Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation

. 2022 May 23 ; 51 (10) : 3926-3963. [epub] 20220523

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35471654

Plasmonic nanomaterials have become an integral part of numerous technologies, where they provide important functionalities spanning from extraction and harvesting of light in thin film optical devices to probing of molecular species and their interactions on biochip surfaces. More recently, we witness increasing research efforts devoted to a new class of plasmonic nanomaterials that allow for on-demand tuning of their properties by combining metallic nanostructures and responsive hydrogels. This review addresses this recently emerged vibrant field, which holds potential to expand the spectrum of possible applications and deliver functions that cannot be achieved by separate research in each of the respective fields. It aims at providing an overview of key principles, design rules, and current implementations of both responsive hydrogels and metallic nanostructures. We discuss important aspects that capitalize on the combination of responsive polymer networks with plasmonic nanostructures to perform rapid mechanical actuation and actively controlled nanoscale confinement of light associated with resonant amplification of its intensity. The latest advances towards the implementation of such responsive plasmonic nanomaterials are presented, particularly covering the field of plasmonic biosensing that utilizes refractometric measurements as well as plasmon-enhanced optical spectroscopy readout, optically driven miniature soft actuators, and light-fueled micromachines operating in an environment resembling biological systems.

Zobrazit více v PubMed

Maier S. A. Atwater H. A. Plasmonics: Localization and Guiding of Electromagnetic Energy in Metal/Dielectric Structures. J. Appl. Phys. 2005:011101. doi: 10.1063/1.1951057. doi: 10.1063/1.1951057. DOI

Mayerhöfer T. G. Popp J. Periodic Array-Based Substrates for Surface-Enhanced Infrared Spectroscopy. Nanophotonics. 2018;7(1):39–79. doi: 10.1515/nanoph-2017-0005. DOI

Cardinal M. F. Vander Ende E. Hackler R. A. McAnally M. O. Stair P. C. Schatz G. C. Van Duyne R. P. Expanding Applications of SERS through Versatile Nanomaterials Engineering. Chem. Soc. Rev. 2017;46(13):3886–3903. doi: 10.1039/c7cs00207f. doi: 10.1039/C7CS00207F. PubMed DOI

Homola J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008;108(2):462–493. doi: 10.1021/cr068107d. doi: 10.1021/cr068107d. PubMed DOI

Bauch M. Toma K. Toma M. Zhang Q. Dostalek J. Plasmon-Enhanced Fluorescence Biosensors: A Review. Plasmonics. 2014;9(4):781–799. doi: 10.1007/s11468-013-9660-5. doi: 10.1007/s11468-013-9660-5. PubMed DOI PMC

Garoli D. Yamazaki H. MacCaferri N. Wanunu M. Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications. Nano Lett. 2019:7553–7562. doi: 10.1021/acs.nanolett.9b02759. doi: 10.1021/acs.nanolett.9b02759. PubMed DOI

Schwarz B. Reininger P. Ristanić D. Detz H. Andrews A. M. Schrenk W. Strasser G. Monolithically Integrated Mid-Infrared Lab-on-a-Chip Using Plasmonics and Quantum Cascade Structures. Nat. Commun. 2014;5(1):1–7. doi: 10.1038/ncomms5085. PubMed DOI PMC

Karabchevsky A. Katiyi A. Ang A. S. Hazan A. On-Chip Nanophotonics and Future Challenges. Nanophotonics. 2020;9(12):3733–3753. doi: 10.1515/nanoph-2020-0204. doi: 10.1515/nanoph-2020-0204. DOI

Ferry V. E. Verschuuren M. A. Li H. B. T. Verhagen E. Walters R. J. Schropp R. E. I. Atwater H. A. Polman A. Light Trapping in Ultrathin Plasmonic Solar Cells. Opt. Express. 2010;18(S2):A237. doi: 10.1364/oe.18.00a237. doi: 10.1364/OE.18.00A237. PubMed DOI

Romo-Herrera J. M. Alvarez-Puebla R. A. Liz-Marzán L. M. Controlled Assembly of Plasmonic Colloidal Nanoparticle Clusters. Nanoscale. 2011;3(4):1304–1315. doi: 10.1039/c0nr00804d. doi: 10.1039/C0NR00804D. PubMed DOI

