• This record comes from PubMed

Explainability of a Deep Learning-Based Classification Model for Antineutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis

. 2025 Feb ; 10 (2) : 457-465. [epub] 20241114

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Links

PubMed 39990883
PubMed Central PMC11843110
DOI 10.1016/j.ekir.2024.11.005
PII: S2468-0249(24)02016-3
Knihovny.cz E-resources

INTRODUCTION: The histopathological classification for antineutrophil cytoplasmic autoantibody (ANCA)-associated glomerulonephritis (ANCA-GN) is a well-established tool to reflect the variety of patterns and severity of lesions that can occur in kidney biopsies. It was demonstrated previously that deep learning (DL) approaches can aid in identifying histopathological classes of kidney diseases; for example, of diabetic kidney disease. These models can potentially be used as decision support tools for kidney pathologists. Although they reach high prediction accuracies, their "black box" structure makes them nontransparent. Explainable (X) artificial intelligence (AI) techniques can be used to make the AI model decisions accessible for human experts. We have developed a DL-based model, which detects and classifies the glomerular lesions according to the Berden classification. METHODS: Kidney biopsy slides of 80 patients with ANCA-GN from 3 European centers, who underwent a diagnostic kidney biopsy between 1991 and 2011, were included. We also investigated the explainability of our model using Gradient-weighted Class Activation Mapping (Grad-CAM) heatmaps. These maps were analyzed by pathologists to compare the decision-making criteria of humans and the DL model and assess the impact of different training settings. RESULTS: The DL model shows a prediction accuracy of 93% for classifying lesions. The heatmaps from our trained DL models showed that the most predictive areas in the image correlated well with the areas deemed to be important by the pathologist. CONCLUSION: We present the first DL-based computational pipeline for classifying ANCA-GN kidney biopsies as per the Berden classification. XAI techniques helped us to make the decision-making criteria of the DL accessible for renal pathologists, potentially improving clinical decision-making.

See more in PubMed

Hermsen M., Smeets B., Hilbrands L., van der Laak J. Artificial intelligence: is there a potential role in nephropathology? Nephrol Dial Transplant. 2022;37:438–440. doi: 10.1093/ndt/gfaa181. PubMed DOI PMC

Fogo A., Kronbichler A., Bajema I.M. AI’s threat to the medical profession. JAMA. 2024;331:471–472. doi: 10.1001/jama.2024.0018. PubMed DOI

Hermsen M., de Bel T., den Boer M., et al. Deep learning-based histopathologic assessment of kidney tissue. J Am Soc Nephrol. 2019;30:1968–1979. doi: 10.1681/ASN.2019020144. PubMed DOI PMC

Bouteldja N., Klinkhammer B.M., Bülow R.D., et al. Deep learning-based segmentation and quantification in experimental kidney histopathology. J Am Soc Nephrol. 2021;32:52–68. doi: 10.1681/ASN.2020050597. PubMed DOI PMC

LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI

Jayapandian C.P., Chen Y., Janowczyk A.R., et al. Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Kidney Int. 2021;99:86–101. doi: 10.1016/j.kint.2020.07.044. PubMed DOI PMC

Yang C.K., Lee C.Y., Wang H.S., et al. Glomerular disease classification and lesion identification by machine learning. Biomed J. 2022;45:675–685. doi: 10.1016/j.bj.2021.08.011. PubMed DOI PMC

Hermsen M., Ciompi F., Adefidipe A., et al. Convolutional neural networks for the evaluation of chronic and inflammatory lesions in kidney transplant biopsies. Am J Pathol. 2022;192:1418–1432. doi: 10.1016/j.ajpath.2022.06.009. PubMed DOI

Jennette J.C., Nachman P.H. ANCA glomerulonephritis and vasculitis. Clin J Am Soc Nephrol. 2017;12:1680–1691. doi: 10.2215/CJN.02500317. PubMed DOI PMC

Berden A.E., Ferrario F., Hagen E.C., et al. Histopathologic classification of ANCA-associated glomerulonephritis. J Am Soc Nephrol. 2010;21:1628–1636. doi: 10.1681/ASN.2010050477. PubMed DOI

