Plasmon-Enhanced Multiphoton Polymer Crosslinking for Selective Modification of Plasmonic Hotspots
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39502799
PubMed Central
PMC11533195
DOI
10.1021/acs.jpcc.4c05936
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A novel approach to selectively modify narrow subareas of metallic nanostructures adjacent to plasmonic hotspots, where strong electromagnetic field amplification occurs upon localized surface plasmon (LSP) excitation, is reported. In contrast to surface plasmon-triggered polymerization, it relies on plasmonically enhanced multiphoton crosslinking (MPC) of polymer chains carrying photoactive moieties. When they are contacted with metallic nanostructures and irradiated with a femtosecond near-infrared beam resonantly coupled with LSPs, the enhanced field intensity locally exceeds the threshold and initiates MPC only at plasmonic hotspots. This concept is demonstrated by using gold nanoparticle arrays coated with two specifically designed polymers. Local MPC of a poly(N,N-dimethylacrylamide)-based copolymer with an anthraquinone crosslinker is shown via atomic force microscopy. Additionally, MPC is tested with a thermoresponsive poly(N-isopropylacrylamide)-based terpolymer. The reversible thermally induced collapse and swelling of the MPC-formed hydrogel at specific nanoparticle locations are confirmed by polarization-resolved localized surface plasmon resonance (LSPR) spectroscopy. These hybrid metallic/hydrogel materials can be further postmodified, offering attractive characteristics for future spectroscopic/bioanalytical applications.
DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 D 52074 Aachen Germany
FZU Institute of Physics Czech Academy of Sciences Na Slovance 2 182 21 Prague Czech Republic
Zobrazit více v PubMed
Gramotnev D. K.; Bozhevolnyi S. I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. 10.1038/nphoton.2009.282. DOI
Homola J.; Yee S. S.; Gauglitz G. Surface plasmon resonance sensors: Review. Sens. Actuators, B 1999, 54 (1–2), 3–15. 10.1016/S0925-4005(98)00321-9. DOI
Christopher P.; Xin H.; Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467–472. 10.1038/nchem.1032. PubMed DOI
Wang X. A.; Kong X. Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering. Materials 2015, 8 (6), 3024–3052. 10.3390/ma8063024. PubMed DOI PMC
Rosman C.; Prasad J.; Neiser A.; Henkel A.; Edgar J.; Sönnichsen C. Multiplexed plasmon sensor for rapid label-free analyte detection. Nano Lett. 2013, 13 (7), 3243–3247. 10.1021/nl401354f. PubMed DOI
Brasselet S. Polarization-resolved microscopy in the life sciences. Opt. Photonics News 2019, 30 (4), 34–41. 10.1364/OPN.30.4.000034. DOI
Zuo T.; Goldwyn H. J.; Isaacoff B. P.; Masiello D. J.; Biteen J. S. Rotation of single-molecule emission polarization by plasmonic nanorods. J. Phys. Chem. Lett. 2019, 10 (17), 5047–5054. 10.1021/acs.jpclett.9b02270. PubMed DOI
Zijlstra P.; Paulo P. M. R.; Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance. Nat. Nanotechnol. 2012, 7, 379–382. 10.1038/nnano.2012.51. PubMed DOI