Ai B. Yu Y. Möhwald H. Zhang G. Yang B. Plasmonic Films Based on Colloidal Lithography. Adv. Colloid Interface Sci. 2014;206:5–16. doi: 10.1016/j.cis.2013.11.010. doi: 10.1016/j.cis.2013.11.010. PubMed DOI

Schrittwieser S. Haslinger M. J. Mitteramskogler T. Mühlberger M. Shoshi A. Brückl H. Bauch M. Dimopoulos T. Schmid B. Schotter J. Multifunctional Nanostructures and Nanopocket Particles Fabricated by Nanoimprint Lithography. Nanomaterials. 2019;9(12):1790. doi: 10.3390/nano9121790. doi: 10.3390/nano9121790. PubMed DOI PMC

Jiang N. Zhuo X. Wang J. Active Plasmonics: Principles, Structures, and Applications. Chem. Rev. 2018;118(6):3054–3099. doi: 10.1021/acs.chemrev.7b00252. doi: 10.1021/acs.chemrev.7b00252. PubMed DOI

MacDonald K. F. Sámson Z. L. Stockman M. I. Zheludev N. I. Ultrafast Active Plasmonics. Nat. Photonics. 2009;3(1):55–58. doi: 10.1038/nphoton.2008.249. doi: 10.1038/nphoton.2008.249. DOI

Sidhaye D. S. Kashyap S. Sastry M. Hotha S. Prasad B. L. V. Gold Nanoparticle Networks with Photoresponsive Interparticle Spacings. Langmuir. 2005;21(17):7979–7984. doi: 10.1021/la051125q. doi: 10.1021/la051125q. PubMed DOI

Joshi G. K. Blodgett K. N. Muhoberac B. B. Johnson M. A. Smith K. A. Sardar R. Ultrasensitive Photoreversible Molecular Sensors of Azobenzene-Functionalized Plasmonic Nanoantennas. Nano Lett. 2014;14(2):532–540. doi: 10.1021/NL403576C. doi: 10.1021/nl403576c. PubMed DOI

Wei M. Gao Y. Li X. Serpe M. J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017;8(1):127–143. doi: 10.1039/c6py01585a. doi: 10.1039/C6PY01585A. DOI

Toma M. Jonas U. Mateescu A. Knoll W. Dostalek J. Active Control of SPR by Thermoresponsive Hydrogels for Biosensor Applications. J. Phys. Chem. C. 2013;117(22):11705–11712. doi: 10.1021/jp400255u. doi: 10.1021/jp400255u. PubMed DOI PMC

Pastoriza-Santos I. Kinnear C. Pérez-Juste J. Mulvaney P. Liz-Marzán L. M. Plasmonic Polymer Nanocomposites. Nat. Rev. Mater. 2018;3(10):375–391. doi: 10.1038/s41578-018-0050-7. doi: 10.1038/s41578-018-0050-7. DOI

Stuart M. A. C. Huck W. T. S. Genzer J. Müller M. Ober C. Stamm M. Sukhorukov G. B. Szleifer I. Tsukruk V. V. Urban M. Winnik F. Zauscher S. Luzinov I. Minko S. Emerging Applications of Stimuli-Responsive Polymer Materials. Nat. Mater. 2010;9(2):101–113. doi: 10.1038/nmat2614. doi: 10.1038/nmat2614. PubMed DOI

Shi Q. Liu H. Tang D. Li Y. Li X. J. Xu F. Bioactuators Based on Stimulus-Responsive Hydrogels and Their Emerging Biomedical Applications. NPG Asia Mater. 2019;11(1):1–21. doi: 10.1038/s41427-019-0165-3. doi: 10.1038/s41427-018-0100-z. DOI

Özkale B. Parreira R. Bekdemir A. Pancaldi L. Özelçi E. Amadio C. Kaynak M. Stellacci F. Mooney D. J. Sakar M. S. Modular Soft Robotic Microdevices for Dexterous Biomanipulation. Lab Chip. 2019;19(5):778–788. doi: 10.1039/c8lc01200h. doi: 10.1039/C8LC01200H. PubMed DOI PMC

