Interval variational approach for production control and waste reduction using artificial hummingbird algorithm

. 2024 Dec 20 ; 14 (1) : 30583. [epub] 20241220

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39706873

Grantová podpora
RSP2024R323 King Saud University

Odkazy

PubMed 39706873
PubMed Central PMC11662075
DOI 10.1038/s41598-024-79135-2
PII: 10.1038/s41598-024-79135-2
Knihovny.cz E-zdroje

Nowadays, consumers show more interest towards eco-friendly products. To meet this demand, however, manufacturing processes often generate a lot of hazardous waste, which creates challenges for companies. To tackle these issues, this work develops an optimization model to help companies with managing production, reduce waste, and maintain green product standards. To navigate solution of the profit maximization problem became apparent in the model, a new meta-heuristics called Artificial Hummingbird Algorithm is employed and compared with a wide range of other optimization techniques. The results demonstrate that this algorithm outperforms others on the majority of case studies. Sensitivity analyses are also performed to help managers make informed decisions.

Zobrazit více v PubMed

Saxena, S., Gupta, R. K., Singh, V., Singh, P. & Mishra, N. K. Environmental Sustainability with eco-friendly green inventory model under Fuzzy logics considering carbon emission. J. Emerg. Technol. Innov. Res.5(11), 1–12 (2018).

Tiwari, S., Ahmed, W. & Sarkar, B. Multi-item sustainable green production system under trade-credit and partial backordering. J. Clean. Prod.204, 82–95 (2018).

Tsai, W. H. Green production planning and control for the textile industry by using mathematical programming and industry 4.0 techniques. Energies, 11(8), 2072. 10.3390/en11082072 (2018).

Panja, S. & Mondal, S. K. Analyzing a four-layer green supply chain imperfect production inventory model for green products under type-2 fuzzy credit period. Comput. Ind. Eng.129, 435–453 (2019).

Rout, C., Paul, A., Kumar, R. S., Chakraborty, D. & Goswami, A. Cooperative sustainable supply chain for deteriorating item and imperfect production under different carbon emission regulations. J. Clean. Prod.272, 122170 (2020).

Mishra, U., Wu, J. Z. & Sarkar, B. A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Clean. Prod.256, 120268 (2020).

Ahmadini, A. A. H., Modibbo, U. M., Shaikh, A. A. & Ali, I. Multi-objective optimization modelling of sustainable green supply chain in inventory and production management. Alex. Eng. J.60(6), 5129–5146 (2021).

Mashud, A. H. M. et al. A sustainable inventory model with controllable carbon emissions in green-warehouse farms. J. Clean. Prod.298, 126777 (2021).

Paul, A., Pervin, M., Roy, S. K., Maculan, N. & Weber, G. W. A green inventory model with the effect of carbon taxation. Ann. Oper. Res.309(1), 233–248 (2022).

Das, S., Mandal, G., Manna, A. K., Shaikh, A. A. & Bhunia, A. K. Effects of emission reduction and rework policy in a production system of green products: An interval valued optimal control theoretic approach. Comput. Ind. Eng.179, 109212 (2023).

Bhuniya, S., Pareek, S. & Sarkar, B. A sustainable game strategic supply chain model with multi-factor dependent demand and mark-up under revenue sharing contract. Complex Intell. Syst.9(2), 2101–2128 (2023).

Sepehri, A. & Gholamian, M. R. A green inventory model with imperfect items considering inspection process and quality improvement under different shortages scenarios. Environ. Dev. Sustain.25(4), 3269–3297 (2023).

Ruidas, S., Seikh, M. R., Nayak, P. K. & Tseng, M. L. An interval-valued green production inventory model under controllable carbon emissions and green subsidy via particle swarm optimization. Soft Comput.27(14), 9709–9733 (2023).

Sahu, M. All about green marketing. https://www.analyticssteps.com/blogs/all-about-green-marketing (Accessed on August 1, 2022 at 23:34 IST). (2021)

Hossain, M. M., Nahar, K., Reza, S. & Shaifullah, K. M. Multi-period, multi-product, aggregate production planning under demand uncertainty by considering wastage cost and incentives. WRBR6(2), 170–185 (2016).

Manna, A. K., Dey, J. K. & Mondal, S. K. Controlling GHG emission from industrial waste perusal of production inventory model with fuzzy pollution parameters. Int. J. Syst. Sci. Logist.10.1080/23302674.2018.1479802 (2019).

Sarkar, M. & Sarkar, B. How does an industry reduce waste and consumed energy within a multi-stage smart sustainable biofuel production system?. J. Clean. Prod.262, 121200 (2020).

Ritha, W., & Martin, N. Environmental oriented inventory model and benefits of incineration as waste disposal method. Aryabhatta J. Math. Inform.6(1), 159–164 (2020).