Liang L.; Zheng P.; Jia S.; Ray K.; Chen Y.; Barman I. Plasmonic nanodiamonds. Nano Lett. 2023, 23 (12), 5746–5754. 10.1021/acs.nanolett.3c01514. PubMed DOI
Taylor A. B.; Zijlstra P. Single-molecule plasmon sensing: Current status and future prospects. ACS Sens. 2017, 2 (8), 1103–1122. 10.1021/acssensors.7b00382. PubMed DOI PMC
Zhang X.; Li X.; Reish M. E.; Zhang D.; Su N. Q.; Gutiérrez Y.; Moreno F.; Yang W.; Everitt H. O.; Liu J. Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects. Nano Lett. 2018, 18 (3), 1714–1723. 10.1021/acs.nanolett.7b04776. PubMed DOI
Ezendam S.; Gargiulo J.; Sousa-Castillo A.; Lee J. B.; Nam Y. S.; Maier S. A.; Cortés E. Spatial distributions of single-molecule reactivity in plasmonic catalysis. ACS Nano 2024, 18 (1), 451–460. 10.1021/acsnano.3c07833. PubMed DOI PMC
Xia Y.; Halas N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30 (5), 338–348. 10.1557/mrs2005.96. DOI
Moskovits M. Spot the hotspot. Nature 2011, 469 (7330), 307–309. 10.1038/469307a. PubMed DOI
Feuz L.; Jonsson M. P.; Höök F. Material-selective surface chemistry for nanoplasmonic sensors: Optimizing sensitivity and controlling binding to local hot spots. Nano Lett. 2012, 12, 873–879. 10.1021/nl203917e. PubMed DOI
Feuz L.; Jönsson P.; Jonsson M. P.; Höök F. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano 2010, 4 (4), 2167–2177. 10.1021/nn901457f. PubMed DOI
Beeram S. R.; Zamborini F. P. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. J. Am. Chem. Soc. 2009, 131 (33), 11689–11691. 10.1021/ja904387j. PubMed DOI
Zhang N.; Liu Y. J.; Yang J.; Su X.; Deng J.; Chum C. C.; Hong M.; Teng J. High sensitivity molecule detection by plasmonic nanoantennas with selective binding at electromagnetic hotspots. Nanoscale 2014, 6 (3), 1416–1422. 10.1039/C3NR04494G. PubMed DOI
Piliarik M.; Kvasnička P.; Galler N.; Krenn J. R.; Homola J. Local refractive index sensitivity of plasmonic nanoparticles. Opt. Express 2011, 19 (10), 9213–9220. 10.1364/OE.19.009213. PubMed DOI
Oliverio M.; Perotto S.; Messina G. C.; Lovato L.; de Angelis F. Chemical functionalization of plasmonic surface biosensors: A tutorial review on issues, strategies, and costs. ACS Appl. Mater. Interfaces. 2017, 9 (35), 29394–29411. 10.1021/acsami.7b01583. PubMed DOI PMC
Barik A.; Otto L. M.; Yoo D.; Jose J.; Johnson T. W.; Oh S.-H. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett. 2014, 14 (4), 2006–2012. 10.1021/nl500149h. PubMed DOI PMC
Gargiulo J.; Berté R.; Li Y.; Maier S. A.; Cortés E. From optical to chemical hot spots in plasmonics. Acc. Chem. Res. 2019, 52 (9), 2525–2535. 10.1021/acs.accounts.9b00234. PubMed DOI
Gruber C.; Hirzer A.; Schmidt V.; Trügler A.; Hohenester U.; Ditlbacher H.; Hohenau A.; Krenn J. R. Imaging nanowire plasmon modes with two-photon polymerization. Appl. Phys. Lett. 2015, 106 (8), 08110110.1063/1.4913470. DOI
Galloway C. M.; Kreuzer M. P.; Aćimović S. S.; Volpe G.; Correia M.; Petersen S. B.; Neves-Petersen M. T.; Quidant R. Plasmon-assisted delivery of single nano-objects in an optical hot spot. Nano Lett. 2013, 13 (9), 4299–4304. 10.1021/nl402071p. PubMed DOI
