.-N.; Rios R. Oxazolones in Organocatalysis, New Tricks for an Old Reagent. Chem. Asian J. 2011, 6, 720–734. 10.1002/asia.201000636. PubMed DOI

Goodman M.; Levine L. Peptide Synthesis via Active Esters. IV. Racemization and Ring-Opening Reactions of Opitcally Active Oxazolones. J. Am. Chem. Soc. 1964, 86, 2918–2922. 10.1021/ja01068a030. DOI

Fisk J. S.; Mosey R. A.; Tepe J. J. The diverse chemistry of oxazol-5-(4H)-ones. Chem. Soc. Rev. 2007, 36, 1432–1440. 10.1039/b511113g. PubMed DOI

de Castro P. P.; Carpanez A. G.; Amarante G. W. Azlactone Reaction Developments. Chem. Eur. J. 2016, 22, 10294–10318. 10.1002/chem.201600071. PubMed DOI

Arai S.; Bellemin-Laponnaz S.; Fu G. C. Kinetic Resolution of Amines by a Nonenzymatic Acylation Catalyst. Angew. Chem., Int. Ed. 2001, 40, 234–236. 10.1002/1521-3773(20010105)40:1<234::AID-ANIE234>3.0.CO;2-K. PubMed DOI

Berkessel A.; Cleemann F.; Mukherjee S.; Muller T. N.; Lex J. Highly Efficient Dynamic Kinetic Resolution of Azlactones by Urea-Based Bifunctional Organocatalysts. Angew. Chem., Int. Ed. 2005, 44, 807–811. 10.1002/anie.200461442. PubMed DOI

Lu G.; Birman V. B. Dynamic Kinetic Resolution of Azlactones Catalyzed by Chiral Brønsted Acids. Org. Lett. 2011, 13, 356–358. 10.1021/ol102736t. PubMed DOI

Rodriguez-Docampo Z.; Quigley C.; Tallon S.; Connon S. J. The Dynamic Kinetic Resolution of Azlactones with Thiol Nucleophiles Catalyzed by Arylated, Deoxygenated Cinchona Alkaloids. J. Org. Chem. 2012, 77, 2407–2414. 10.1021/jo202662d. PubMed DOI

Palacio C.; Connon S. J. C-5′-Substituted Cinchona Alkaloid Derivatives Catalyse the First Highly Enantioselective Dynamic Kinetic Resolutions of Azlactones by Thiolysis. Eur. J. Org. Chem. 2013, 2013, 5398–5413. 10.1002/ejoc.201300451. DOI

Dong S.; Liu X.; Zhu Y.; He P.; Lin L.; Feng X. Organocatalytic Oxyamination of Azlactones: Kinetic Resolution of Oxaziridines and Asymmetric Synthesis of Oxazolin-4-ones. J. Am. Chem. Soc. 2013, 135, 10026–10029. 10.1021/ja404379n. PubMed DOI

Yu K.; Liu X.; Lin X.; Lin L.; Feng X. Organocatalytic dynamic kinetic resolution of azlactones to construct chiral N-acyl amino acid oxime esters. Chem. Commun. 2015, 51, 14897–14900. 10.1039/C5CC05534B. PubMed DOI

Tallon S.; Manoni F.; Connon S. J. A Practical Aryl Unit for Azlactone Dynamic Kinetic Resolution: Orthogonally Protected Products and A Ligation-Inspired Coupling Process. Angew. Chem., Int. Ed. 2015, 54, 813–817. 10.1002/anie.201406857. PubMed DOI

Trost B. M.; Czabaniuk L. C. Benzylic Phosphates as Electrophiles in the Palladium-Catalyzed Asymmetric Benzylation of Azlactones. J. Am. Chem. Soc. 2012, 134, 5778–5781. 10.1021/ja301461p. PubMed DOI

Trost B. M.; Czabaniuk L. C. Palladium-Catalyzed Asymmetric Benzylation of Azlactones. Chem. Eur. J. 2013, 19, 15210–15218. 10.1002/chem.201302390. PubMed DOI

Zhou H.; Yang H.; Liu M.; Xia C.; Jiang G. Brønsted Acid Accelerated Pd-Catalyzed Direct Asymmetric Allylic Alkylation of Azlactones with Simple Allylic Alcohols: A Practical Access to Quaternary Allylic Amino Acid Derivatives. Org. Lett. 2014, 16, 5350–5353. 10.1021/ol502535z. PubMed DOI

Trost B. M.; Dogra K. Synthesis of Novel Quaternary Amino Acids Using Molybdenum-Catalyzed Asymmetric Allylic Alkylation. J. Am. Chem. Soc. 2002, 124, 7256–7257. 10.1021/ja020290e. PubMed DOI

