The effect of 12-week high-dose Colostrum Bovinum supplementation on immunological, hematological and biochemical markers in endurance athletes: a randomized crossover placebo-controlled study

. 2024 ; 15 () : 1425785. [epub] 20241021

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, randomizované kontrolované studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39497827

BACKGROUND: Bovine colostrum (COL) is assumed to be one of the strongest natural immune stimulants. Regular ingestion of COL may contribute to improved immune response in athletes exposed to high training loads. METHODS: Twenty-eight endurance-trained males aged 31.1 ± 10.2 years (body mass 81.9 ± 9.0 kg; height 1.82 ± 0.06 m) completed this randomized double-blind placebo(PLA)-controlled crossover study aimed at investigating the effect of 12-week COL supplementation (25gCOL·day-1) on resting (REST), exercise-induced (POST-EX), and short-term post-exercise recovery (REC; 1 h after test exercise) changes in selected saliva and blood immunoglobulins (Ig), white blood cell (WBC) count and differential; as well as blood hematological, nutritional status and muscle damage indices. The protocol assumed 4 study visits - before/after supplementation with COL (COLPRE and COLPOST ) and PLA (PLAPRE and PLAPOST ). During testing sessions, incremental rowing test to exhaustion and swimming-specific performance test were introduced as exercise stimuli. RESULTS: At COLPOST visit the secretory IgA (SIgA) concentration in saliva was significantly higher at POST-EX and REC compared to REST (p<0.05). COL supplementation had no effect on blood IgA, IgE, IgD, IgG, and IgM concentrations. Furthermore, after COL supplementation decrease of hematocrit at REC (p<0.05) was revealed. CONCLUSIONS: 12-week supplementation with 25 gCOL·day-1 in endurance-trained male athletes resulted in a favorable increase in post-exercise concentration of salivary SIgA. COL seems to be a potential stimulator of local immune defense after exercise-induced homeostasis disturbances. Nevertheless, the lack of effect on blood markers indicates the need for further research in the area of mechanisms underlying the effect of the supposed COL immunological capacity.

Zobrazit více v PubMed

Jones AW, Davison G. Chapter 15 - Exercise, immunity, and illness. In: Zoladz JA, editor. Muscle and Exercise Physiology. Academic Press; (2019). p. 317–44. doi: 10.1016/B978-0-12-814593-7.00015-3 DOI

Gleeson M, Walsh NP, British Association of Sport and Exercise Sciences . The BASES expert statement on exercise, immunity, and infection. J Sports Sci. (2012) 30:321–4. doi: 10.1080/02640414.2011.627371 PubMed DOI

Pyne DB, West NP, Cox AJ, Cripps AW. Probiotics supplementation for athletes – clinical and physiological effects. Eur J Sport Sci. (2015) 15:63–72. doi: 10.1080/17461391.2014.971879 PubMed DOI

Bermon S, Castell LM, Calder PC, Bishop NC, Blomstrand E, Mooren FC, et al. . Consensus statement immunonutrition and exercise. Exerc Immunol Rev. (2017) 23:8–50. doi: 10.1123/ijsnem.2018-0288 PubMed DOI

Simpson RJ. The effects of exercise on blood leukocyte numbers. In: Exercise Immunology. Routledge, London: (2013).

Gleeson M. Immune function in sport and exercise. J Appl Physiol. (2007) 103:693–9. doi: 10.1152/japplphysiol.00008.2007 PubMed DOI

McKune AJ, Smith LL, Semple SJ, Mokethwa B, Wadee AA. Immunoglobulin responses to a repeated bout of downhill running. Br J Sports Med. (2006) 40:844–9. doi: 10.1136/bjsm.2006.027839 PubMed DOI PMC

Siber GR, Schur PH, Aisenberg AC, Weitzman SA, Schiffman G. Correlation between serum IgG-2 concentrations and the antibody response to bacterial polysaccharide antigens. N Engl J Med. (1980) 303:178–82. doi: 10.1056/NEJM198007243030402 PubMed DOI

Gleeson M, Pyne DB. Special feature for the Olympics: effects of exercise on the immune system: exercise effects on mucosal immunity. Immunol Cell Biol. (2000) 78:536–44. doi: 10.1111/j.1440-1711.2000.t01-8-.x PubMed DOI

Brinkworth G, Buckley J. Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. Eur J Nutr. (2003) 42:228–32. doi: 10.1007/s00394-003-0410-x PubMed DOI

Albers R, Bourdet-Sicard R, Braun D, Calder PC, Herz U, Lambert C, et al. . Monitoring immune modulation by nutrition in the general population: identifying and substantiating effects on human health. Br J Nutr. (2013) 110:1–30. doi: 10.1017/S0007114513001505 PubMed DOI

Shing CM, Hunter D, Stevenson L. Bovine colostrum supplementation and exercise performance: potential mechanisms. Sports Med. (2009) 39:1033–54. doi: 10.2165/11317860-000000000-00000 PubMed DOI

