Explainability of a Deep Learning-Based Classification Model for Antineutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39990883
PubMed Central
PMC11843110
DOI
10.1016/j.ekir.2024.11.005
PII: S2468-0249(24)02016-3
Knihovny.cz E-zdroje
- Klíčová slova
- ANCA, artificial intelligence, histopathology, machine learning, vasculitis,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The histopathological classification for antineutrophil cytoplasmic autoantibody (ANCA)-associated glomerulonephritis (ANCA-GN) is a well-established tool to reflect the variety of patterns and severity of lesions that can occur in kidney biopsies. It was demonstrated previously that deep learning (DL) approaches can aid in identifying histopathological classes of kidney diseases; for example, of diabetic kidney disease. These models can potentially be used as decision support tools for kidney pathologists. Although they reach high prediction accuracies, their "black box" structure makes them nontransparent. Explainable (X) artificial intelligence (AI) techniques can be used to make the AI model decisions accessible for human experts. We have developed a DL-based model, which detects and classifies the glomerular lesions according to the Berden classification. METHODS: Kidney biopsy slides of 80 patients with ANCA-GN from 3 European centers, who underwent a diagnostic kidney biopsy between 1991 and 2011, were included. We also investigated the explainability of our model using Gradient-weighted Class Activation Mapping (Grad-CAM) heatmaps. These maps were analyzed by pathologists to compare the decision-making criteria of humans and the DL model and assess the impact of different training settings. RESULTS: The DL model shows a prediction accuracy of 93% for classifying lesions. The heatmaps from our trained DL models showed that the most predictive areas in the image correlated well with the areas deemed to be important by the pathologist. CONCLUSION: We present the first DL-based computational pipeline for classifying ANCA-GN kidney biopsies as per the Berden classification. XAI techniques helped us to make the decision-making criteria of the DL accessible for renal pathologists, potentially improving clinical decision-making.
Department of Internal Medicine Hôpital Cochin AP HP Paris France
Department of Pathology Leiden University Medical Center Leiden The Netherlands
Faculty of Computer Science Otto von Guericke University Magdeburg Germany
Zobrazit více v PubMed
Hermsen M., Smeets B., Hilbrands L., van der Laak J. Artificial intelligence: is there a potential role in nephropathology? Nephrol Dial Transplant. 2022;37:438–440. doi: 10.1093/ndt/gfaa181. PubMed DOI PMC
Fogo A., Kronbichler A., Bajema I.M. AI’s threat to the medical profession. JAMA. 2024;331:471–472. doi: 10.1001/jama.2024.0018. PubMed DOI
Hermsen M., de Bel T., den Boer M., et al. Deep learning-based histopathologic assessment of kidney tissue. J Am Soc Nephrol. 2019;30:1968–1979. doi: 10.1681/ASN.2019020144. PubMed DOI PMC
Bouteldja N., Klinkhammer B.M., Bülow R.D., et al. Deep learning-based segmentation and quantification in experimental kidney histopathology. J Am Soc Nephrol. 2021;32:52–68. doi: 10.1681/ASN.2020050597. PubMed DOI PMC
LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI
Jayapandian C.P., Chen Y., Janowczyk A.R., et al. Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Kidney Int. 2021;99:86–101. doi: 10.1016/j.kint.2020.07.044. PubMed DOI PMC
Yang C.K., Lee C.Y., Wang H.S., et al. Glomerular disease classification and lesion identification by machine learning. Biomed J. 2022;45:675–685. doi: 10.1016/j.bj.2021.08.011. PubMed DOI PMC
Hermsen M., Ciompi F., Adefidipe A., et al. Convolutional neural networks for the evaluation of chronic and inflammatory lesions in kidney transplant biopsies. Am J Pathol. 2022;192:1418–1432. doi: 10.1016/j.ajpath.2022.06.009. PubMed DOI
Jennette J.C., Nachman P.H. ANCA glomerulonephritis and vasculitis. Clin J Am Soc Nephrol. 2017;12:1680–1691. doi: 10.2215/CJN.02500317. PubMed DOI PMC
Berden A.E., Ferrario F., Hagen E.C., et al. Histopathologic classification of ANCA-associated glomerulonephritis. J Am Soc Nephrol. 2010;21:1628–1636. doi: 10.1681/ASN.2010050477. PubMed DOI
Wang F., Kaushal R., Khullar D. Should health care demand interpretable artificial intelligence or accept “black box” medicine? Ann Intern Med. 2020;172:59–60. doi: 10.7326/M19-2548. PubMed DOI
Selvaraju R.R., Cogswell M., Das A., Vedantam R., Parikh D., Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 2020;128:336–359. doi: 10.1007/s11263-019-01228-7. DOI
van Daalen E.E., Wester Trejo M.A.C., Göçeroğlu A., et al. Developments in the histopathological classification of ANCA-associated glomerulonephritis. Clin J Am Soc Nephrol. 2020;15:1103–1111. doi: 10.2215/CJN.14561119. PubMed DOI PMC
Automated slide analysis platform. https://computationalpathologygroup.github.io/ASAP/
Ronneberger O., Fischer P., Brox T. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Navab N., Hornegger J., Wells W.M., Frangi A.F., editors. Springer International Publishing; 2015. U-net: convolutional networks for biomedical image segmentation 2015; pp. 234–241.