Hamajima S. Mitomo H. Tani T. Matsuo Y. Niikura K. Naya M. Ijiro K. Tani T. Naya M. Niikura K. Matsuo Y. Niikura K. Naya M. Ijiro K. Nanoscale Uniformity in the Active Tuning of a Plasmonic Array by Polymer Gel Volume Change. Nanoscale Adv. 2019;1(5):1731–1739. doi: 10.1039/c8na00404h. doi: 10.1039/C8NA00404H. PubMed DOI PMC

Zhang H. Koens L. Lauga E. Mourran A. Möller M. A Light-Driven Microgel Rotor. Small. 2019;15(46):1903379. doi: 10.1002/smll.201903379. doi: 10.1002/smll.201903379. PubMed DOI

Li J. Ji C. Yu X. Yin M. Kuckling D. Dually Cross-Linked Supramolecular Hydrogel as Surface Plasmon Resonance Sensor for Small Molecule Detection. Macromol. Rapid Commun. 2019;40(14):1–5. doi: 10.1002/marc.201900189. doi: 10.1002/marc.201900189. PubMed DOI

Jia H. Mailand E. Zhou J. Huang Z. Dietler G. Kolinski J. M. Wang X. Sakar M. S. Universal Soft Robotic Microgripper. Small. 2019;15(4):1803870. doi: 10.1002/SMLL.201803870. doi: 10.1002/smll.201803870. PubMed DOI

Kowalczyk A. Wagner B. Karbarz M. Nowicka A. M. A Dual DNA Biosensor Based on Two Redox Couples with a Hydrogel Sensing Platform Functionalized with Carboxyl Groups and Gold Nanoparticles. Sens. Actuators, B. 2015;208:220–227. doi: 10.1016/j.snb.2014.11.029. doi: 10.1016/j.snb.2014.11.029. DOI

Magnozzi M. Brasse Y. König T. A. F. Bisio F. Bittrich E. Fery A. Canepa M. Plasmonics of Au/Polymer Core/Shell Nanocomposites for Thermoresponsive Hybrid Metasurfaces. ACS Appl. Nano Mater. 2020;3(2):1674–1682. doi: 10.1021/acsanm.9b02403. doi: 10.1021/acsanm.9b02403. DOI

Yoon C. Xiao R. Park J. Cha J. Nguyen T. D. Gracias D. H. Functional Stimuli Responsive Hydrogel Devices by Self-Folding. Smart Mater. Struct. 2014;23(9):094008. doi: 10.1088/0964-1726/23/9/094008. doi: 10.1088/0964-1726/23/9/094008. DOI

Howaili F. Özliseli E. Küçüktürkmen B. Razavi S. M. Sadeghizadeh M. Rosenholm J. M. Stimuli-Responsive, Plasmonic Nanogel for Dual Delivery of Curcumin and Photothermal Therapy for Cancer Treatment. Front. Chem. 2021;8:1235. doi: 10.3389/fchem.2020.602941. PubMed DOI PMC

Kim J. H. Lee T. R. Discrete Thermally Responsive Hydrogel-Coated Gold Nanoparticles for Use as Drug-Delivery Vehicles. Drug Dev. Res. 2006;67(1):61–69. doi: 10.1002/DDR.20068. doi: 10.1002/ddr.20068. DOI

Jiang S. Wang K. Dai Y. Zhang X. Xia F. Near-Infrared Light-Triggered Dual Drug Release Using Gold Nanorod-Embedded Thermosensitive Nanogel-Crosslinked Hydrogels. Macromol. Mater. Eng. 2019;304(7):1900087. doi: 10.1002/mame.201900087. doi: 10.1002/mame.201900087. DOI

Sun Z. Yamauchi Y. Araoka F. Kim Y. S. Bergueiro J. Ishida Y. Ebina Y. Sasaki T. Hikima T. Aida T. An Anisotropic Hydrogel Actuator Enabling Earthworm-Like Directed Peristaltic Crawling. Angew. Chem. 2018;130(48):15998–16002. doi: 10.1002/ange.201810052. doi: 10.1002/ange.201810052. PubMed DOI