Keller, F., Voss, R. L., Lee, R. P. & Meyer, B. Life cycle assessment of global warming potential of feedstock recycling technologies: Case study of waste gasification and pyrolysis in an integrated inventory model for waste treatment and chemical production in Germany. Resour. Conserv. Recycl.179, 106106 (2022).

Manna, A. K., Rahman, M. S., Shaikh, A. A., Bhunia, A. K. & Konstantaras, I. Modeling of a carbon emitted production inventory system with interval uncertainty via meta-heuristic algorithms. Appl. Math. Model.106, 343–368 (2022).

Köseli, İ, Soysal, M., Çimen, M. & Sel, Ç. Optimizing food logistics through a stochastic inventory routing problem under energy, waste and workforce concerns. J. Clean. Prod.389, 136094 (2023).

Flores, L. A., González-Hernández, I. J., Porras-Loaiza, A. P., & Watters, C. (2024). Advancements in inventory management within the agricultural supply chain: implications for waste reduction and sustainability. Manag. Rev. Q., 1–26.

Patra, K. A production inventory model with imperfect production and risk. Int. J. Appl. Comput. Math.4(3), 91 (2018).

Pal, B. & Adhikari, S. Price-sensitive imperfect production inventory model with exponential partial backlogging. Int. J. Syst. Sci. Oper. Logist.6(1), 27 (2019).

Manna, A. K., Dey, J. K. & Mondal, S. K. Effect of inspection errors on imperfect production inventory model with warranty and price discount dependent demand rate. RAIRO Oper. Res.54(4), 1189–1213 (2020).

Maiti, A. K. Cloudy fuzzy inventory model under imperfect production process with demand dependent production rate. J, Manag. Anal., 8(4), 741–763. (2021).

Narang, P. & De, P. K. An imperfect production-inventory model for reworked items with advertisement, time and price dependent demand for non-instantaneous deteriorating item using genetic algorithm. Int. J. Math. Oper. Res.24(1), 53–77 (2023).

Su, R. H., Weng, M. W., Yang, C. T. & Hsu, C. H. Optimal circular economy and process maintenance strategies for an imperfect production–inventory model with scrap returns. Math.11(14), 3041 (2023).

Lu, C. J., Gu, M., Yang, C. T., Wang, Y. W. & Chen, D. R. Imperfect production–inventory models for deteriorating items with carbon cap-and-trade policy and advance-cash-credit payment. IEEE Access10.1109/ACCESS.2024.3393149 (2024).

Chen, K., Wang, X., Huang, M. & Ching, W. K. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. J. Ind. Manag. Optim.10.3934/jimo.2018013 (2018).

Kumar, P. An inventory planning problem for time-varying linear demand and parabolic holding cost with salvage value. Croat. Oper. Res. Rev.10, 187–199 (2019).

Kumar, P. & Keethika, P. S. Inventory control model with time-linked holding cost, salvage value and probabilistic deterioration following various distributions. Int. J. Innov. Technol. Explor. Eng.9(2), 4399–4404 (2019).

Sahoo, C. K., Paul, K. C. & Kumar, S. Two warehouses EOQ inventory model of degrading matter having exponential decreasing order, limited suspension in price including salvage value. SN Comput. Sci.1, 1–9 (2020).

Patel, A., Talati, I., Oza, A. D., Burduhos-Nergis, D. D. & Burduhos-Nergis, D. P. A Profit Maximization Inventory Model: Stock-Linked Demand Considering Salvage Value with Tolerable Deferred Payments. Math.10(20), 3830 (2022).

Wu, S. M., Chan, F. T. & Chung, S. H. The influence of positive and negative salvage values on supply chain financing strategies. Ann. Oper. Res.315(1), 535–563 (2022).

Bachar, R. K., Bhuniya, S., AlArjani, A., Ghosh, S. K. & Sarkar, B. A sustainable smart production model for partial outsourcing and reworking. Math. Biosci. Eng.20(5), 7981–8009 (2023). PubMed

Bhuniya, S. et al. An application of a smart production system to control deteriorated inventory. RAIRO Oper. Res.57(5), 2435–2464 (2023).

Kausar, A., Hasan, A., Maheshwari, S., Gautam, P. & Jaggi, C. K. Sustainable production model with advertisement and market price dependent demand under salvage option for defectives. Opsearch61(1), 315–333 (2024).

Khare, G. & Sharma, G. An Inventory Model with Fluctuate Ordering and Holding Cost with Salvage Value for Time Sensitive Demand and Partial Backlogging. Commun. Appl. Nonlinear Anal.31(1), 177–186 (2024).

Maity, K. & Maiti, M. Possibility and necessity constraints and their defuzzification—a multi-item production-inventory scenario via optimal control theory. Eur. J. Oper. Res.177(2), 882–896 (2007).