Magill B. A.; Guo X.; Peck C. L.; Reyes R. L.; See E. M.; Santos W. L.; Robinson H. D. Multi-photon patterning of photoactive o-nitrobenzyl ligands bound to gold surfaces. Photochem. Photobiol. Sci. 2019, 18 (1), 30–44. 10.1039/c8pp00346g. PubMed DOI
Pin C.; Ishida S.; Takahashi G.; Sudo K.; Fukaminato T.; Sasaki K. Trapping and deposition of dye–molecule nanoparticles in the nanogap of a plasmonic antenna. ACS Omega 2018, 3 (5), 4878–4883. 10.1021/acsomega.8b00282. PubMed DOI PMC
Rajeeva B. B.; Hernandez D. S.; Wang M.; Perillo E.; Lin V.; Scarabelli L.; Pingali V.; Liz-Marzán L. M.; Dunn V.; Shear V.; Zheng Y. Regioselective localization and tracking of biomolecules on single gold nanoparticles. Adv. Sci. 2015, 2 (11), 150023210.1002/advs.201500232. PubMed DOI PMC
Sundaramurthy A.; James Schuck P.; Conley N. R.; Fromm D. P.; Kino G. S.; Moerner W. E. Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 2006, 6 (3), 355–360. 10.1021/nl052322c. PubMed DOI PMC
Ueno K.; Juodkazis S.; Shibuya T.; Yokota Y.; Mizeikis V.; Sasaki K.; Misawa H. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J. Am. Chem. Soc. 2008, 130 (22), 6928–6929. 10.1021/ja801262r. PubMed DOI
Ueno K.; Juodkazis S.; Shibuya T.; Mizeikis V.; Yokota Y.; Misawa H. Nanoparticle-enhanced photopolymerization. J. Phys. Chem. C 2009, 113 (27), 11720–11724. 10.1021/jp901773k. DOI
Nah S.; Li L.; Liu R.; Hao J.; Lee S. B.; Fourkas J. T. Metal-enhanced multiphoton absorption polymerization with gold nanowires. J. Phys. Chem. C 2010, 114 (17), 7774–7779. 10.1021/jp100387k. DOI
Yokoyama T.; Masuhara A.; Onodera T.; Kasai H.; Oikawa H. Plasmon-enhanced photopolymerization of SU-8 on rough gold surfaces. J. Phys. Chem. C 2010, 114 (46), 19596–19599. 10.1021/jp106263h. DOI
Kameche F.; Heni W.; Telitel S.; Ge D.; Vidal L.; Dumur F.; Gigmes D.; Lalevée J.; Marguet S.; Douillard L.; Fiorini-Debuisschert C.; Bachelot R.; Soppera O. Plasmon-triggered living photopolymerization for elaboration of hybrid polymer/metal nanoparticles. Mater. Today 2020, 40, 38–47. 10.1016/j.mattod.2020.03.023. DOI
Kameche F.; Heni W.; Telitel S.; Ge D.; Vidal L.; Marguet S.; Douillard L.; Fiorini-Debuisschert C.; Bachelot R.; Soppera O. Probing pasmon-induced chemical mechanisms by free-radical nanophotopolymerization. J. Phys. Chem. C 2021, 125 (16), 8719–8731. 10.1021/acs.jpcc.1c01693. DOI
Khitous A.; Molinaro C.; Gree S.; Haupt K.; Soppera O. Plasmon-induced photopolymerization of molecularly imprinted polymers for nanosensor applications. Adv. Mater. Interfaces 2023, 10 (7), 220165110.1002/admi.202201651. DOI
Lee J.; Joshi P. B.; Wilson A. J.; Kim Y. Plasmon-driven near-field photopolymerization in a gold nanoparticle colloid. J. Phys. Chem. C 2023, 127 (17), 8096–8103. 10.1021/acs.jpcc.3c01461. DOI
Khitous A.; Molinaro C.; Abdallah S.; Chen M.; Marguet S.; Laurent G.; Vidal L.; Malval J.-P.; Fiorini-Debuisschert C.; Adam P.-M.; Douillard L.; Bachelot R.; Soppera O. Spatial distribution of the photopolymerization induced by localized surface plasmons: Impact of the morphology of the Au nanoparticles. J. Phys. Chem. C 2024, 128 (31), 13097–13107. 10.1021/acs.jpcc.4c03148. DOI
