Precise Control of Molecular Weight Characteristics of Charge-Shifting Poly(2-(N,N-Dimethylamino)Ethylacrylate) Synthesized by Reversible Addition-Fragmentation Chain Transfer Polymerization
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
24-10980S
Czech Science Foundation
23-06746S
Czech Science Foundation
PubMed
39491052
PubMed Central
PMC11756865
DOI
10.1002/marc.202400640
Knihovny.cz E-zdroje
- Klíčová slova
- DMAEA, RAFT polymerization, charge‐shifting polymer, hydrolysis, polycation,
- MeSH
- akryláty * chemie chemická syntéza MeSH
- hydrolýza MeSH
- koncentrace vodíkových iontů MeSH
- molekulární struktura MeSH
- molekulová hmotnost MeSH
- polymerizace MeSH
- polymery * chemie chemická syntéza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akryláty * MeSH
- polymery * MeSH
Poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) is a promising charge-shifting polycation with the capacity to form a range of morphologically distinct polyelectrolyte assemblies. Nevertheless, the basic character of the monomer and its hydrolytic instability impedes its controlled synthesis to higher molecular weight (MW). Herein, the reversible addition-fragmentation chain transfer polymerization of DMAEA is reported using a tert-butanol/V70 initiator/trithiocarbonate-based chain transfer agent (CTA) polymerization setup. The CTA instability is demonstrated in the presence of the unprotonated tertiary amino group of the DMAEA monomer, which limits the control over the conversion and MW of the polymer. In contrast, the shielding of the amino groups by their protonation leads to polymerization with high conversions and excellent control over MWs of polymer up to 100 000 g mol-1. Hydrolytic degradation study at pH values ranging from 5 to 9 reveals that both basic and protonated PDMAEA undergo a pH-dependent hydrolysis. The proposed polymerization conditions provide a means of synthesizing PDMAEA with well-controlled characteristics, which are beneficial for controlling the complexation processes during the formation of various polyelectrolyte assemblies.
Zobrazit více v PubMed
Brannigan R. P., Khutoryanskiy V. V., Colloids Surf. B Biointerfaces 2017, 155, 538. PubMed
Cotanda P., Wright D. B., Tyler M., O'Reilly R. K., J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3333.
Liao X., Walden G., Falcon N. D., Donell S., Raxworthy M. J., Wormstone M., Riley G. P., Saeed A., Eur. Polym. J. 2017, 87, 458.
Truong N. P., Gu W., Prasadam I., Jia Z., Crawford R., Xiao Y., Monteiro M. J., Nat. Commun. 2013, 4, 1902. PubMed
Shevtsov V. Y., Hsin T.‐Y., Shieh Y.‐T., Polym. Chem. 2022, 13, 1429.
Cao Y., Liu N., Fu C., Li K., Tao L., Feng L., Wei Y., ACS Appl. Mater. Interfaces 2014, 6, 2026. PubMed
Truong N. P., Jia Z., Burges M., McMillan N. A., Monteiro M. J., Biomacromolecules 2011, 12, 1876. PubMed
Ros S., Burke N. A. D., Stöver H. D. H., Macromolecules 2015, 48, 8958.
Whitfield R., Anastasaki A., Truong N. P., Cook A. B., Omedes‐Pujol M., Loczenski Rose V., Nguyen T. A. H., Burns J. A., Perrier S., Davis T. P., Haddleton D. M., ACS Macro Lett. 2018, 7, 909. PubMed
Gurnani P., Blakney A. K., Terracciano R., Petch J. E., Blok A. J., Bouton C. R., McKay P. F., Shattock R. J., Alexander C., Biomacromolecules 2020, 21, 3242. PubMed
Ros S., Kleinberger R. M., Burke N. A. D., Rossi N. A. A., Stöver H. D. H., Macromolecules 2018, 51, 5752.
Li Y., Yang H. Y., Thambi T., Park J.‐H., Lee D. S., Biomaterials 2019, 217, 119299. PubMed
Werfel T. A., Swain C., Nelson C. E., Kilchrist K. V., Evans B. C., Miteva M., Duvall C. L., J. Biomed. Mater. Res., Part A 2016, 104, 917. PubMed PMC
Ni H., Hunkeler D., Polymer 1997, 38, 667.
Zeng F., Shen Y., Zhu S., Macromol. Rapid Commun. 2002, 23, 1113.
