Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31015949
PubMed Central
PMC6457335
DOI
10.1039/c8sc05258a
PII: c8sc05258a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this study, we report a highly stereoselective and versatile synthesis of spiro pyrazolones, promising motifs that are being employed as pharmacophores. The new synthetic strategy merges organocatalysis and metal catalysis to create a synergistic catalysis using proline derivatives and Pd catalysts. This protocol is suitable for late-stage functionalization, which is very important in drug discovery. Additionally, a thorough computational study proved to be very useful to elucidate the function of the different catalysts along the reaction, showing a peculiar feature: the -CPh2OSiMe3 group of the proline catalyst switches its role during the reaction. In the initial Michael reaction, this group plays its commonly-assumed role of bulky blocking group, but the same group generates π-Pd interactions and acts as a directing group in the subsequent Pd-catalyzed Conia-ene reaction. This finding might be very relevant especially for processes with many steps, such as cascade reactions, in which functional groups are assumed to play the same role during all reaction steps.
Zobrazit více v PubMed
Rios R. Chem. Soc. Rev. 2012;41:1060. PubMed
Cheng D., Ishihara Y., Tan B., Barbas III C. F. ACS Catal. 2014;4:743.
Cao Z.-Y., Zhou J. Org. Chem. Front. 2015;2:849.
Yan L.-J., Wang Y.-C. ChemistrySelect. 2016;1:6948.
Kotha S., Panguluri N. R., Ali R. Eur. J. Org. Chem. 2017:5316.
Xie X., Huang W., Peng C., Han B. Adv. Synth. Catal. 2018;360:194.
Guang-Mei J., Shi F. Chem. Commun. 2018;54:6607. PubMed
Fang X., Wang C.-J. Org. Biomol. Chem. 2018;16:2591. PubMed
Zheng Y., Tice C. M., Singh S. B. Bioorg. Med. Chem. Lett. 2014;24:3673. PubMed
Pavlovska T. L., Redkin R. G., Lipson V. V., Atamanuk D. V. Mol. Diversity. 2016;20:299. PubMed
Géant P.-Y., Urban M., Remeš M., Císařová I., Veselý J. Eur. J. Org. Chem. 2013:7979.
Companyó X., Zea A., Alba A.-N. R., Mazzanti A., Moyano A., Rios R. Chem. Commun. 2010;46:6953. PubMed
Meazza M., Rios R. Chem.–Eur. J. 2016;22:9923. PubMed
Allen A. E., MacMillan D. W. C. Chem. Sci. 2012;3:633. PubMed PMC
Meazza M., Rios R. Synthesis. 2016;48:960.
Afewerki S., Cordova A. Chem. Rev. 2016;116:13512. PubMed
Varvounis G., Pyrazol-3-ones. Part IV: Synthesis and Applications, Adv. Heterocyclic Chem., ed. A. R. Katritzky, Academic Press, 2009, vol. 98, p. 143.
Chauhan P., Mahajan S., Enders D. Chem. Commun. 2015;51:12890. PubMed
Hadi V., Koh Y., Sanchez T. W., Barrios D., Neamati N., Jumg K. W. Bioorg. Med. Chem. Lett. 2010;20:6854. PubMed PMC
Janin Y. L. Bioorg. Med. Chem. 2007;15:2479. PubMed
Gutierrez-Lugo M.-T., Bewley C. J. Med. Chem. 2008;51:2606. PubMed PMC
Matthews I. R., PCT Int. Appl. WO 46679, 2005.
Kimata A., Nakagawa H., Ohyama R., Fukuuchi T., Ohta S., Suzuki T., Miyata N. J. Med. Chem. 2007;50:5053. PubMed
Zea A., Alba A.-N. R., Mazzanti A., Moyano A., Rios R. Org. Biomol. Chem. 2011;9:6519. PubMed
Zea A., Alba A.-N. R., Valero G., Calbet T., Font-Bardia M., Moyano A., Rios R. Eur. J. Org. Chem. 2011:2053.