Maruo S.; Nakamura O.; Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 1997, 22 (2), 132–134. 10.1364/OL.22.000132. PubMed DOI
Sun H.-B.; Kawata S. Two-photon laser precision microfabrication and its applications to micro-nano devices and systems. J. Lightwave Technol. 2003, 21 (3), 624–633. 10.1109/JLT.2003.809564. DOI
Farsari M.; Chichkov B. Materials processing: Two-photon fabrication. Nat. Photonics 2009, 3, 450–452. 10.1038/nphoton.2009.131. DOI
Gissibl T.; Thiele S.; Herkommer A.; Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 2016, 10 (8), 554–560. 10.1038/nphoton.2016.121. DOI
Florian C.; Piazza S.; Diaspro A.; Serra P.; Duocastella M. Direct laser printing of tailored polymeric microlenses. ACS Appl. Mater. Interfaces 2016, 8 (27), 17028–17032. 10.1021/acsami.6b05385. PubMed DOI
Gissibl T.; Thiele S.; Herkommer A.; Giessen H. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 2016, 7, 1176310.1038/ncomms11763. PubMed DOI PMC
Avci E.; Grammatikopoulou M.; Yang G. Z. Laser-printing and 3D optical-control of untethered microrobots. Adv. Opt. Mater. 2017, 5 (19), 170003110.1002/adom.201700031. DOI
Zeng H.; Martella D.; Wasylczyk P.; Cerretti G.; Lavocat J. C. G.; Ho C. H.; Parmeggiani C.; Wiersma D. S. High-resolution 3D direct laser writing for liquid-crystalline elastomer microstructures. Adv. Mater. 2014, 26 (15), 2319–2322. 10.1002/adma.201305008. PubMed DOI
Selimis A.; Mironov V.; Farsari M. Direct laser writing: Principles and materials for scaffold 3D printing. Microelectron. Eng. 2015, 132, 83–89. 10.1016/j.mee.2014.10.001. DOI
Accardo A.; Blatché M. C.; Courson R.; Loubinoux I.; Thibault C.; Malaquin L.; Vieu C. Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization. Small 2017, 13 (27), 170062110.1002/smll.201700621. PubMed DOI
Hippler M.; Lemma E. D.; Bertels S.; Blasco E.; Barner-Kowollik C.; Wegener M.; Bastmeyer M. 3D scaffolds to study basic cell biology. Adv. Mater. 2019, 31 (26), 180811010.1002/adma.201808110. PubMed DOI
Song J.; Michas C.; Chen C. S.; White A. E.; Grinstaff M. W. From simple to architecturally complex hydrogel scaffolds for cell and tissue engineering applications: Opportunities presented by two-photon polymerization. Adv. Healthcare Mater. 2019, 9 (1), 190121710.1002/adhm.201901217. PubMed DOI
Jing X.; Fu H.; Yu B.; Sun M.; Wang L. Two-photon polymerization for 3D biomedical scaffolds: Overview and updates. Front. Bioeng. Biotechnol. 2022, 10, 99435510.3389/fbioe.2022.994355. PubMed DOI PMC
Mckee S.; Lutey A.; Sciancalepore C.; Poli F.; Selleri S.; Cucinotta A. Microfabrication of polymer microneedle arrays using two-photon polymerization. J. Photochem. Photobiol., B 2022, 229, 11242410.1016/j.jphotobiol.2022.112424. PubMed DOI
Zhou X.; Hou Y.; Lin J. A review on the processing accuracy of two-photon polymerization. AIP Adv. 2015, 5 (3), 03070110.1063/1.4916886. DOI
Niesler F.; Hermatschweiler M. Two-photon polymerization—A versatile microfabrication tool: From maskless lithography to 3D printing. Laser Tech. J. 2015, 12 (3), 44–47. 10.1002/latj.201500019. DOI