Truong N. P., Jia Z., Burgess M., Payne L., McMillan N. A., Monteiro M. J., Biomacromolecules 2011, 12, 3540. PubMed
Rowe M. D., Chang C.‐C., Thamm D. H., Kraft S. L., HarmonJr J. F., Vogt A. P., Sumerlin B. S., Boyes S. G., Langmuir 2009, 25, 9487. PubMed
Zhao W., Fonsny P., FitzGerald P., Warr G. G., Perrier S., Polym. Chem. 2013, 4, 2140.
Li Z., Serelis A. K., Reed W. F., Alb A. M., Polymer 2010, 51, 4726.
Ho H. T., Bohec M. L., Fremaux J., Pioge S., Casse N., Fontaine L., Pascual S., Macromol. Rapid Commun. 2017, 38, 1600641. PubMed
Rolph M. S., Pitto‐Barry A., O'Reilly R. K., Polym. Chem. 2017, 8, 5060. PubMed PMC
Burgevin F., Hapeshi A., Song J.‐I., Omedes‐Pujol M., Christie A., Lindsay C., Perrier S., Polym. Chem. 2023, 14, 3707.
Hub L., Koll J., Radjabian M., Abetz V., Polym. Chem. 2023, 14, 3063.
Moad G., in RAFT Polymerization, Vol. 1, (Eds: Moad G., Rizzardo E.), Wiley‐VCH, Weinheim, Germany: 2021, Ch. 8.
Moad G., Rizzardo E., Thang S. H., in Reference Module in Materials Science and Materials Engineering, Elsevier, Netherlands: 2016, pp. 3–07.
Dubruel P., De Strycker J., Westbroek P., Bracke K., Temmerman E., Vandervoort J., Ludwig A., Schacht E., Polym. Int. 2002, 51, 948.
García‐Briones G. S., Laga R., Černochová Z., Arjona‐Ruiz C., Janoušková O., Šlouf M., Pop‐Georgievski O., Kubies D., Eur. Polym. J. 2023, 191, 111976.
He L., Read E. S., Armes S. P., Adams D. J., Macromolecules 2007, 40, 4429.
Li Y., Armes S. P., Macromolecules 2009, 42, 939.
Alidedeoglu A. H., York A. W., McCormick C. L., Morgan S. E., J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 5405.
Moad G., Rizzardo E., Thang S. H., Aust. J. Chem. 2012, 65, 985.
Rodrigues A. S., Charreyre M.‐T., Favier A., Baleizão C., Farinha J. P. S., Polym. Chem. 2019, 10, 2106.
Ros S., Freitag J. S., Smith D. M., Stover H. D. H., ACS Omega 2020, 5, 9114. PubMed PMC
Shen L., Chaudouet P., Ji J., Picart C., Biomacromolecules 2011, 12, 1322. PubMed
Zan X., Hoagland D. A., Wang T., Peng B., Su Z., Polymer 2012, 53, 5109.
Yu J., Sanyal O., Izbicki A. P., Lee I., Macromol. Rapid Commun. 2015, 36, 1669. PubMed
Hrochová M., Kotrchová L., Frejková M., Konefał R., Gao S., Fang J., Kostka L., Etrych T., Acta Biomater. 2023, 171, 417. PubMed
Perrier S., Macromolecules 2017, 50, 7433.
Barner‐Kowollik C., Buback M., Charleux B., Coote M. L., Drache M., Fukuda T., Goto A., Klumperman B., Lowe A. B., Mcleary J. B., Moad G., Monteiro M. J., Sanderson R. D., Tonge M. P., Vana P., J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5809.
Nwoko T., Nguyen K., Saha N. K., Barner‐Kowollik C., Konkolewicz D., Polym. Chem. 2024, 15, 1052.
Destarac M., Polym. Rev. 2011, 51, 163.
Vana P., Davis T. P., Barner‐Kowollik C., Macromol. Theor. Simul. 2002, 11, 823.
Barner‐Kowollik C., Quinn J. F., Morsley D. R., Davis T. P., J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 1353.
Monteiro M. J., J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 3189.
Ros S., Wang J., Burke N. A. D., Stöver H. D. H., Macromolecules 2020, 53, 3514.
Sun F., Feng C., Liu H., Huang X., Polym. Chem. 2016, 7, 6973.
van de Wetering P., Zuidam N. J., van Steenbergen M. J., van der Houwen O. A. G. J., Underberg W. J. M., Hennink W. E., Macromolecules 1998, 31, 8063.