Das, B. & Maiti, M. Fuzzy stochastic inequality and equality possibility constraints and their application in a production-inventory model via optimal control method. J. comput. Sci.4(5), 360–369 (2013).

Guchhait, P., Maiti, M. K. & Maiti, M. Production-inventory models for a damageable item with variable demands and inventory costs in an imperfect production process. Int. J. Prod. Econ.144(1), 180–188 (2013).

Pan, X. & Li, S. Optimal control of a stochastic production–inventory system under deteriorating items and environmental constraints. Int. J. Prod. Res.53(2), 607–628 (2015).

Roul, J. N., Maity, K., Kar, S. & Maiti, M. Optimal control problem for an imperfect production process using fuzzy variational principle. J. Intell. Fuzzy Syst.32(1), 565–577 (2017).

Roul, J. N., Maity, K., Kar, S. & Maiti, M. Multi-item Optimal control problem with fuzzy costs and constraints using Fuzzy variational principle. RAIRO Oper. Res.53(3), 1061–1082 (2019).

Ruidas, S., Seikh, M. R. & Nayak, P. K. A production inventory model with interval-valued carbon emission parameters under price-sensitive demand. Comput. Ind. Eng.154, 107154 (2021).

Ruidas, S., Seikh, M. R., Nayak, P. K. & Sarkar, B. A single period production inventory model in interval environment with price revision. Int. J. Appl. Comput. Math.5, 1–20 (2019).

Shaikh, A. A., Cárdenas-Barrón, L. E. & Tiwari, S. A two-warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under inflationary conditions. Neural Comput. Appl.31, 1931–1948 (2019).

Mondal, R., Das, S., Das, S. C., Shaikh, A. A. & Bhunia, A. K. Pricing strategies and advance payment-based inventory model with partially backlogged shortages under interval uncertainty. Int. J. Syst. Sci. Oper. Logist.10.1080/23302674.2022.2070296 (2023).

Bhunia, A. K. & Samanta, S. S. A study of interval metric and its application in multi-objective optimization with interval objectives. Comput. Ind. Eng.74, 169–178 (2014).

Zhao, W., Wang, L. & Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng.388, 114194 (2022).

Toptal, A., Özlü, H. & Konur, D. Joint decisions on inventory replenishment and emission reduction investment under different emission regulations. Int. J. Prod. Res.52(1), 243–269 (2014).

Hovelaque, V. & Bironneau, L. The carbon-constrained EOQ model with carbon emission dependent demand. Int. J. Prod. Econ.164, 285–291 (2015).

Jawad, H., Jaber, M. Y., Bonney, M. & Rosen, M. A. Deriving an exergetic economic production quantity model for better sustainability. Appl. Math. Model.40(11–12), 6026–6039 (2016).

Lin, T. Y. & Sarker, B. R. A pull system inventory model with carbon tax policies and imperfect quality items. Appl. Math. Model.50, 450–462 (2017).

Zadjafar, M. A. & Gholamian, M. R. A sustainable inventory model by considering environmental ergonomics and environmental pollution, case study: Pulp and paper mills. J. Clean. Prod.199, 444–458 (2018).

Shen, Y., Shen, K. & Yang, C. A production inventory model for deteriorating items with collaborative preservation technology investment under carbon tax. Sustain.11(18), 5027 (2019).

Lu, C. J., Lee, T. S., Gu, M. & Yang, C. T. A multistage sustainable production–inventory model with carbon emission reduction and price-dependent demand under Stackelberg game. Appl. Sci.10(14), 4878 (2020).

Shi, Y., Zhang, Z., Chen, S. C., Cárdenas-Barrón, L. E. & Skouri, K. Optimal replenishment decisions for perishable products under cash, advance, and credit payments considering carbon tax regulations. Int. J. Prod. Econ.223, 107514 (2020).

Jauhari, W. A. & Wangsa, I. D. A manufacturer-retailer inventory model with remanufacturing, stochastic demand, and green investments. Process Integr. Optim. Sustain.6(2), 253–273 (2022).

Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE.

Dorigo, M. Ant colony optimization. Scholarpedia2(3), 1461 (2007).

Teodorović, D. (2009). Bee colony optimization (BCO). In Innovations in swarm intelligence (pp. 39–60). Berlin, Heidelberg: Springer Berlin Heidelberg.

Sun, J., Fang, W., Wu, X., Palade, V. & Xu, W. Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evol. Comput.20(3), 349–393 (2012). PubMed

Gandomi, A. H., Yang, X. S. & Alavi, A. H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput.29, 17–35 (2013).

Odili, J. B., Kahar, M. N. M. & Anwar, S. African buffalo optimization: a swarm-intelligence technique. Procedia Comput. Sci.76, 443–448 (2015).