Chen W.; Hartwig J. F. Control of Diastereoselectivity for Iridium-Catalyzed Allylation of a Prochiral Nucleophile with a Phosphate Counterion. J. Am. Chem. Soc. 2013, 135, 2068–2071. 10.1021/ja311363a. PubMed DOI PMC

Wei X.; Liu D.; An Q.; Zhang W. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters. Org. Lett. 2015, 17, 5768–5771. 10.1021/acs.orglett.5b02868. PubMed DOI

Trost B. M.; Jakel C.; Plietker B. Palladium-Catalyzed Asymmetric Addition of Pronucleophiles to Allenes. J. Am. Chem. Soc. 2003, 125, 4438–4439. 10.1021/ja029190z. PubMed DOI

Liu X.; Hartwig J. F. Palladium-Catalyzed α-Arylation of Azlactones to Form Quaternary Amino Acid Derivatives. Org. Lett. 2003, 5, 1915–1918. 10.1021/ol034570q. PubMed DOI

Cabrera S.; Reyes E.; Aleman J.; Milelli A.; Kobbelgaard S.; Jørgensen K. A. Organocatalytic Asymmetric Synthesis of α,α-Disubstituted α-Amino Acids and Derivatives. J. Am. Chem. Soc. 2008, 130, 12031–12037. 10.1021/ja804567h. PubMed DOI

Hayashi Y.; Obi K.; Ohta Y.; Okamura D.; Ishikawa H. Diphenylprolinol Silyl Ether as a Catalyst in an Enantioselective, Catalytic Michael Reaction for the Formation of α,α-Disubstituted α-Amino Acid Derivatives. Chem. Asian J. 2009, 4, 246–249. 10.1002/asia.200800394. PubMed DOI

Aleman J.; Milelli A.; Cabrera S.; Reyes E.; Jørgensen K. A. Asymmetric 1,4-Addition of Oxazolones to Nitroalkenes by Bifunctional Cinchona Alkaloid Thiourea Organocatalysts: Synthesis of α,α-Disubstituted α-Amino Acids. Chem. Eur. J. 2008, 14, 10958–10966. 10.1002/chem.200802030. PubMed DOI

Badiola E.; Fiser B.; Gomez-Bengoa E.; Mielgo A.; Olaizola I.; Urruzuno I.; Garcia J. M.; Odriozola J. M.; Razkin J.; Oiarbide M.; Palomo C. Enantioselective Construction of Tetrasubstituted Stereogenic Carbons through Brønsted Base Catalyzed Michael Reactions: α′-Hydroxy Enones as Key Enoate Equivalent. J. Am. Chem. Soc. 2014, 136, 17869–17881. 10.1021/ja510603w. PubMed DOI

Alba A.-N. R.; Companyo X.; Valero G.; Moyano A.; Rios R. Enantioselective Organocatalytic Addition of Oxazolones to 1,1-Bis(phenylsulfonyl)ethylene: A Convenient Asymmetric Synthesis of Quaternary α-Amino Acids. Chem. Eur. J. 2010, 16, 5354–5361. 10.1002/chem.200903025. PubMed DOI

Bravo N.; Alba A.-N. R.; Valero G.; Companyo X.; Moyano A.; Rios R. Asymmetric organocatalytic Michael addition of azlactones to cis-1,2-bis(phenylsulfonyl)ethene. A simple entry to quaternary α-amino acids. New J. Chem. 2010, 34, 1816–1820. 10.1039/c0nj00321b. DOI

Alba A.-N. R.; Valero G.; Calbet T.; Font-Bardia M.; Moyano A.; Rios R. Enantioselective Organocatalytic Addition of Azlactones to Maleimides: A Highly Stereocontrolled Entry to 2,2-Disubstituted-2H-oxazol-5-ones. Chem. Eur. J. 2010, 16, 9884–9889. 10.1002/chem.201000239. PubMed DOI

Zhang G.; Yin Y.; Zhao X.; Jiang Z. Organocatalytic Asymmetric Tandem Conjugate Addition–Protonation of Azlactones to N-Itaconimides. Synlett 2017, 28, 1310–1314. 10.1055/s-0036-1588960. DOI

Yang J.; Sun W.; He Z.; Yu C.; Bao G.; Li Y.; Liu Y.; Hong L.; Wang R. Access to α,γ-Diamino Diacid Derivatives via Organocatalytic Asymmetric 1,4-Addition of Azlactones and Dehydroalanines. Org. Lett. 2018, 20, 7080–7084. 10.1021/acs.orglett.8b03020. PubMed DOI