Deng J, Dong W, Socher R, Li LJ, Kai Li, Li Fei-Fei. ImageNet: a large-scale hierarchical image database. Paper presented at: IEEE Conference on Computer Vision and Pattern Recognition; June 20-25, 2009; Miami, Florida. https://doi.org/10.1109/CVPR.2009.5206848 DOI
Tan M, Le Q. EfficientNet: rethinking model scaling for convolutional neural networks. Proceedings of Machine Learning Research. Published 2019. Accessed November 4, 2024. https://proceedings.mlr.press/v97/tan19a.html
Wang J., Liu Q., Xie H., Yang Z., Zhou H. Boosted EfficientNet: detection of lymph node metastases in breast cancer using convolutional neural networks. Cancers. 2021;13:661. doi: 10.3390/cancers13040661. PubMed DOI PMC
Kallipolitis A., Revelos K., Maglogiannis I. Ensembling EfficientNets for the classification and interpretation of histopathology images. Algorithms. 2021;14:278. doi: 10.3390/a14100278. DOI
Ahmad N., Asghar S., Gillani S.A. Transfer learning-assisted multi-resolution breast cancer histopathological images classification. Vis Comput. 2022;38:2751–2770. doi: 10.1007/s00371-021-02153-y. DOI
Byeon S.-J., Park J., Ah Cho Y., Cho B.-J. Automated histological classification for digital pathology images of colonoscopy specimen via deep learning. Sci Rep. 2022;12 doi: 10.1038/s41598-022-16885-x. PubMed DOI PMC
Munien C., Viriri S. Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with EfficientNets. Comput Intell Neurosci. 2021;2021 doi: 10.1155/2021/5580914. PubMed DOI PMC
DiagSet: a dataset for prostate cancer histopathological image classification. GitHub. https://github.com/michalkoziarski/DiagSet PubMed PMC
Bajema I.M., Hagen E.C., Hermans J., et al. The renal histopathology in systemic vasculitis: an international survey study of inter- and intra-observer agreement. Nephrol Dial Transplant. 1996;11:1989–1995. doi: 10.1093/oxfordjournals.ndt.a027086. PubMed DOI
Ginley B., Lutnick B., Jen K.Y., et al. Computational segmentation and classification of diabetic glomerulosclerosis. J Am Soc Nephrol. 2019;30:1953–1967. doi: 10.1681/ASN.2018121259. PubMed DOI PMC
Tervaert T.W., Mooyaart A.L., Amann K., et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–563. doi: 10.1681/ASN.2010010010. PubMed DOI
Basso M.N., Barua M., John R., Khademi A. Explainable biomarkers for automated glomerular and patient-level disease classification. Kidney360. 2022;3:534–545. doi: 10.34067/KID.0005102021. PubMed DOI PMC
Kers J., Bülow R.D., Klinkhammer B.M., et al. Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study. Lancet Digit Health. 2022;4:e18–e26. doi: 10.1016/S2589-7500(21)00211-9. PubMed DOI
Bai B., Yang X., Li Y., Zhang Y., Pillar N., Ozcan A. Deep learning-enabled virtual histological staining of biological samples. Light Sci Appl. 2023;12:57. doi: 10.1038/s41377-023-01104-7. PubMed DOI PMC