Wang C. Liu X. Wulf V. Vázquez-González M. Fadeev M. Willner I. DNA-Based Hydrogels Loaded with Au Nanoparticles or Au Nanorods: Thermoresponsive Plasmonic Matrices for Shape-Memory, Self-Healing, Controlled Release, and Mechanical Applications. ACS Nano. 2019;13(3):3424–3433. doi: 10.1021/acsnano.8b09470. doi: 10.1021/acsnano.8b09470. PubMed DOI

Rizzo F. Kehr N. S. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv. Healthcare Mater. 2021;10(1):2001341. doi: 10.1002/ADHM.202001341. doi: 10.1002/adhm.202001341. PubMed DOI

Homola J., Surface Plasmon Resonance Based Sensors, ed. J. Homola and O. S. Wolfbeis, Springer Series on Chemical Sensors and Biosensors, Springer: Berlin, Heidelberg, 2006, vol. 410.1007/b100321 DOI

Hoffman A. S. Hydrogels for Biomedical Applications. Adv. Drug Delivery Rev. 2012;64:18–23. doi: 10.1016/j.addr.2012.09.010. doi: 10.1016/j.addr.2012.09.010. PubMed DOI

Mateescu A. Wang Y. Dostalek J. Jonas U. Thin Hydrogel Films for Optical Biosensor Applications. Membr. 2012;2(1):49–69. doi: 10.3390/membranes2010040. PubMed DOI PMC

Wu S. Zhu M. Lian Q. Lu D. Spencer B. Adlam D. J. Hoyland J. A. Volk K. Karg M. Saunders B. R. Plasmonic and Colloidal Stability Behaviours of Au–Acrylic Core–Shell Nanoparticles with Thin PH-Responsive Shells. Nanoscale. 2018;10(39):18565–18575. doi: 10.1039/c8nr07440b. doi: 10.1039/C8NR07440B. PubMed DOI

Pandiyarajan C. K. Prucker O. Rühe J. Humidity Driven Swelling of the Surface-Attached Poly(N-Alkylacrylamide) Hydrogels. Macromolecules. 2016;49(21):8254–8264. doi: 10.1021/acs.macromol.6b01379. doi: 10.1021/acs.macromol.6b01379. DOI

Navarro R. Pérez Perrino M. Prucker O. Rühe J. Preparation of Surface-Attached Polymer Layers by Thermal or Photochemical Activation of α-Diazoester Moieties. Langmuir. 2013;29(34):10932–10939. doi: 10.1021/la402323k. doi: 10.1021/la402323k. PubMed DOI

Liu B. Liu X. Shi S. Huang R. Su R. Qi W. He Z. Design and Mechanisms of Antifouling Materials for Surface Plasmon Resonance Sensors. Acta Biomater. 2016;40:100–118. doi: 10.1016/j.actbio.2016.02.035PM-26921775. doi: 10.1016/j.actbio.2016.02.035. PubMed DOI

Mutschler T. Kieser B. Frank R. Gauglitz G. Characterization of Thin Polymer and Biopolymer Layers by Ellipsometry and Evanescent Field Technology. Anal. Bioanal. Chem. 2002;374(4):658–664. doi: 10.1007/s00216-002-1488-3. doi: 10.1007/s00216-002-1488-3. PubMed DOI

Wen H. Xiao W. Biswas S. Cong Z. Q. Liu X. M. Lam K. S. Liao Y. H. Deng W. Alginate Hydrogel Modified with a Ligand Interacting with A3β1 Integrin Receptor Promotes the Differentiation of 3D Neural Spheroids toward Oligodendrocytes in Vitro. ACS Appl. Mater. Interfaces. 2019;11(6):5821–5833. doi: 10.1021/acsami.8b19438. doi: 10.1021/acsami.8b19438. PubMed DOI

Hou X. Dai X. Yang J. Zhang B. Zhao D. Li C. Yin Z. Zhao Y. Liu B. Injectable Polypeptide-Engineered Hydrogel Depot for Amplifying the Anti-Tumor Immune Effect Induced by Chemo-Photothermal Therapy. J. Mater. Chem. B. 2020;8(37):8623–8633. doi: 10.1039/D0TB01370F. doi: 10.1039/D0TB01370F. PubMed DOI

