In vivo biocontrol potential of Bacillus plant growth-promoting rhizobacteria against pectinolytic plant pathogens

. 2025 Jun ; 70 (3) : 689-697. [epub] 20241031

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39480641
Odkazy

PubMed 39480641
DOI 10.1007/s12223-024-01214-8
PII: 10.1007/s12223-024-01214-8
Knihovny.cz E-zdroje

Bacillus is well known for producing a wide range of compounds that inhibit microbial phytopathogens. From this perspective, we were interested in evaluating the biocontrol potential of 5 plant growth-promoting rhizobacteria Bacillus species (PGPR-Bacillus) on 21 microbial pectinolytic plant pathogens isolated from previous studies. Phytopathogenicity and in vivo biocontrol potential of PGPR curative and preventive treatments were investigated from this angle. Overall, the pathogenicity test on healthy tomato, zucchini, and mandarin showed low rot to no symptoms for all PGPR strain culture treatments. Conversely, zucchini pre-treated with PGPR strains B. circulans and B. cereus for 72 h showed no signs of soft rot and remained healthy when in vitro contaminated with phytopathogens (Neisseria cinerea and Pichia anomala). Additionally, the PGPR-Bacillus strains were shown to be effective in mitigating the symptoms of soft rot in tomatoes, zucchini, and oranges using in vivo curative treatment. It is true that the majority of pectinolytic phytopathogenic strains exhibited antibiotic resistance. In vivo tests revealed that PGPR-Bacillus cell culture was effective against plant pathogens. Thus, PGPR-Bacillus can be considered a potential biocontrol agent for pectinolytic plant pathogens.

Zobrazit více v PubMed

Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agri Ecosyst Environ 74:19–31. https://doi.org/10.1016/B978-0-444-50019-9.50005-4 DOI

Awais M, Pervez A, Yaqub A, Shah MM (2010) Production of antimicrobial metabolites by Bacillus subtilis immobilized in polyacrylamide gel. Pakistan J Zool 42(3):267–275

Benaissa A (2023a) Plant beneficial bacteria from rhizosphere as biocontrol agents of phytopathogens. Vegetos 1–4. https://doi.org/10.1007/s42535-022-00555-4

Benaissa A (2023b) Rhizosphere: Role of bacteria to manage plant diseases for sustainable agriculture. J Basic Microbiol 1–14. https://doi.org/10.1002/jobm.202300361

Benaissa A, Basseddik A, Chegga A, Djebbar R (2024) Halotolerant Bacillus species as plant growth promoting rhizobacteria from hyper – arid area of algeria. J Agricul Sci 30(2):400–412. https://doi.org/10.15832/ankutbd.1249228

Benaissa A, Djebbar R, Abderrahmani A (2018) iversity and physiological properties of plant growth promoting rhizobacteria of Rhus tripartitus rhizosphere from ahaggar (Algeria). Adv Horti Sci 32(4):525–534. https://doi.org/10.13128/ahs-22424 DOI

Benaissa A, Djebbar R, Abderrahmani A (2019) Antagonistic effect of plant growth promoting rhizobacteria associated with Rhus tripartitus on gram positive and negative bacteria. An Univ Oradea, Fasc Biol 26(2)

Benaissa A, Djellout NC, Baika K, Bamebarek H (2021) Diversity of microorganisms causing soft rot disease of fruits and vegetables marketed in tamanghasset (Algeria). Carpathian J Food Sci Technol 3(13):97–108. https://doi.org/10.34302/crpjfst/2021.13.3.8 DOI

Brimecombe MJ, De Liej FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The Rhizospher. Marcel Dekker, New York, pp 95–140

CLSI (2010) Clinical and laboratory standards institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 8th edn. Pennsylvania, USA

Cui W, He P, Munir S, He P, Li X, Li Y, Yang L, He Y (2019) Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601–Y2 for biocontrol of southern corn leaf blight. Bio Control 139:104080. https://doi.org/10.1016/j.biocontrol.2019.104080 DOI

Djellout NC, Baika K, Bamebarek H, Benaissa A (2020) Microbial soft rot of cultivated fruits and vegetables. A Review Alg J Biosc 1(2):37–45