Kulkarni, A. J., Kale, I. R., Shastri, A. & Khandekar, A. Snail Homing and Mating Search algorithm: a novel bio-inspired metaheuristic algorithm. Soft Comput.10.1007/s00500-024-09858-x (2024).

Yang, X. S. & He, X. Firefly algorithm: recent advances and applications. Int. J. Swarm Intell.1(1), 36–50 (2013).

Hashim, F. A. & Hussien, A. G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst.10.1016/j.knosys.2022.108320 (2022).

Hämäläinen, W. Kingfisher: an efficient algorithm for searching for both positive and negative dependency rules with statistical significance measures. Knowl. Inf. Syst.32, 383–414 (2012).

Zhang, J., Chung, H. S. H. & Lo, W. L. Clustering-based adaptive crossover and mutation probabilities for genetic algorithms. IEEE Trans. Evol. Comput.11(3), 326–335 (2007).

Sadollah, A., Bahreininejad, A., Eskandar, H. & Hamdi, M. Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput.13(5), 2592–2612 (2013).

Gonzalez-Fernandez, Y., & Chen, S. (2015, May). Leaders and followers—a new metaheuristic to avoid the bias of accumulated information. In 2015 IEEE congress on evolutionary computation (CEC) (pp. 776–783). IEEE.

Mousavirad, S. J. & Ebrahimpour-Komleh, H. Human mental search: a new population-based metaheuristic optimization algorithm. Appl. Intell.47, 850–887 (2017).

Holland, J. H. An efficient genetic algorithm for the traveling salesman problem. Eur. J. Oper. Res.145, 606–617 (1975).

Storn, R. & Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim.11, 341–359 (1997).

Cao, Y. J., & Wu, Q. H. (1997, April). Evolutionary programming. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC’97) (pp. 443–446). IEEE.

Yang, J. & Soh, C. K. Structural optimization by genetic algorithms with tournament selection. J. Comput. Civ. Eng.11(3), 195–200 (1997).

Blanco, A., Delgado, M. & Pegalajar, M. C. A real-coded genetic algorithm for training recurrent neural networks. Neural Netw.14(1), 93–105 (2001). PubMed

Das, S., Mondal, R., Shaikh, A. A. & Bhunia, A. K. An application of control theory for imperfect production problem with carbon emission investment policy in interval environment. J. Frank. Inst.359(5), 1925–1970 (2022).

Mirjalili, S., Mirjalili, S. M. & Lewis, A. Grey wolf optimizer. Adv. Eng. Softw.69, 46–61 (2014).

Xue, J. & Shen, B. A novel swarm intelligence optimization approach: sparrow search algorithm. Syst. Sci. Control Eng.8(1), 22–34 (2020).

Rao, R. V. & Rao, R. V. Teaching-learning-based optimization algorithm (Springer International Publishing, 2016).

Mirjalili, S. & Lewis, A. The whale optimization algorithm. Adv. Eng. Softw.95, 51–67 (2016).

Gandomi, A. H. & Alavi, A. H. Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul.17(12), 4831–4845 (2012).

Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw.83, 80–98 (2015).

Yadav, A. AEFA: Artificial electric field algorithm for global optimization. Swarm Evol. Comput.48, 93–108 (2019).

Chen, C. J., Jain, N. & Yang, S. A. The impact of trade credit provision on retail inventory: An empirical investigation using synthetic controls. Manag. Sci.69(8), 4591–4608 (2023).

Xie, X., Shi, X., Gu, J. & Xu, X. Examining the contagion effect of credit risk in a supply chain under trade credit and bank loan offering. Omega115, 102751 (2023).

Kaushik, J. The inventory model for deteriorating items with permissible delay in payment and investment in preservative technology: a pragmatic approach. Int. J. Appl. Comput. Math.9(6), 128 (2023).

Sharma, M. K. & Mandal, D. An inventory model with preservation technology investments and stock-varying demand under advanced payment scheme. Opsearch10.1007/s12597-024-00743-7 (2024).

Ruidas, S., Seikh, M. R. & Nayak, P. K. Pricing strategy in an interval-valued production inventory model for high-tech products under demand disruption and price revision. J. Ind. Manag. Optim.19(9), 6451–6477 (2023).

Hu, H., Guo, S., Zhen, L., Wang, S. & Bian, Y. A multi-product and multi-period supply chain network design problem with price-sensitive demand and incremental quantity discount. Expert Syst. Appl.238, 122005 (2024).

Rahman, M. S., Duary, A., Shaikh, A. A. & Bhunia, A. K. An application of real coded Self-organizing Migrating Genetic Algorithm on a two-warehouse inventory problem with Type-2 interval valued inventory costs via mean bounds optimization technique. Appl. Soft Comput.124, 109085 (2022).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...