MicroRNA Analysis in Meningiomas with Different Degrees of Tissue Stiffness: A Potential Tool for Effective Preoperative Planning
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-03-00559
Ministerstvo ZdravotnictvÃ- Ceské Republiky
PubMed
39485054
PubMed Central
PMC11970888
DOI
10.1227/neu.0000000000003222
PII: 00006123-990000000-01413
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVES: Meningioma, the most common primary intracranial tumor, presents challenges in surgical treatment because of varying tissue stiffness. This study explores the molecular background of meningioma stiffness, a critical factor in surgical planning and prognosis, focusing on the utility of microRNAs (miRNAs) as diagnostic biomarkers of tissue stiffness. METHODS: Patients with meningiomas treated surgically at the University Hospital Brno were included in this study. Total RNA, isolated from tumor tissue samples, underwent quality control and small RNA sequencing to analyze miRNA expression. Differentially expressed miRNAs were identified, and their association with tumor stiffness was assessed. RESULTS: This study identified specific miRNAs differentially expressed in meningiomas with different stiffness levels. Key miRNAs, such as miR-31-5p and miR-34b-5p, showed significant upregulation in stiffer meningiomas. These findings were validated using reverse transcription-quantitative polymerase chain reaction, revealing a potential link between miRNA expression and tumor consistency. The expression of miR-31-5p was most notably associated with the stiffness of the tumor tissue (sensitivity = 71% and specificity = 83%). CONCLUSION: This research highlights the potential of miRNAs as biomarkers for determining meningioma tissue stiffness. Identifying specific miRNAs associated with tumor consistency could improve preoperative planning and patient prognosis. These findings pave the way for further exploration of miRNAs in the clinical assessment of meningiomas.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Biophysics Faculty of Medicine Masaryk University Brno Czech Republic
Department of Comprehensive Cancer Care Masaryk Memorial Cancer Institute Brno Czech Republic
Department of Neurosurgery University Hospital Brno Brno Czech Republic
Department of Pathology University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Holleczek B, Zampella D, Urbschat S, et al. Incidence, mortality and outcome of meningiomas: a population-based study from Germany. Cancer Epidemiol. 2019;62:101562. PubMed
Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016-2020. Neuro Oncol. 2023;25(Supplement_4):iv1-iv99. PubMed PMC
Buerki RA, Horbinski CM, Kruser T, Horowitz PM, James CD, Lukas RV. An overview of meningiomas. Future Oncol. 2018;14(21):2161-2177. PubMed PMC
Ogasawara C, Philbrick BD, Adamson DC. Meningioma: a review of epidemiology, pathology, diagnosis, treatment, and future directions. Biomedicines. 2021;9(3):319. PubMed PMC
Maggio I, Franceschi E, Tosoni A, et al. Meningioma: not always a benign tumor. A review of advances in the treatment of meningiomas. CNS Oncol. 2021;10(2):CNS72. PubMed PMC
Ahmeti H, Borzikowsky C, Hollander D, et al. Risks and neurological benefits of meningioma surgery in elderly patients compared to young patients. J Neurooncol. 2021;154(3):335-344. PubMed PMC
Murphy MC, Huston J, 3rd, Glaser KJ, et al. Preoperative assessment of meningioma stiffness using magnetic resonance elastography. J Neurosurg. 2013;118(3):643-648. PubMed PMC
Sauvigny T, Ricklefs FL, Hoffmann L, Schwarz R, Westphal M, Schmidt NO. Features of tumor texture influence surgery and outcome in intracranial meningioma. Neurooncol Adv. 2020;2(1):vdaa113. PubMed PMC
Sumkovski R, Micunovic M, Kocevski I, Ilievski B, Petrov I. Surgical treatment of meningiomas - outcome associated with type of resection, recurrence, Karnofsky performance score, mitotic count. Open Access Maced J Med Sci. 2019;7(1):56-64. PubMed PMC
Dalan AB, Gulluoglu S, Tuysuz EC, et al. Simultaneous analysis of miRNA-mRNA in human meningiomas by integrating transcriptome: a relationship between PTX3 and miR-29c. BMC Cancer. 2017;17(1):207. PubMed PMC
El-Gewely MR, Andreassen M, Walquist M, et al. Differentially expressed MicroRNAs in meningiomas Grades I and II suggest shared biomarkers with malignant tumors. Cancers (Basel). 2016;8(3):31. PubMed PMC
Saydam O, Shen Y, Wurdinger T, et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol. 2009;29(21):5923-5940. PubMed PMC
Shi L, Jiang D, Sun G, et al. miR-335 promotes cell proliferation by directly targeting Rb1 in meningiomas. J Neurooncol. 2012;110(2):155-162. PubMed
Zhi F, Zhou G, Wang S, et al. A microRNA expression signature predicts meningioma recurrence. Int J Cancer. 2013;132(1):128-136. PubMed
Wang M, Deng X, Ying Q, Jin T, Li M, Liang C. MicroRNA-224 targets ERG2 and contributes to malignant progressions of meningioma. Biochem Biophys Res Commun. 2015;460(2):354-361. PubMed
Carneiro V, Cirino M, Panepucci R, et al. The role of microRNA 181d as a possible biomarker associated with tumor progression in meningiomas. Cureus. 2021;13(10):e19158. PubMed PMC
Li P, Gao Y, Li F, et al. MicroRNA-18a regulates invasive meningiomas via hypoxia-inducible factor-1α. Exp Ther Med. 2015;10(3):1165-1170. PubMed PMC
Kopkova A, Sana J, Machackova T, et al. Cerebrospinal fluid microRNA signatures as diagnostic biomarkers in brain tumors. Cancers (Basel). 2019;11(10):1546. PubMed PMC
Zhi F, Shao N, Li B, et al. A serum 6-miRNA panel as a novel non-invasive biomarker for meningioma. Sci Rep. 2016;6:32067. PubMed PMC
NextSeq system denature and dilute libraries guide. Accessed 25 August 2018. {L-End} https://support.illumina.com/downloads/nextseq-500-denaturing-diluting-libraries-15048776.html
Andrews S. FastQC: a quality control tool for high throughput sequence data. Accessed August 25, 2018. {L-End} http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10-12.