Zhao L. Zhang X. Luo Q. Hou C. Xu J. Liu J. Engineering Nonmechanical Protein-Based Hydrogels with Highly Mechanical Properties: Comparison with Natural Muscles. Biomacromolecules. 2020;21(10):4212–4219. doi: 10.1021/acs.biomac.0c01002. doi: 10.1021/acs.biomac.0c01002. PubMed DOI

Kirillova A. Maxson R. Stoychev G. Gomillion C. T. Ionov L. 4D Biofabrication Using Shape-Morphing Hydrogels. Adv. Mater. 2017;29(46):1–8. doi: 10.1002/adma.201703443. doi: 10.1002/adma.201703443. PubMed DOI

Nešović K. Janković A. Radetić T. Perić-Grujić A. Vukašinović-Sekulić M. Kojić V. Rhee K. Y. Mišković-Stanković V. Poly(Vinyl Alcohol)/Chitosan Hydrogels with Electrochemically Synthesized Silver Nanoparticles for Wound Dressing Applications. J. Electrochem. Sci. Eng. 2020;10(2):185–198. doi: 10.5599/jese.732. doi: 10.5599/jese.732. DOI

Spicer C. D. Hydrogel Scaffolds for Tissue Engineering: The Importance of Polymer Choice. Polym. Chem. 2020;11:184–219. doi: 10.1039/c9py01021a. doi: 10.1039/C9PY01021A. DOI

Peppas N. A. Hilt J. Z. Khademhosseini A. Langer R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006;18(11):1345–1360. doi: 10.1002/adma.200501612. doi: 10.1002/adma.200501612. DOI

Ilievski F. Mazzeo A. D. Shepherd R. F. Chen X. Whitesides G. M. Soft Robotics for Chemists. Angew. Chemie. 2011;123(8):1930–1935. doi: 10.1002/ange.201006464. doi: 10.1002/ange.201006464. PubMed DOI

Khoo Z. X. Teoh J. E. M. Liu Y. Chua C. K. Yang S. An J. Leong K. F. Yeong W. Y. 3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing. Virtual Phys. Prototyp. 2015;10(3):103–122. doi: 10.1080/17452759.2015.1097054M4-Citavi. doi: 10.1080/17452759.2015.1097054. DOI

Li S. Zhao H. Shepherd R. F. Flexible and Stretchable Sensors for Fluidic Elastomer Actuated Soft Robots. MRS Bull. 2017;42(2):138–142. doi: 10.1557/mrs.2017.4. doi: 10.1557/mrs.2017.4. DOI

Schenderlein H. Voss A. Stark R. W. Biesalski M. Preparation and Characterization of Light-Switchable Polymer Networks Attached to Solid Substrates. Langmuir. 2013;29(14):4525–4534. doi: 10.1021/la305073p. doi: 10.1021/la305073p. PubMed DOI

Junk M. J. N. Anac I. Menges B. Jonas U. Analysis of Optical Gradient Profiles during Temperature- and Salt-Dependent Swelling of Thin Responsive Hydrogel Films. Langmuir. 2010;26(14):12253–12259. doi: 10.1021/la101185qPM-20504000. doi: 10.1021/la101185q. PubMed DOI

Harmon M. E. Kuckling D. Frank C. W. Photo-Cross-Linkable PNIPAAm Copolymers. 2. Effects of Constraint on Temperature and PH-Responsive Hydrogel Layers. Macromolecules. 2003;36(1):162–172. doi: 10.1021/ma021025g. doi: 10.1021/ma021025g. DOI

Anac I. Aulasevich A. Junk M. J. N. Jakubowicz P. Roskamp R. F. Menges B. Jonas U. Knoll W. Optical Characterization of Co-Nonsolvency Effects in Thin Responsive PNIPAAm-Based Gel Layers Exposed to Ethanol/Water Mixtures. Macromol. Chem. Phys. 2010;211(9):1018–1025. doi: 10.1002/macp.200900533M4-Citavi. doi: 10.1002/macp.200900533. DOI

Amaral A. J. R. Pasparakis G. Stimuli Responsive Self-Healing Polymers: Gels, Elastomers and Membranes. Polym. Chem. 2017;8(42):6464–6484. doi: 10.1039/c7py01386h. doi: 10.1039/C7PY01386H. DOI