Schwärzle D.; Hou X.; Prucker O.; Rühe J. Polymer microstructures through two-photon crosslinking. Adv. Mater. 2017, 29 (39), 170346910.1002/adma.201703469. PubMed DOI
Morozov Y. M.; Wiesner née Diehl F.; Grün J. J.; Pertiller M.; Fossati S.; Schmidt K.; Quilis N. G.; Gusenbauer C.; Zbiral B.; Toca-Herrera J. L.; Klees S.; Thiagarajan C. R. V.; Jonas U.; Dostalek J. Microstructuring of thermoresponsive biofunctional hydrogels by multiphoton photocrosslinking. Adv. Funct. Mater. 2024, 34 (26), 231557810.1002/adfm.202315578. DOI
Sergelen K.; Petri C.; Jonas U.; Dostalek J. Free-standing hydrogel-particle composite membrane with dynamically controlled permeability. Biointerphases 2017, 12 (5), 05100210.1116/1.4996952. PubMed DOI
Gisbert Quilis N.; Lequeux M.; Venugopalan P.; Khan I.; Knoll W.; Boujday S.; de la Chapelle M. L.; Dostalek J. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS. Nanoscale 2018, 10 (21), 10268–10276. 10.1039/C7NR08905H. PubMed DOI
Bunea A.-I.; del Castillo Iniesta N.; Droumpali A.; Wetzel A. E.; Engay E.; Taboryski R. Micro 3D printing by two-photon polymerization: Configurations and parameters for the Nanoscribe system. Micro 2021, 1 (2), 164–180. 10.3390/micro1020013. DOI
Morozov Y. M.; Quilis N. G.; Diehl F.; Klees S.; Grün J.; Jonas U.; Dostalek J. One- and two-photon crosslinked polymer hydrogel microstructures for optical spectroscopy and biosensing applications. Proc. SPIE 2022, 12145, 1214502.
Johnson P. B.; Christy R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6 (12), 4370.10.1103/PhysRevB.6.4370. DOI
Johnson P. B.; Christy R. W. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 1974, 9 (12), 5056.10.1103/PhysRevB.9.5056. DOI
Kejík L.; Horák M.; Šikola T.; Křápek V. Structural and optical properties of monocrystalline and polycrystalline gold plasmonic nanorods. Opt. Express 2020, 28 (23), 34960–34972. 10.1364/OE.409428. PubMed DOI
Sharma N.; Petri C.; Jonas U.; Dostalek J. Reversibly tunable plasmonic bandgap by responsive hydrogel grating. Opt. Express 2016, 24 (3), 2457–2465. 10.1364/OE.24.002457. PubMed DOI
Auer S. K.; Fossati S.; Morozov Y.; Mor D. C.; Jonas U.; Dostalek J. Rapid actuation of thermo-responsive polymer networks: Investigation of the transition kinetics. J. Phys. Chem. B 2022, 126 (16), 3170–3179. 10.1021/acs.jpcb.2c01160. PubMed DOI PMC
Mateescu A.; Wang Y.; Dostalek J.; Jonas U. Thin hydrogel films for optical biosensor applications. Membranes 2012, 2 (1), 40–69. 10.3390/membranes2010040. PubMed DOI PMC
Diehl F.; Hageneder S.; Fossati S.; Auer S. K.; Dostalek J.; Jonas U. Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation. Chem. Soc. Rev. 2022, 51 (10), 3926–3963. 10.1039/D1CS01083B. PubMed DOI PMC
Hageneder S.; Jungbluth V.; Soldo R.; Petri C.; Pertiller M.; Kreivi M.; Weinhäusel A.; Jonas U.; Dostalek J. Responsive hydrogel binding matrix for dual signal amplification in fluorescence affinity biosensors and peptide microarrays. ACS Appl. Mater. Interfaces 2021, 13 (23), 27645–27655. 10.1021/acsami.1c05950. PubMed DOI