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(Database issue):D140-D144. PubMed PMC
Pantano L, Estivill X, Marti E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res. 2010;38(5):e34. PubMed PMC
Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047-3048. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. PubMed PMC
Smith KA, Leever JD, Chamoun RB. Predicting consistency of meningioma by magnetic resonance imaging. J Neurol Surg B Skull Base. 2015;76(3):225-229. PubMed PMC
Yao A, Pain M, Balchandani P, Shrivastava RK. Can MRI predict meningioma consistency?: a correlation with tumor pathology and systematic review. Neurosurg Rev. 2018;41(3):745-753. PubMed PMC
Zhai Y, Song D, Yang F, et al. Preoperative prediction of meningioma consistency via machine learning-based radiomics. Front Oncol. 2021;11:657288. PubMed PMC
Zhao D, Zhao X, Liu T, et al. Genetic alterations in meningiomas of different textures. Gene. 2016;592(1):134-139. PubMed
Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E, Szafranska AE. Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2008;10(3):203-211. PubMed PMC
Kopkova A, Sana J, Fadrus P, Slaby O. Cerebrospinal fluid microRNAs as diagnostic biomarkers in brain tumors. Clin Chem Lab Med. 2018;56(6):869-879. PubMed
Pacifici M, Delbue S, Kadri F, Peruzzi F. Cerebrospinal fluid MicroRNA profiling using quantitative real time PCR. J Vis Exp. 2014;83:e51172. PubMed PMC
Saugstad JA, Lusardi TA, Van Keuren-Jensen KR, et al. Analysis of extracellular RNA in cerebrospinal fluid. J Extracell Vesicles. 2017;6(1):1317577. PubMed PMC
Slavik H, Balik V, Vrbkova J, et al. Identification of meningioma patients at high risk of tumor recurrence using microRNA profiling. Neurosurgery. 2020;87(5):1055-1063. PubMed PMC
Wang L, Chen S, Liu Y, et al. The biological and diagnostic roles of MicroRNAs in meningiomas. Rev Neurosci. 2020;31(7):771-778. PubMed
Marigliano C, Badia S, Bellini D, et al. Radiogenomics in clear cell renal cell carcinoma: correlations between advanced CT imaging (texture analysis) and microRNAs expression. Technol Cancer Res Treat. 2019;18:1533033819878458. PubMed PMC
Li B, Liu J, Xin X, et al. MiR-34c promotes hepatic stellate cell activation and Liver Fibrogenesis by suppressing ACSL1 expression. Int J Med Sci. 2021;18(3):615-625. PubMed PMC
Li F, Ma N, Zhao R, et al. Overexpression of miR-483-5p/3p cooperate to inhibit mouse liver fibrosis by suppressing the TGF-β stimulated HSCs in transgenic mice. J Cell Mol Med. 2014;18(6):966-974. PubMed PMC
Ma J, Liu Q, Chen M, et al. MicroRNA-34b-5p binds enhancer of zeste 2 to inhibit milk fat globule-EGF factor 8 expression, affecting liver fibrosis. J Physiol Biochem. 2022;78(4):885-895. PubMed
Morizane R, Fujii S, Monkawa T, et al. miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction. Sci Rep. 2014;4:4578. PubMed PMC
Niture S, Gadi S, Qi Q, et al. MicroRNA-483-5p inhibits hepatocellular carcinoma cell proliferation, cell steatosis, and fibrosis by targeting PPARα and TIMP2. Cancers (Basel). 2023;15(6):1715. PubMed PMC
Piccolo P, Ferriero R, Barbato A, et al. Up-regulation of miR-34b/c by JNK and FOXO3 protects from liver fibrosis. Proc Natl Acad Sci U S A. 2021;118(10):e2025242118. PubMed PMC
Bai X, Zheng L, Xu Y, Liang Y, Li D. Role of microRNA-34b-5p in cancer and injury: how does it work? Cancer Cell Int. 2022;22(1):381. PubMed PMC
Kim JS, Kim EJ, Lee S, et al. MiR-34a and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas. Exp Mol Med. 2019;51(1):1-10. PubMed PMC
Wang N, Li Y, Zhou J. miR-31 functions as an oncomir which promotes epithelial-mesenchymal transition via regulating BAP1 in cervical cancer. Biomed Res Int. 2017;2017:6361420. PubMed PMC
Yang J, Liu X, Sun Y, et al. ING5 overexpression upregulates miR-34c-5p/Snail1 to inhibit EMT and invasion of lung cancer cells. Acta Biochim Biophys Sin (Shanghai). 2023;55(5):809-817. PubMed PMC
Yu T, Ma P, Wu D, Shu Y, Gao W. Functions and mechanisms of microRNA-31 in human cancers. Biomed Pharmacother. 2018;108:1162-1169. PubMed