Effect of explosives charges types on the jet characteristics, penetration performance and fragmentation patterns of shaped charges

. 2024 Nov 01 ; 14 (1) : 26282. [epub] 20241101

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39487197
Odkazy

PubMed 39487197
PubMed Central PMC11530648
DOI 10.1038/s41598-024-75727-0
PII: 10.1038/s41598-024-75727-0
Knihovny.cz E-zdroje

Different explosive materials have been studied numerically and experimentally to assess the efficiency of a small diameter shaped charge in terms of produced jet characteristics and penetration depth into RHA steel targets. 26 different explosives have been simulated numerically using Autodyn hydrocode, whereas recommended explosives have been loaded into small diameter shaped charges by pressing technique and tested by static firing against RHA targets in order to validate the numerical calculations. The numerical analysis has presented an intensive global view about the variation of the shaped charge jets as a potential of the loaded explosive charge efficiencies. A successful trial has been performed to measure the shaped charge jet velocity using detonation velocity VOD 812 apparatus, where its measured value was only 3.6% different from the numerical one for HMX-V5 explosive. Besides, TITAN (L3) flash X-ray radiograph has also been implemented to explore the jet profile using the same explosive type and to measure its jet tip velocity, which has only 2.1% different from that estimated numerically. Extensive fragmentation analysis has been presented, which showed increase in both the fragment number and the fragment speed when the used explosive charge is of high detonation velocity. CL-20 explosive exhibited the largest jet tip velocity and its scaled collapse velocity was found to be 140% of TNT explosive. The calculated average fragment speed has been validated and the measured fragment speed has only 2.3% difference when compared to the SPH calculations.

Zobrazit více v PubMed

Klapötke, T. M. Energetic materials encyclopedia. In Energetic Materials Encyclopedia, de Gruyter (2018).

Żochowski, P. & Warchoł, R. Experimental and numerical study on the influence of shaped charge liner cavity filing on jet penetration characteristics in steel targets. Defence Technology (2022).

Elshenawy, T., Li, Q. M. & Elbeih, A. Experimental and numerical investigation of zirconium jet performance with different liner shapes design. Def. Technol. 18 (1), 12–26 (2022).

Guo, H. G. et al. Reactive jet density distribution effect on its penetration behavior, Defence Technology (2022).

Ma, B. et al. Investigate the effects of magnetic fields on the penetration ability of a shaped charge jet at different standoffs. Def. Technol. 17 (5), 1722–1730 (2021).

Jian-Hao, D. et al. Theoretical and experimental study on jet formation and penetration of the liner loaded by electromagnetic force. Int. J. Mech. Sci. 186, 105883 (2020).

Jackowski, A. & Włodarczyk, E. The influence of repressing liners made from sintered copper on jet formation. J. Mater. Process. Technol. 171 (1), 21 (2006).

Racah, E. Shaped charge jet heating. Propellants Explos. Pyrotech. 13 (6), 178–182 (1988).

Elshenawy, T. & Li, Q. M. Breakup Time of Zirconium shaped Charge Jet. Propellants Explos. Pyrotech. 38 (5), 703–708 (2013).

Daniels, A. S., Baker, E. L., Ng, K. W., Vuong, T. H. & DeFisher, S. E. High Performance Trumpet Lined Shaped Charge Technology (US Army Armament Research Development and Engineering Center, 2004).

Davison, D. & Pratt, D. A Hydrocode-Designed well perforator with Exceptional performance. In 17th International Symposium on Ballistics (1998).

Hao, Z. et al. Study on the detonation wave propagation of shaped charge with three-layer liner and its driving characteristics to liner. Sci. Rep. 14, 8778 (2024). PubMed PMC

Hao, Z. et al. The effect of three-layer liner on the jet formation and penetration capability of shaped charge jet. Sci. Rep. 13, 13851 (2023). PubMed PMC

Walters, P. & Zukas, J. Fundamentals of Shaped Charge (Wiley Interscience Publication, 1989).

Mehmannavaz, H., Ramezani, A., Nabakhteh, M. A. & Liaghat, G. A practical review study on shaped charge in the last two decades (2000–2020). Int. J. Protective Struct. 12(40), (2021). 665 – 93.

Lee, W. H. Oil well perforator design using 2D eulerian code. Int. J. Impact Eng. 27(5), (2002). 535 – 59.

Samudre, S. S. et al. Studies on an improved plastic bonded explosive (PBX) for shaped charges. Propellants Explos. Pyrotech. 34 (2), 145–150 (2009).

Murphy, M. J. et al. Demonstration of Enhanced Warhead Performance with more Powerful Explosives (Lawrence Livermore National Lab, 1997).

Zeman, S., Elbeih, A. & Akštein, Z. Preliminary study on several plastic bonded explosives based on cyclic nitramines. (Han-Neng CaiLiao) Chin. J. Energy Mater. 19 (1), 8–12 (2011).

Hussein, A. K., Elbeih, A. & Zeman, S. Thermal decomposition kinetics and explosive properties of a mixture based on cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5-d] imidazole and 3-nitro-1, 2, 4-triazol-5-one (BCHMX/NTO). Thermochim. Acta. 655, 292–301 (2017).

Hussein, A. K., Elbeih, A. & Zeman, S. The effect of glycidyl azide polymer on the stability and explosive properties of different interesting nitramines. RSC Adv. 8 (31), 17272–17278 (2018). PubMed PMC

Zeman, S., Yan, Q. L. & Elbeih, A. Recent advances in the study of the initiation of energetic materials using the characteristics of their thermal decomposition part II. Using simple differential thermal analysis. Cent. Eur. J. Energy Mater. 11 (3), 395–404 (2014).