Li W.; Xu X.; Liu Y.; Gao H.; Cheng Y.; Li P. Enantioselective Organocatalytic 1,6-Addition of Azlactones to para-Quinone Methides: An Access to α,α-Disubstituted and β,β-Diaryl-α-amino acid Esters. Org. Lett. 2018, 20, 1142–1145. 10.1021/acs.orglett.8b00072. PubMed DOI

Yan J.; Chen M.; Sung H. H.-Y.; Williams I. D.; Sun J. An Organocatalytic Asymmetric Synthesis of Chiral β,β-Diaryl-α-amino Acids via Addition of Azlactones to In Situ Generated para-Quinone Methides. Chem. Asian J. 2018, 13, 2440–2444. 10.1002/asia.201800569. PubMed DOI

Zhang P.; Huang Q.; Cheng Y.; Li R.; Li P.; Li W. Remote Stereocontrolled Construction of Vicinal Axially Chiral Tetrasubstituted Allenes and Heteroatom-Functionalized Quaternary Carbon Stereocenters. Org. Lett. 2019, 21, 503–507. 10.1021/acs.orglett.8b03801. PubMed DOI

Zheng Y.; Deng L. Catalytic asymmetric direct aldol reaction of α-alkyl azlactones and aliphatic aldehydes. Chem. Sci. 2015, 6, 6510–6514. 10.1039/C5SC02116B. PubMed DOI PMC

Žabka M.; Malastová A.; Šebesta R. Enantioselective addition of oxazolones to N-protected imines catalysed by chiral thioureas. RSC Adv. 2015, 5, 12890–12893. 10.1039/C5RA00092K. DOI

Zhang W.-Q.; Cheng L.-F.; Yu J.; Gong L.-Z. A Chiral Bis(betaine) Catalyst for the Mannich Reaction of Azlactones and Aliphatic Imines. Angew. Chem., Int. Ed. 2012, 51, 4085–4088. 10.1002/anie.201107741. PubMed DOI

Uraguchi D.; Ueki Y.; Ooi T. Chiral Tetraaminophosphonium Carboxylate-Catalyzed Direct Mannich-Type Reaction. J. Am. Chem. Soc. 2008, 130, 14088–14089. 10.1021/ja806311e. PubMed DOI

Avila E. P.; Justo R. M. S.; Goncalves V. P.; Pereira A. A.; Diniz R.; Amarante G. W. Chiral Brønsted Acid-Catalyzed Stereoselective Mannich-Type Reaction of Azlactones with Aldimines. J. Org. Chem. 2015, 80, 590–594. 10.1021/jo5024975. PubMed DOI

Terada M.; Tanaka H.; Sorimachi K. Enantioselective Direct Aldol-Type Reaction of Azlactone via Protonation of Vinyl Ethers by a Chiral Brønsted Acid Catalyst. J. Am. Chem. Soc. 2009, 131, 3430–3431. 10.1021/ja8090643. PubMed DOI

Qiao B.; Liu X.; Duan S.; Yan L.; Jiang Z. Highly Enantioselective Organocatalytic α-Sulfenylation of Azlactones. Org. Lett. 2014, 16, 672–675. 10.1021/ol403303k. PubMed DOI

Sun W.; Zhu G.; Wu C.; Li G.; Hong L.; Wang R. Organocatalytic Diastereo- and Enantioselective 1,3-Dipolar Cycloaddition of Azlactones and Methyleneindolinones. Angew. Chem., Int. Ed. 2013, 52, 8633–8637. 10.1002/anie.201302831. PubMed DOI

Zhang Z.; Sun W.; Zhu G.; Yang J.; Zhang M.; Hong L.; Wang R. Chiral phosphoric acid catalyzed enantioselective 1,3-dipolar cycloaddition reaction of azlactones. Chem. Commun. 2016, 52, 1377–1380. 10.1039/C5CC08989A. PubMed DOI

Ma C.; Zhou J.-Y.; Zhang Y.-Z.; Mei G.-J.; Shi F. Catalytic Asymmetric [2 + 3] Cyclizations of Azlactones with Azonaphthalenes. Angew. Chem., Int. Ed. 2018, 57, 5398–5402. 10.1002/anie.201801349. PubMed DOI

Yu X.-Y.; Chen J.-R.; Wei Q.; Cheng H.-G.; Liu Z.-C.; Xiao W.-J. Catalytic Asymmetric Cycloaddition of In Situ-Generated ortho-Quinone Methides and Azlactones by a Triple Brønsted Acid Activation Strategy. Chem. Eur. J. 2016, 22, 6774–6778. 10.1002/chem.201601227. PubMed DOI