Drablos F, Nicholson D, Ronning M (1999) EXAFS study of zinc coordination in bacitracin A. Biochim Biophys Acta 1431:433–442. https://doi.org/10.1016/S0167-4838(99)00064-3 PubMed DOI

Fira D, Dimkić I, Berić T, Lozo J, Stanković S (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044 PubMed DOI

Guo D, Yuan C, Luo Y, Chen Y, Lu M, Chen G, Ren G, Cui C, Zhang J, An D (2020) Biocontrol of tobacco black shank disease (Phytophthora nicotianae) by Bacillus velezensis Ba168. Pest Biochem Phys 165:104523. https://doi.org/10.1016/j.pestbp.2020.01.004 DOI

Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61:217–227. https://doi.org/10.1016/j.aoas.2016.07.003 DOI

Kazerooni EA, Maharachchikumbura SS, Al-Sadi AM, Kang SM, Yun BW, Lee IJ (2021) Biocontrol potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum. J Fungi 7(6):472. https://doi.org/10.3390/jof7060472 DOI

Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2006) Purification, characterization and synergistic activity of [beta]-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89–24 against rice blast and sheath blight. Enzyme Microb Technol 38:990–997. https://doi.org/10.1016/j.enzmictec.2005.08.030 DOI

Lindsay D, Brozelvs and Von HolyA, (2006) Biofllm-spore response in Bacillus cereus and Bacillus subtilus during nutrient limitation. J Food Prot 69(5):1168–1172. https://doi.org/10.4315/0362-028X-69.5.1168 PubMed DOI

Lounaci L, Athmani-Guemouri S (2014) Action de Paenibacillus polymyxa SGK2 sur quelques champignons de la fusariose du blé dur (Triticum durum) en Algérie. Alg J Natl Prod 2(2):35–42

Mahapatra S, Yadav R, Ramakrishna W (2022) Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J App Microbiol 132(5):3543–3562. https://doi.org/10.1111/jam.15480 DOI

Mahmoud DAR, Mahmoud AA, Gomaa AM (2008) Antagonistic activities of potato associated bacteria via their production of hydrolytic enzymes with special reference to pectinases. Res J Agric Boil Sci 4(5):575–584

Merdia B, Rokaia BM, Kheira F, Asmaa B (2020) Biological control by Plant Growth Promoting Rhizobacteria. Alg J Bio 1(02):30–36

Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x

Pal KK, Gardener BM (2006) Biological control of plant pathogens. The Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02 DOI

Patel R, Dodia M, Singh SP (2005) Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: production and optimization. Proc Biochem 40:3569–3575. https://doi.org/10.1016/j.procbio.2005.03.049 DOI

Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Environ Microbiol 51(5):553–563. https://doi.org/10.1007/s002530051432 DOI

Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions: Bacillus subtilis antibiotics. Mol Microbiol 56:845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x PubMed DOI

Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2(3):194–208. https://doi.org/10.1089/ind.2006.2.194 DOI

Upadhyay SK, Saxena AK, Singh JS, Singh DP (2019) Impact of native ST-PGPR (Bacillus pumilus; EU927414) on PGP traits, antioxidants activities, wheat plant growth and yield under salinity. Clim Chang Environ Sustain 7(2):157–168. https://doi.org/10.1111/j.1365-2958.2005.04587.x DOI

Vinodkumar S, Nakkeeran S, Renukadevi P, Mohankumar S (2018) Diversity and antiviral potential of rhizospheric and endophytic Bacillus species and phyto-antiviral principles against tobacco streak virus in cotton. Agric Ecosyst Environ 267:42–51. https://doi.org/10.1016/j.agee.2018.08.008 DOI

Xia Y, Farooq MA, Javed MT, Kamran MA, Mukhtar T, Ali J, Tabassum T, Rehman S, Munis MFH, Sultan T, Chaudhary HJ (2020) Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiol Bioch 151:640–649. https://doi.org/10.1016/j.plaphy.2020.04.016 DOI

Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM (2019) ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 9(7):343. https://doi.org/10.3390/agronomy9070343 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...