Elbeih, A. & Zeman, S. Characteristics of melt cast compositions based on cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5 d] imidazole (BCHMX)/TNT. Cent. Eur. J. Energy Mater. 11 (4), 501–513 (2014).

Elbeih, A., Abd-Elghany, M. & Klapötke, T. M. Kinetic parameters of PBX based on Cis‐1, 3, 4, 6‐tetranitroocta‐hydroimidazo‐[4, 5‐d] imidazole obtained by isoconversional methods using different thermal analysis techniques. Propellants Explos. Pyrotech. 42 (5), 468–476 (2017).

Hussein, A. K., Zeman, S. & Elbeih, A. Thermo-analytical study of glycidyl azide polymer and its effect on different cyclic nitramines. Thermochim. Acta 660, 110–123 (2018).

Zeman, S., Elbeih, A. & Yan, Q. L. Note on the use of the vacuum stability test in the study of initiation reactivity of attractive cyclic nitramines in Formex P1 matrix. J. Therm. Anal. Calorim. 111 (3), 1503 (2013).

Elbeih, A., Wafy, T. Z. & Elshenawy, T. Performance and detonation characteristics of polyurethane matrix bonded attractive nitramines. Cent. Eur. J. Energy Mater. 14 (1), 77–89 (2017).

Moser, R., Fong, R. & Ng, W. Increasing explosively formed penetrator (EFP) warhead performance with more powerful explosives (MPE). in 20th international symposium on Ballistics 2002. Orlando, FL, USA.

DeFisher, S. E., Tilley, C. A., Fanaras, D. & Brown, R. E. shaped charge design issues for exploiting supra-pressure detonation. In 28th International symposium on ballistics (2014).

Elshenawy, T., Elbeih, A. & Klapötke, T. M. A Numerical Method for the determination of the virtual origin point of shaped charge jets instead of using Flash X-ray radiography. J. Energy Mater. 36 (2), 127–140 (2018).

Grace, F. et al. Shaped charge jets driven by electromagnetic energy. in 28th International symposium on ballistics (2014).

Pugh, E. M., Eichelberger, R. J. & Rostoker, N. Theory of jet formation by charges with lined conical cavities. J. Appl. Phys. 23 (5), 532–536 (1952).

Elshenawy, T. & Li, Q. Influences of target strength and confinement on the penetration depth of an oil well perforator. Int. J. Impact Eng. 54, 130–137 (2013).

Elbeih, A., Pachman, J., Zeman, S., Trzcinski, W. A. & Suceska, M. Study of plastic explosives based on attractive cyclic nitramines, part II. Detonation characteristics of explosives with polyfluorinated binders. Propellants Explos. Pyrotech. 38 (2), 238–243 (2013).

Baudin, G. & Serradeill, R. Review of Jones-Wilkins-Lee equation of state. In EPJ Web of Conferences, 10, 00021 (2010).

Lee, E. L., Hornig, H. C. & Kury, J. W. Adiabatic expansion of high explosive detonation products. Univ. of California Radiation Lab. at Livermore (1968).

Tarver, C. M., Tao, W. C. & Lee, C. G. Sideways plate push test for detonating solid explosives. Propellants Explos. Pyrotech. 21(5), (1996). 238 – 46.

Lan, I. F., Hung, S. C., Chen, C. Y., Niu, Y. M. & Shiuan, J. H. An improved simple method of deducing JWL parameters from cylinder expansion test. Propellants Explos. Pyrotech. 18 (1), 18–24 (1993).

Elek, P., Dzingalasević, V. V., Jaramaz, S. & Micković, D. Determination of detonation products equation of state from cylinder test: analytical model and numerical analysis. Therm. Sci. 19 (1), 35–48 (2015).

Kato, H., Kaga, N., Takizuka, M., Hamashima, H. & Itoh, S. Research on the JWL parameters of several kinds of explosives. InMaterials Science Forum. 465, 271–276 (Trans Tech Publications, 2004).

Cowler, M. S. Autodyn Theory Mnaual (CA, 1997).

Elshenawy, T., Elbeih, A., Li, Q. M. & Abdo, G. M. Investigation of a new formula for Gurney velocity estimation. Chin. J. Propellant Explosives 41 (4), 340 (2018).

Koch, A., Arnold, N. & Estermann, M. A simple relation between the detonation velocity of an explosive and its Gurney energy. Propellants Explos. Pyrotech. 27 (6), 365–368 (2002).

Chou, P. C. & Flis, W. J. Recent developments in shaped charge technology. Propellants Explos. Pyrotech. 11 (4), 99–114 (1986).

Elshenawy, T., Zaky, M. G. & Elbeih, A. Experimental and numerical studies of fragmentation shells filled with advanced HMX-plastic explosive compared to various explosive charges. Brazilian Journal of Chemical Engineering. in press. (2022).

Zhou, J., Kong, D. & Shang, F. Study on evaluation method for driving fragment ability of explosives. Sci. Rep. 13, 13025 (2023). PubMed PMC

Held, M. Liners for shaped charges. J. Battlefield Technol. 4 (3), 1–6 (2001).

Schwartz, W. Modified SDM model for the calculation of shaped charge hole profiles. Propellants Explos. Pyrotech. 19 (4), 192–201 (1994).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...