Davison G. Bovine colostrum and immune function after exercise. Med Sport Sci. (2012) 59:62–9. doi: 10.1159/000341966 PubMed DOI

Bagwe S, Tharappel LJP, Kaur G, Buttar HS. Bovine colostrum: an emerging nutraceutical. J Complement Integr Med. (2015) 12:175–85. doi: 10.1515/jcim-2014-0039 PubMed DOI

Rathe M, Müller K, Sangild PT, Husby S. Clinical applications of bovine colostrum therapy: a systematic review. Nutr Rev. (2014) 72:237–54. doi: 10.1111/nure.12089 PubMed DOI

Jones AW, March DS, Curtis F, Bridle C. Bovine colostrum supplementation and upper respiratory symptoms during exercise training: a systematic review and meta-analysis of randomised controlled trials. BMC Sports Sci Med Rehabil. (2016) 8. doi: 10.1186/s13102-016-0047-8 PubMed DOI PMC

Główka N, Durkalec-Michalski K, Woźniewicz M. Immunological outcomes of bovine colostrum supplementation in trained and physically active people: a systematic review and meta-analysis. Nutrients. (2020) 12:1023. doi: 10.3390/nu12041023 PubMed DOI PMC

Pearson AG, Hind K, Macnaughton LS. The impact of dietary protein supplementation on recovery from resistance exercise-induced muscle damage: a systematic review with meta-analysis. Eur J Clin Nutr. (2023) 77:767–83. doi: 10.1038/s41430-022-01250-y PubMed DOI PMC

Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. . International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. (2017) 14:20. doi: 10.1186/s12970-017-0177-8 PubMed DOI PMC

Durkalec-Michalski K, Kamińska J, Saunders B, Pokrywka A, Łoniewski I, Steffl M, et al. . Does sodium bicarbonate based extra-cellular buffering support reduce high intensity exercise-induced fatigue and enhance short-term recovery assessed by selected blood biochemical indices? Biol Sport. (2023) 41:17–27. doi: 10.5114/biolsport.2024.125591 PubMed DOI PMC

Durkalec-Michalski K, Nowaczyk PM, Siedzik K. Effect of a four-week ketogenic diet on exercise metabolism in CrossFit-trained athletes. J Int Soc Sports Nutr. (2019) 16:16. doi: 10.1186/s12970-019-0284-9 PubMed DOI PMC

Durkalec-Michalski K, Zawieja EE, Zawieja BE, Podgórski T. Evaluation of the repeatability and reliability of the cross-training specific Fight Gone Bad workout and its relation to aerobic fitness. Sci Rep. (2021) 11:7263. doi: 10.1038/s41598-021-86660-x PubMed DOI PMC

Podgórski T, Bartkowiak U, Pawlak M. Comparison of hematological parameters of venous and capillary blood in athletes. Trends Sport Sci. (2014) 1:39–45.

Durkalec-Michalski K, Domagalski A, Główka N, Kamińska J, Szymczak D, Podgórski T. Effect of a four-week vegan diet on performance, training efficiency and blood biochemical indices in CrossFit-trained participants. Nutrients. (2022) 14:894. doi: 10.3390/nu14040894 PubMed DOI PMC

Durkalec-Michalski K, Nowaczyk PM, Główka N, Ziobrowska A, Podgórski T. Is a four-week ketogenic diet an effective nutritional strategy in CrossFit-trained female and male athletes? Nutrients. (2021) 13:864. doi: 10.3390/nu13030864 PubMed DOI PMC

Sportowy trening pływacki - Maciej Rakowski. Available online at: https://ebooks.com.pl/sportowy-trening-plywacki-maciej-rakowski.html (Accessed November 14, 2020).

Swimming even faster by Maglischo, Ernest W. Available online at: https://www.biblio.com/swimming-even-faster-by-maglischo-ernest-w/work/383295 (Accessed November 29, 2020).

Blanca MJ, Alarcón R, Arnau J. Non-normal data: Is ANOVA still a valid option? Psicothema. (2017) 29:552–7. doi: 10.7334/psicothema2016.383 PubMed DOI

Orysiak J, Malczewska-Lenczowska J, Szyguła Z, Pokrywka A. The role of salivary immunoglobulin a in the prevention of the upper respiratory tract infections in athletes – an overview. Biol Sport. (2012) 29:311–5. doi: 10.5604/20831862.1022653 DOI

Cajochen C, Weber J, Estrada AF, Kobayashi K, Gabel V. Circadian and homeostatic sleep-wake regulation of secretory immunoglobulin A (sIgA): effects of environmental light and recovery sleep. Brain Behav Immun Health. (2022) 19:100394. doi: 10.1016/j.bbih.2021.100394 PubMed DOI PMC

Baker LH, Desai T, Green M, Wells AV. Immunosurveillance associated with upper respiratory symptoms in elite swimmers: the 8-month period leading into Commonwealth Games. J Sci Med Sport. (2024) 27:143–8. doi: 10.1016/j.jsams.2023.11.011 PubMed DOI