Meazza M., Kamlar M., Jašíková L., Formánek B., Mazzanti A., Roithová J., Veselý J., Rios R. Chem. Sci. 2018;9:6368. PubMed PMC
For an excellent recent review regarding Conia-ene reactions, see: Hack D., Blumel M., Chauhan P., Phillips A. R., Enders D., Chem. Soc. Rev., 2015, 44 , 6059 . PubMed
For an example of cooperative catalysis to develop this reaction, see: Yang T., Ferrali A., Sladojevich F., Campbell L., Dixon D. J., J. Am. Chem. Soc., 2009, 131 , 9140 . PubMed
Xu C., Deiana L., Afewerki S., Incerti-Pradillos C., Cordova O., Guo P., Cordova A., Hedin N. Adv. Synth. Catal. 2015;357:2150.
Deiana L., Jiang Y., Palo-Nieto C., Afewerki S., Incerti-Pradillos C. A., Verho O., Tai C.-W., Johnston E. V., Cordova A. Angew. Chem., Int. Ed. 2014;53:3447. PubMed
Deiana L., Ghisu L., Afewerki S., Verho O., Johnston E. V., Hedin N., Bacsik Z., Cordova A. Adv. Synth. Catal. 2014;56:2485.
Hack D., Chauhan P., Deckers K., Yusuke M., Raabe G., Enders D. Chem. Commun. 2015;51:2266. PubMed PMC
Hack D., Deckers K., Chauhan P., Selling N., Rue-benach L., Mertens L., Schoenebeck F., Enders D. Angew. Chem., Int. Ed. 2016;55:1797. PubMed PMC
Meazza M., Light M. E., Mazzanti A., Rios R. Chem. Sci. 2016;7:984. PubMed PMC
Meazza M., Ceban V., Pitak M. B., Coles S. J., Rios R. Chem.–Eur. J. 2014;20:16853. PubMed
Ceban V., Putaj P., Meazza M., Pitak M. B., Coles S. J., Veselý J., Rios R. Chem. Commun. 2014;50:7447. PubMed
Miyabe H., Takemoto Y. Bull. Chem. Soc. Jpn. 2008;81:785.
Connon S. J. Chem. Commun. 2008:2499. PubMed
Sonsona I. G., Marqués-López E., Herrera R. P. Beilstein J. Org. Chem. 2016;12:505. PubMed PMC
Sladojevich F., Fuentes de Arriba A. L., Ortín I., Yang T., Ferrali A., Paton R. S., Dixon D. J. Chem.–Eur. J. 2013;19:14286. PubMed
Santoro S., Deiana L., Zhao G.-L., Lin S., Himo F., Córdova A., ACS Catal., 2014, 4 , 4474 , and references therein .
For other mechanistic studies using proline (I), see also: Halskov K. S., Donslund B. S., Paz B. M., Jørgensen K. A., Acc. Chem. Res., 2016, 49 , 974 . PubMed
Peng Q., Duarte F., Paton R. S. Chem. Soc. Rev. 2016;45:6093. PubMed
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016.
Becke A. D. J. Chem. Phys. 1997;107:8554.
Chai J.-D., Head-Gordon M. Phys. Chem. Chem. Phys. 2008;10:6615. PubMed
Goerigk L., Grimme S. A. Phys. Chem. Chem. Phys. 2011;13:6670. PubMed
Grošelj U., Seebach D., Badine D. M., Schweizer W. B., Beck A. K., Krossing I., Klose P., Hayashi Y., Uchimaru T. Helv. Chim. Acta. 2009;92:1225.
Marqués-López E., Herrera R. P., Curr. Org. Chem., 2011, 15 , 2311 , and references therein .
Lyngvi E., Bode J. W., Schoenebeck F. A. Chem. Sci. 2012;3:2346. PubMed PMC
Swiderek K., Nödling A. R., Tsai Y.-H., Luk L. Y. P., Moliner V. J. Phys. Chem. A. 2018;44:451. PubMed PMC
Enantioselective Synthesis of Spirocyclic Isoxazolones Using a Conia-Ene Type Reaction
Enantioselective Preparation of Cyclopentene-Based Amino Acids with a Quaternary Carbon Center