Reinicke S. Schmelz J. Lapp A. Karg M. Hellweg T. Schmalz H. Smart Hydrogels Based on Double Responsive Triblock Terpolymers. Soft Matter. 2009;5(13):2648–2657. doi: 10.1039/b900539k. DOI

Thérien-Aubin H. Wu Z. L. Nie Z. Kumacheva E. Multiple Shape Transformations of Composite Hydrogel Sheets. J. Am. Chem. Soc. 2013;135(12):4834–4839. doi: 10.1021/ja400518c. doi: 10.1021/ja400518c. PubMed DOI

Seuring J. Agarwal S. Polymers with Upper Critical Solution Temperature in Aqueous Solution: Unexpected Properties from Known Building Blocks. ACS Macro Lett. 2013;2(7):597–600. doi: 10.1021/mz400227y. doi: 10.1021/mz400227y. PubMed DOI

Higashi N. Sonoda R. Koga T. Thermo-Responsive Amino Acid-Based Vinyl Polymers Showing Widely Tunable LCST/UCST Behavior in Water. RSC Adv. 2015;5(83):67652–67657. doi: 10.1039/c5ra13009c. doi: 10.1039/C5RA13009C. DOI

Roth P. J. Composing Well-Defined Stimulus-Responsive Materials through Postpolymerization Modification Reactions. Macromol. Chem. Phys. 2014;215(9):825–838. doi: 10.1002/macp.201400073. doi: 10.1002/macp.201400073. DOI

Zhu Y. Quek J. Y. Lowe A. B. Roth P. J. Thermoresponsive (Co)Polymers through Postpolymerization Modification of Poly(2-Vinyl-4,4-Dimethylazlactone) Macromolecules. 2013;46:6475. doi: 10.1021/ma401096r. doi: 10.1021/ma401096r. DOI

Woodfield P. A. Zhu Y. Pei Y. Roth P. J. Hydrophobically Modified Sulfobetaine Copolymers with Tunable Aqueous UCST through Postpolymerization Modification of Poly(Pentafluorophenyl Acrylate) Macromolecules. 2014;47:750. doi: 10.1021/ma402391a. doi: 10.1021/ma402391a. DOI

Natansohn A. Rochon P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002;102:4139–4175. doi: 10.1021/cr970155y. doi: 10.1021/cr970155y. PubMed DOI

Knoll W., Handbook of Biofunctional Surfaces, ed. W. Knoll, Jenny Stanford Publishing, 2012. 10.1201/B14900 DOI

Nicoletta F. P. Cupelli D. Formoso P. de Filpo G. Colella V. Gugliuzza A. Light Responsive Polymer Membranes: A Review. Membr. 2012;2(1):134–197. doi: 10.3390/MEMBRANES2010134. doi: 10.3390/membranes2010134. PubMed DOI PMC

Karg M. Pich A. Hellweg T. Hoare T. Lyon L. A. Crassous J. J. Suzuki D. Gumerov R. A. Schneider S. Potemkin I. I. Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. Langmuir. 2019;35(19):6231–6255. doi: 10.1021/acs.langmuir.8b04304PM-30998365. doi: 10.1021/acs.langmuir.8b04304. PubMed DOI

Schmid A. J. Dubbert J. Rudov A. A. Pedersen J. S. Lindner P. Karg M. Potemkin I. I. Richtering W. Multi-Shell Hollow Nanogels with Responsive Shell Permeability. Sci. Rep. 2016;6:22736. doi: 10.1038/srep22736PM-26984478. doi: 10.1038/srep22736. PubMed DOI PMC

Date P. Tanwar A. Ladage P. Kodam K. M. Ottoor D. Biodegradable and Biocompatible Agarose–Poly(Vinyl Alcohol) Hydrogel for the in Vitro Investigation of Ibuprofen Release. Chem. Pap. 2020;74(6):1965–1978. doi: 10.1007/s11696-019-01046-8. doi: 10.1007/s11696-019-01046-8. DOI

Coleman S. ter Schiphorst J. Azouz A. Ben Bakker S. Schenning A. P. H. J. Diamond D. Tuning Microfluidic Flow by Pulsed Light Oscillating Spiropyran-Based Polymer Hydrogel Valves. Sens. Actuators, B. 2017;245:81–86. doi: 10.1016/j.snb.2017.01.112. doi: 10.1016/j.snb.2017.01.112. DOI

