Identification of Meningioma Patients at High Risk of Tumor Recurrence Using MicroRNA Profiling
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32125436
PubMed Central
PMC7566524
DOI
10.1093/neuros/nyaa009
PII: 5775693
Knihovny.cz E-resources
- Keywords
- Meningioma, Prognosis, Recurrence, miRNA,
- MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Recurrence, Local genetics pathology MeSH
- Meningeal Neoplasms genetics pathology MeSH
- Meningioma genetics pathology MeSH
- MicroRNAs * genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- MicroRNAs * MeSH
- Biomarkers, Tumor MeSH
BACKGROUND: Meningioma growth rates are highly variable, even within benign subgroups, with some remaining stable, whereas others grow rapidly. OBJECTIVE: To identify molecular-genetic markers for more accurate prediction of meningioma recurrence and better-targeted therapy. METHODS: Microarrays identified microRNA (miRNA) expression in primary and recurrent meningiomas of all World Health Organization (WHO) grades. Those found to be deregulated were further validated by quantitative real-time polymerase chain reaction in a cohort of 172 patients. Statistical analysis of the resulting dataset revealed predictors of meningioma recurrence. RESULTS: Adjusted and nonadjusted models of time to relapse identified the most significant prognosticators to be miR-15a-5p, miR-146a-5p, and miR-331-3p. The final validation phase proved the crucial significance of miR-146a-5p and miR-331-3p, and clinical factors such as type of resection (total or partial) and WHO grade in some selected models. Following stepwise selection in a multivariate model on an expanded cohort, the most predictive model was identified to be that which included lower miR-331-3p expression (hazard ratio [HR] 1.44; P < .001) and partial tumor resection (HR 3.90; P < .001). Moreover, in the subgroup of total resections, both miRNAs remained prognosticators in univariate models adjusted to the clinical factors. CONCLUSION: The proposed models might enable more accurate prediction of time to meningioma recurrence and thus determine optimal postoperative management. Moreover, combining this model with current knowledge of molecular processes underpinning recurrence could permit the identification of distinct meningioma subtypes and enable better-targeted therapies.
See more in PubMed
Ostrom QT, Gittleman H, Xu J et al. . CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro Oncol. 2016;18(suppl_5):v1-v75. PubMed PMC
Bondy M, Ligon BL. Epidemiology and etiology of intracranial meningiomas: a review. J Neurooncol. 1996;29(3):197-205. PubMed
Durand A, Champier J, Jouvet A et al. . Expression of c-Myc, neurofibromatosis type 2, somatostatin receptor 2 and erb-B2 in human meningiomas: relation to grades or histotypes. Clin Neuropathol. 2008;27(5):334-345. PubMed
Ludwig N, Kim YJ, Mueller SC et al. . Posttranscriptional deregulation of signaling pathways in meningioma subtypes by differential expression of miRNAs. Neuro Oncol. 2015;17(9):1250-1260. PubMed PMC
Longstreth WT Jr, Dennis LK, McGuire VM, Drangsholt MT, Koepsell TD. Epidemiology of intracranial meningioma. Cancer. 1993;72(3):639-648. PubMed
Jaaskelainen J. Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis. Surg Neurol. 1986;26(5):461-469. PubMed
Zhi F, Shao N, Li B et al. . A serum 6-miRNA panel as a novel non-invasive biomarker for meningioma. Sci Rep. 2016;6:32067. PubMed PMC
Zhi F, Zhou G, Wang S et al. . A microRNA expression signature predicts meningioma recurrence. Int J Cancer. 2013;132(1):128-136. PubMed
Wang M, Deng X, Ying Q, Jin T, Li M, Liang C. MicroRNA-224 targets ERG2 and contributes to malignant progressions of meningioma. Biochem Biophys Res Commun. 2015;460(2):354-361. PubMed
El-Gewely MR, Andreassen M, Walquist M et al. . Differentially expressed microRNAs in meningiomas grades I and II suggest shared biomarkers with malignant tumors, Cancers (Basel). 2016;8(3):E31. PubMed PMC
Liu L, Wang D, Qiu Y, Dong H, Zhan X. Overexpression of microRNA-15 increases the chemosensitivity of colon cancer cells to 5-fluorouracil and oxaliplatin by inhibiting the nuclear factor-κB signalling pathway and inducing apoptosis. Exp Ther Med. 2018;15(3):2655-2660. PubMed PMC