Gleeson M, McDONALD WA, Pyne DB, Cripps AW, Francis JL, Fricker PA, et al. . Salivary IgA levels and infection risk in elite swimmers. Med Sci Sports Exerc. (1999) 31:67–73. doi: 10.1097/00005768-199901000-00012 PubMed DOI

Shing CM, Peake J, Suzuki K, Okutsu M, Pereira R, Stevenson L, et al. . Effects of bovine colostrum supplementation on immune variables in highly trained cyclists. J Appl Physiol. (2007) 102:1113–22. doi: 10.1152/japplphysiol.00553.2006 PubMed DOI

Shing CM, Peake JM, Suzuki K, Jenkins DG, Coombes JS. A pilot study: bovine colostrum supplementation and hormonal and autonomic responses to competitive cycling. J Sports Med Phys Fitness. (2013) 53:490–501. PubMed

Davison G, Diment BC. Bovine colostrum supplementation attenuates the decrease of salivary lysozyme and enhances the recovery of neutrophil function after prolonged exercise. Br J Nutr. (2010) 103:1425–32. doi: 10.1017/S0007114509993503 PubMed DOI

Jones AW, Thatcher R, March DS, Davison G. Influence of 4 weeks of bovine colostrum supplementation on neutrophil and mucosal immune responses to prolonged cycling. Scandinavian Med Sci Sports. (2015) 25:788–96. doi: 10.1111/sms.12433 PubMed DOI

Walsh NP. Recommendations to maintain immune health in athletes. Eur J Sport Sci. (2018) 18:820–31. doi: 10.1080/17461391.2018.1449895 PubMed DOI

Skarpańska-Stejnborn A, Cieślicka M, Dziewiecka H, Kujawski S, Marcinkiewicz A, Trzeciak J, et al. . Effects of long-term supplementation of bovine colostrum on the immune system in young female basketball players. Randomized trial. Nutrients. (2020) 13:118. doi: 10.3390/nu13010118 PubMed DOI PMC

Cieślicka M, Ostapiuk-Karolczuk J, Buttar HS, Dziewiecka H, Kasperska A, Skarpańska-Stejnborn A. Effects of long-term supplementation of bovine colostrum on iron homeostasis, oxidative stress, and inflammation in female athletes: a placebo-controlled clinical trial. Nutrients. (2022) 15:186. doi: 10.3390/nu15010186 PubMed DOI PMC

Carol A, Witkamp RF, Wichers HJ, Mensink M. Bovine colostrum supplementation’s lack of effect on immune variables during short-term intense exercise in well-trained athletes. Int J Sport Nutr Exerc Metab. (2011) 21:135–45. doi: 10.1123/ijsnem.21.2.135 PubMed DOI

Mero A, Miikkulainen H, Riski J, Pakkanen R, Aalto J, Takala T. Effects of bovine colostrum supplementation on serum IGF-I, IgG, hormone, and saliva IgA during training. J Appl Physiol. (1997) 83:1144–51. doi: 10.1152/jappl.1997.83.4.1144 PubMed DOI

Soo-Quee Koh D, Choon-Huat Koh G. The use of salivary biomarkers in occupational and environmental medicine. Occup Environ Med. (2007) 64:202–10. doi: 10.1136/oem.2006.026567 PubMed DOI PMC

Van Tetering G, Evers M, Chan C, Stip M, Leusen J. Fc Engineering strategies to advance iga antibodies as therapeutic agents. Antibodies. (2020) 9:70. doi: 10.3390/antib9040070 PubMed DOI PMC

Lawrence MG, Woodfolk JA, Schuyler AJ, Stillman LC, Chapman MD, Platts-Mills TAE. Half-life of IgE in serum and skin: Consequences for anti-IgE therapy in patients with allergic disease. J Allergy Clin Immunol. (2017) 139:422–428.e4. doi: 10.1016/j.jaci.2016.04.056 PubMed DOI PMC

Vladutiu AO. Immunoglobulin D: properties, measurement, and clinical relevance. Clin Diagn Lab Immunol. (2000) 7:131–40. doi: 10.1128/CDLI.7.2.131-140.2000 PubMed DOI PMC

Jeppesen JS, Caldwell HG, Lossius LO, Melin AK, Gliemann L, Bangsbo J, et al. . Low energy availability increases immune cell formation of reactive oxygen species and impairs exercise performance in female endurance athletes. Redox Biol. (2024) 75:103250. doi: 10.1016/j.redox.2024.103250 PubMed DOI PMC

Durkalec-Michalski K, Główka N, Nowaczyk PM, Laszczak A, Gogojewicz A, Suliburska J. Do triathletes periodize their diet and do their mineral content, body composition and aerobic capacity change during training and competition periods? Nutrients. (2022) 15:6. doi: 10.3390/nu15010006 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace