Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis

. 2019 Apr 14 ; 10 (14) : 4107-4115. [epub] 20190304

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31015949

In this study, we report a highly stereoselective and versatile synthesis of spiro pyrazolones, promising motifs that are being employed as pharmacophores. The new synthetic strategy merges organocatalysis and metal catalysis to create a synergistic catalysis using proline derivatives and Pd catalysts. This protocol is suitable for late-stage functionalization, which is very important in drug discovery. Additionally, a thorough computational study proved to be very useful to elucidate the function of the different catalysts along the reaction, showing a peculiar feature: the -CPh2OSiMe3 group of the proline catalyst switches its role during the reaction. In the initial Michael reaction, this group plays its commonly-assumed role of bulky blocking group, but the same group generates π-Pd interactions and acts as a directing group in the subsequent Pd-catalyzed Conia-ene reaction. This finding might be very relevant especially for processes with many steps, such as cascade reactions, in which functional groups are assumed to play the same role during all reaction steps.

Zobrazit více v PubMed

Rios R. Chem. Soc. Rev. 2012;41:1060. PubMed

Cheng D., Ishihara Y., Tan B., Barbas III C. F. ACS Catal. 2014;4:743.

Cao Z.-Y., Zhou J. Org. Chem. Front. 2015;2:849.

Yan L.-J., Wang Y.-C. ChemistrySelect. 2016;1:6948.

Kotha S., Panguluri N. R., Ali R. Eur. J. Org. Chem. 2017:5316.

Xie X., Huang W., Peng C., Han B. Adv. Synth. Catal. 2018;360:194.

Guang-Mei J., Shi F. Chem. Commun. 2018;54:6607. PubMed

Fang X., Wang C.-J. Org. Biomol. Chem. 2018;16:2591. PubMed

Zheng Y., Tice C. M., Singh S. B. Bioorg. Med. Chem. Lett. 2014;24:3673. PubMed

Pavlovska T. L., Redkin R. G., Lipson V. V., Atamanuk D. V. Mol. Diversity. 2016;20:299. PubMed

Géant P.-Y., Urban M., Remeš M., Císařová I., Veselý J. Eur. J. Org. Chem. 2013:7979.

Companyó X., Zea A., Alba A.-N. R., Mazzanti A., Moyano A., Rios R. Chem. Commun. 2010;46:6953. PubMed

Meazza M., Rios R. Chem.–Eur. J. 2016;22:9923. PubMed

Allen A. E., MacMillan D. W. C. Chem. Sci. 2012;3:633. PubMed PMC

Meazza M., Rios R. Synthesis. 2016;48:960.

Afewerki S., Cordova A. Chem. Rev. 2016;116:13512. PubMed

Varvounis G., Pyrazol-3-ones. Part IV: Synthesis and Applications, Adv. Heterocyclic Chem., ed. A. R. Katritzky, Academic Press, 2009, vol. 98, p. 143.

Chauhan P., Mahajan S., Enders D. Chem. Commun. 2015;51:12890. PubMed

Hadi V., Koh Y., Sanchez T. W., Barrios D., Neamati N., Jumg K. W. Bioorg. Med. Chem. Lett. 2010;20:6854. PubMed PMC

Janin Y. L. Bioorg. Med. Chem. 2007;15:2479. PubMed

Gutierrez-Lugo M.-T., Bewley C. J. Med. Chem. 2008;51:2606. PubMed PMC

Matthews I. R., PCT Int. Appl. WO 46679, 2005.

Kimata A., Nakagawa H., Ohyama R., Fukuuchi T., Ohta S., Suzuki T., Miyata N. J. Med. Chem. 2007;50:5053. PubMed

Zea A., Alba A.-N. R., Mazzanti A., Moyano A., Rios R. Org. Biomol. Chem. 2011;9:6519. PubMed

Zea A., Alba A.-N. R., Valero G., Calbet T., Font-Bardia M., Moyano A., Rios R. Eur. J. Org. Chem. 2011:2053.