Zidan HE, Abdul-Maksoud RS, Elsayed WSH, Desoky EAM. Diagnostic and prognostic value of serum miR-15a and miR-16-1 expression among Egyptian patients with prostate cancer. IUBMB Life. 2018;70(5):437-444. PubMed
Zheng X, Chopp M, Lu Y, Buller B, Jiang F. MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 and MMP-3. Cancer Lett. 2013;329(2):146-154. PubMed PMC
Geretti E, Klagsbrun M. Neuropilins: novel targets for anti-angiogenesis therapies. Cell Adh Migr. 2007;1(2):56-61. PubMed PMC
Johnson MD, O’Connell M, Vito F, Bakos RS. Increased STAT-3 and synchronous activation of Raf-1-MEK-1-MAPK, and phosphatidylinositol 3-Kinase-Akt-mTOR pathways in atypical and anaplastic meningiomas. J Neurooncol. 2009;92(2):129-135. PubMed
Ragel BT, Jensen RL. Aberrant signaling pathways in meningiomas. J Neurooncol. 2010;99(3):315-324. PubMed
Hou Z, Yin H, Chen C et al. . microRNA-146a targets the L1 cell adhesion molecule and suppresses the metastatic potential of gastric cancer. Mol Med Rep. 2012;6(3):501-506. PubMed
Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM, Baltimore D. Nf-B dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA. 2011;108(22):9184-9189. PubMed PMC
Antal O, Hackler L Jr, Shen J et al. . Combination of unsaturated fatty acids and ionizing radiation on human glioma cells: cellular, biochemical and gene expression analysis. Lipids Health Dis. 2014;13:142. PubMed PMC
Xiang M, Birkbak NJ, Vafaizadeh V et al. . Stat3 induction of mir-146b forms a feedback loop to inhibit the Nf-B to il-6 signaling axis and stat3-driven cancer phenotypes. Sci Signal. 2014;7(310):ra11. PubMed PMC
Johnson M, O’Connell M, Walter K. STAT3 activation and risk of recurrence in meningiomas. Oncol Lett. 2017;13(4):2432-2436. PubMed PMC
Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res. 2017;139:15-22. PubMed PMC
Epis MR, Giles KM, Candy PA, Webster RJ, Leedman PJ. miR-331-3p regulates expression of neuropilin-2 in glioblastoma. J Neurooncol. 2014;116(1):67-75. PubMed PMC
Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem. 2009;284(37):24696-24704. PubMed PMC
Epis MR, Giles KM, Kalinowski FC, Barker A, Cohen RJ, Leedman PJ. Regulation of expression of deoxyhypusine hydroxylase (DOHH), the enzyme that catalyzes the activation of eIF5A, by miR-331-3p and miR-642-5p in prostate cancer cells. J Biol Chem. 2012;287(42):35251-35259. PubMed PMC
Chen L, Ma G, Cao X, An X, Liu X. MicroRNA-331 inhibits proliferation and invasion of melanoma cells by targeting astrocyte-elevated gene-1. Oncol Res. published online: February 17, 2018 (doi:10.3727/096504018X15186047251584). PubMed PMC
Guo X, Guo L, Ji J et al. . miRNA-331-3p directly targets E2F1 and induces growth arrest in human gastric cancer. Biochem Biophys Res Commun. 2010;398(1):1-6. PubMed
Zhao D, Sui Y, Zheng X. MiR-331-3p inhibits proliferation and promotes apoptosis by targeting HER2 through the PI3K/Akt and ERK1/2 pathways in colorectal cancer. Oncol Rep. 2016;35(2):1075-1082. PubMed
White NM, Youssef YM, Fendler A, Stephan C, Jung K, Yousef GM. The miRNA-kallikrein axis of interaction: a new dimension in the pathogenesis of prostate cancer. Biol Chem. 2012;393(5):379-389. PubMed
Miller R Jr, DeCandio ML, Dixon-Mah Y et al. . Molecular targets and treatment of meningioma. J Neurol Neurosurg. 2014;1(1):1000101. PubMed PMC
Park KJ, Yu MO, Song NH et al. . Expression of astrocyte elevated gene-1 (AEG-1) in human meningiomas and its roles in cell proliferation and survival. J Neurooncol. 2015;121(1):31-39. PubMed
Karsy M, Azab MA, Abou-Al-Shaar H et al. . Clinical potential of meningioma genomic insights: a practical review for neurosurgeons. Neurosurg Focus. 2018;44(6):E10. PubMed
Clark VE, Harmancı AS, Bai H et al. . Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet. 2016;48(10):1253-1259. PubMed PMC
Zhang Z, Zhuang L, Lin CP. Roles of MicroRNAs in establishing and modulating stem cell potential. Int J Mol Sci. 2019;20(15):E3643. PubMed PMC
Ressel A, Fichte S, Brodhun M, Rosahl SK, Gerlach R. WHO grade of intracranial meningiomas differs with respect to patient's age, location, tumor size and peritumoral edema. J Neurooncol. 2019;145(2):277-286. PubMed