Wang F., Kaushal R., Khullar D. Should health care demand interpretable artificial intelligence or accept “black box” medicine? Ann Intern Med. 2020;172:59–60. doi: 10.7326/M19-2548. PubMed DOI

Selvaraju R.R., Cogswell M., Das A., Vedantam R., Parikh D., Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 2020;128:336–359. doi: 10.1007/s11263-019-01228-7. DOI

van Daalen E.E., Wester Trejo M.A.C., Göçeroğlu A., et al. Developments in the histopathological classification of ANCA-associated glomerulonephritis. Clin J Am Soc Nephrol. 2020;15:1103–1111. doi: 10.2215/CJN.14561119. PubMed DOI PMC

Automated slide analysis platform. https://computationalpathologygroup.github.io/ASAP/

Ronneberger O., Fischer P., Brox T. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Navab N., Hornegger J., Wells W.M., Frangi A.F., editors. Springer International Publishing; 2015. U-net: convolutional networks for biomedical image segmentation 2015; pp. 234–241.

Deng J, Dong W, Socher R, Li LJ, Kai Li, Li Fei-Fei. ImageNet: a large-scale hierarchical image database. Paper presented at: IEEE Conference on Computer Vision and Pattern Recognition; June 20-25, 2009; Miami, Florida. https://doi.org/10.1109/CVPR.2009.5206848 DOI

Tan M, Le Q. EfficientNet: rethinking model scaling for convolutional neural networks. Proceedings of Machine Learning Research. Published 2019. Accessed November 4, 2024. https://proceedings.mlr.press/v97/tan19a.html

Wang J., Liu Q., Xie H., Yang Z., Zhou H. Boosted EfficientNet: detection of lymph node metastases in breast cancer using convolutional neural networks. Cancers. 2021;13:661. doi: 10.3390/cancers13040661. PubMed DOI PMC

Kallipolitis A., Revelos K., Maglogiannis I. Ensembling EfficientNets for the classification and interpretation of histopathology images. Algorithms. 2021;14:278. doi: 10.3390/a14100278. DOI

Ahmad N., Asghar S., Gillani S.A. Transfer learning-assisted multi-resolution breast cancer histopathological images classification. Vis Comput. 2022;38:2751–2770. doi: 10.1007/s00371-021-02153-y. DOI

Byeon S.-J., Park J., Ah Cho Y., Cho B.-J. Automated histological classification for digital pathology images of colonoscopy specimen via deep learning. Sci Rep. 2022;12 doi: 10.1038/s41598-022-16885-x. PubMed DOI PMC

Munien C., Viriri S. Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with EfficientNets. Comput Intell Neurosci. 2021;2021 doi: 10.1155/2021/5580914. PubMed DOI PMC

DiagSet: a dataset for prostate cancer histopathological image classification. GitHub. https://github.com/michalkoziarski/DiagSet PubMed PMC

Bajema I.M., Hagen E.C., Hermans J., et al. The renal histopathology in systemic vasculitis: an international survey study of inter- and intra-observer agreement. Nephrol Dial Transplant. 1996;11:1989–1995. doi: 10.1093/oxfordjournals.ndt.a027086. PubMed DOI

Ginley B., Lutnick B., Jen K.Y., et al. Computational segmentation and classification of diabetic glomerulosclerosis. J Am Soc Nephrol. 2019;30:1953–1967. doi: 10.1681/ASN.2018121259. PubMed DOI PMC

Tervaert T.W., Mooyaart A.L., Amann K., et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–563. doi: 10.1681/ASN.2010010010. PubMed DOI

Basso M.N., Barua M., John R., Khademi A. Explainable biomarkers for automated glomerular and patient-level disease classification. Kidney360. 2022;3:534–545. doi: 10.34067/KID.0005102021. PubMed DOI PMC

Kers J., Bülow R.D., Klinkhammer B.M., et al. Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study. Lancet Digit Health. 2022;4:e18–e26. doi: 10.1016/S2589-7500(21)00211-9. PubMed DOI

Bai B., Yang X., Li Y., Zhang Y., Pillar N., Ozcan A. Deep learning-enabled virtual histological staining of biological samples. Light Sci Appl. 2023;12:57. doi: 10.1038/s41377-023-01104-7. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...