Meazza M., Kamlar M., Jašíková L., Formánek B., Mazzanti A., Roithová J., Veselý J., Rios R. Chem. Sci. 2018;9:6368. PubMed PMC

For an excellent recent review regarding Conia-ene reactions, see: Hack D., Blumel M., Chauhan P., Phillips A. R., Enders D., Chem. Soc. Rev., 2015, 44 , 6059 . PubMed

For an example of cooperative catalysis to develop this reaction, see: Yang T., Ferrali A., Sladojevich F., Campbell L., Dixon D. J., J. Am. Chem. Soc., 2009, 131 , 9140 . PubMed

Xu C., Deiana L., Afewerki S., Incerti-Pradillos C., Cordova O., Guo P., Cordova A., Hedin N. Adv. Synth. Catal. 2015;357:2150.

Deiana L., Jiang Y., Palo-Nieto C., Afewerki S., Incerti-Pradillos C. A., Verho O., Tai C.-W., Johnston E. V., Cordova A. Angew. Chem., Int. Ed. 2014;53:3447. PubMed

Deiana L., Ghisu L., Afewerki S., Verho O., Johnston E. V., Hedin N., Bacsik Z., Cordova A. Adv. Synth. Catal. 2014;56:2485.

Hack D., Chauhan P., Deckers K., Yusuke M., Raabe G., Enders D. Chem. Commun. 2015;51:2266. PubMed PMC

Hack D., Deckers K., Chauhan P., Selling N., Rue-benach L., Mertens L., Schoenebeck F., Enders D. Angew. Chem., Int. Ed. 2016;55:1797. PubMed PMC

Meazza M., Light M. E., Mazzanti A., Rios R. Chem. Sci. 2016;7:984. PubMed PMC

Meazza M., Ceban V., Pitak M. B., Coles S. J., Rios R. Chem.–Eur. J. 2014;20:16853. PubMed

Ceban V., Putaj P., Meazza M., Pitak M. B., Coles S. J., Veselý J., Rios R. Chem. Commun. 2014;50:7447. PubMed

Miyabe H., Takemoto Y. Bull. Chem. Soc. Jpn. 2008;81:785.

Connon S. J. Chem. Commun. 2008:2499. PubMed

Sonsona I. G., Marqués-López E., Herrera R. P. Beilstein J. Org. Chem. 2016;12:505. PubMed PMC

Sladojevich F., Fuentes de Arriba A. L., Ortín I., Yang T., Ferrali A., Paton R. S., Dixon D. J. Chem.–Eur. J. 2013;19:14286. PubMed

Santoro S., Deiana L., Zhao G.-L., Lin S., Himo F., Córdova A., ACS Catal., 2014, 4 , 4474 , and references therein .

For other mechanistic studies using proline (I), see also: Halskov K. S., Donslund B. S., Paz B. M., Jørgensen K. A., Acc. Chem. Res., 2016, 49 , 974 . PubMed

Peng Q., Duarte F., Paton R. S. Chem. Soc. Rev. 2016;45:6093. PubMed

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016.

Becke A. D. J. Chem. Phys. 1997;107:8554.

Chai J.-D., Head-Gordon M. Phys. Chem. Chem. Phys. 2008;10:6615. PubMed

Goerigk L., Grimme S. A. Phys. Chem. Chem. Phys. 2011;13:6670. PubMed

Grošelj U., Seebach D., Badine D. M., Schweizer W. B., Beck A. K., Krossing I., Klose P., Hayashi Y., Uchimaru T. Helv. Chim. Acta. 2009;92:1225.

Marqués-López E., Herrera R. P., Curr. Org. Chem., 2011, 15 , 2311 , and references therein .

Lyngvi E., Bode J. W., Schoenebeck F. A. Chem. Sci. 2012;3:2346. PubMed PMC

Swiderek K., Nödling A. R., Tsai Y.-H., Luk L. Y. P., Moliner V. J. Phys. Chem. A. 2018;44:451. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...