Zhang Y.-C.; Zhu Q.-N.; Yang X.; Zhou L.-J.; Shi F. Merging Chiral Brønsted Acid/Base Catalysis: An Enantioselective [4 + 2] Cycloaddition of o-Hydroxystyrenes with Azlactones. J. Org. Chem. 2016, 81, 1681–1688. 10.1021/acs.joc.6b00078. PubMed DOI

Allen A. E.; MacMillan D. W. C. Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chem. Sci. 2012, 3, 633–658. 10.1039/c2sc00907b. PubMed DOI PMC

Inamdar S. M.; Shinde V. S.; Patil N. T. Enantioselective cooperative catalysis. Org. Biomol. Chem. 2015, 13, 8116–8162. 10.1039/C5OB00986C. PubMed DOI

Afewerki S.; Córdova A. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. Chem. Rev. 2016, 116, 13512–13570. 10.1021/acs.chemrev.6b00226. PubMed DOI

Del Vecchio A.; Sinibaldi A.; Nori V.; Giorgianni G.; Di Carmine G.; Pesciaioli F. Synergistic Strategies in Aminocatalysis. Chem. Eur. J. 2022, 28, e202200810.1002/chem.202200818. PubMed DOI PMC

Kamlar M.; Urban M.; Veselý J. Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transition-Metal Catalysis. Chem. Rec. 2023, 23, e20220028410.1002/tcr.202200284. PubMed DOI

Cao Z.-Y.; Zhao Y.-L.; Zhou J. Sequential Au(I)/chiral tertiary amine catalysis: a tandem C–H functionalization of anisoles or a thiophene/asymmetric Michael addition sequence to quaternary oxindoles. Chem. Commun. 2016, 52, 2537–2540. 10.1039/C5CC10096H. PubMed DOI

Simlandy A. K.; Ghosh B.; Mukherjee S. Enantioselective [4 + 2]-Annulation of Azlactones with Copper-Allenylidenes under Cooperative Catalysis: Synthesis of α-Quaternary α-Acylaminoamides. Org. Lett. 2019, 21, 3361–3366. 10.1021/acs.orglett.9b01103. PubMed DOI

Sun; Wan X.; Zhou S.-J.; Mei G.-J.; Shi F. Iridium and a Brønsted acid cooperatively catalyzed chemodivergent and stereoselective reactions of vinyl benzoxazinones with azlactones. Chem. Commun. 2019, 55, 1283–1286. 10.1039/C8CC08962K. PubMed DOI

Narancic T.; Almahboub S. A.; O’Connor K. E. Unnatural amino acids: production and biotechnological potential. World J. Microbiol. Biotechnol. 2019, 35, 67.10.1007/s11274-019-2642-9. PubMed DOI

Meazza M.; Kamlar M.; Jašíková L.; Formánek B.; Mazzanti A.; Roithová J.; Veselý J.; Rios R. Synergistic formal ring contraction for the enantioselective synthesis of spiropyrazolones. Chem. Sci. 2018, 9, 6368–6373. 10.1039/C8SC00913A. PubMed DOI PMC

Kamlar M.; Franc M.; Císařová I.; Gyepes R.; Veselý J. Formal [3 + 2] cycloaddition of vinylcyclopropane azlactones to enals using synergistic catalysis. Chem. Commun. 2019, 55, 3829–3832. 10.1039/C8CC06500D. PubMed DOI

Putatunda S.; Alegre-Requena J. V.; Meazza M.; Franc M.; Rohal’ová D.; Vemuri P.; Císařová I.; Herrera R. P.; Rios R.; Veselý J. Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis. Chem. Sci. 2019, 10, 4107–4115. 10.1039/C8SC05258A. PubMed DOI PMC

Franc M.; Císařová I.; Veselý J. Enantioselective Synthesis of Spirothiazolones via Cooperative Catalysis. Adv. Synth. Catal. 2021, 363, 4349–4353. 10.1002/adsc.202100571. DOI

Franc M.; Císařová I.; Veselý J. Enantioselective synthesis of spiroimidazolones by synergistic catalysis. Catal. Today 2024, 428, 11444310.1016/j.cattod.2023.114443. DOI

Žabka M.; Kocian A.; Bilka S.; Andrejčák S.; Šebesta R. Transformation of Racemic Azlactones into Enantioenriched Dihydropyrroles and Lactones Enabled by Hydrogen-Bond Organocatalysis. Eur. J. Org. Chem. 2019, 2019, 6077–60. 10.1002/ejoc.201901052. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...