Ter Schiphorst J. Saez J. Diamond D. Benito-Lopez F. Schenning A. P. H. J. Light-Responsive Polymers for Microfluidic Applications. Lab Chip. 2018;18(5):699–709. doi: 10.1039/C7LC01297G. doi: 10.1039/C7LC01297G. PubMed DOI

Ramanan S. N. Shahkaramipour N. Tran T. Zhu L. Venna S. R. Lim C. K. Singh A. Prasad P. N. Lin H. Self-Cleaning Membranes for Water Purification by Co-Deposition of Photo-Mobile 4,4′-Azodianiline and Bio-Adhesive Polydopamine. J. Membr. Sci. 2018;554:164–174. doi: 10.1016/J.MEMSCI.2018.02.068. doi: 10.1016/j.memsci.2018.02.068. DOI

Yin J. Li C. Wang D. Liu S. FRET-Derived Ratiometric Fluorescent K+ Sensors Fabricated from Thermoresponsive Poly(N-Isopropylacrylamide) Microgels Labeled with Crown Ether Moieties. J. Phys. Chem. B. 2010;114(38):12213–12220. doi: 10.1021/jp1052369. doi: 10.1021/jp1052369. PubMed DOI

Ter Schiphorst J. Coleman S. Stumpel J. E. Ben Azouz A. Diamond D. Schenning A. P. H. J. Molecular Design of Light-Responsive Hydrogels, for in Situ Generation of Fast and Reversible Valves for Microfluidic Applications. Chem. Mater. 2015;27(17):5925–5931. doi: 10.1021/acs.chemmater.5b01860. doi: 10.1021/acs.chemmater.5b01860. DOI

Song J. E. Cho E. C. Dual-Responsive and Multi-Functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids. Sci. Rep. 2016;6(1):1–10. doi: 10.1038/srep34622. doi: 10.1038/s41598-016-0001-8. PubMed DOI PMC

Young R. J. and Lovell P. A., Introduction to Polymers, CRC Press, 3rd edn, 2011

Mondal S. Das S. Nandi A. K. A Review on Recent Advances in Polymer and Peptide Hydrogels. Soft Matter. 2020;16(6):1404–1454. doi: 10.1039/c9sm02127bPM-31984400. doi: 10.1039/C9SM02127B. PubMed DOI

Takashima Y. Nakayama T. Miyauchi M. Kawaguchi Y. Yamaguchi H. Harada A. Complex Formation and Gelation between Copolymers Containing Pendant Azobenzene Groups and Cyclodextrin Polymers. Chem. Lett. 2004;33(7):890–891. doi: 10.1246/cl.2004.890. doi: 10.1246/cl.2004.890. DOI

Gooch A. Murphy N. S. Thomson N. H. Wilson A. J. Side-Chain Supramolecular Polymers Employing Conformer Independent Triple Hydrogen Bonding Arrays. Macromolecules. 2013;46(24):9634–9641. doi: 10.1021/ma402069b. doi: 10.1021/ma402069b. PubMed DOI PMC

Stroganov V. Zakharchenko S. Sperling E. Meyer A. K. Schmidt O. G. Ionov L. Biodegradable Self-Folding Polymer Films with Controlled Thermo-Triggered Folding. Adv. Funct. Mater. 2014;24(27):4357–4363. doi: 10.1002/adfm.201400176. doi: 10.1002/adfm.201400176. DOI

Paredes Juárez G. A. Spasojevic M. Faas M. M. de Vos P. Immunological and Technical Considerations in Application of Alginate-Based Microencapsulation Systems. Front. Bioeng. Biotechnol. 2014;2(AUG):1–15. doi: 10.3389/fbioe.2014.00026. PubMed DOI PMC

Harada A. Takashima Y. Nakahata M. Supramolecular Polymeric Materials via Cyclodextrin-Guest Interactions. Acc. Chem. Res. 2014;47(7):2128–2140. doi: 10.1021/ar500109h. doi: 10.1021/ar500109h. PubMed DOI

Osterwinter G. J. Navarro-Crespo R. Prucker O. Henze M. Rühe J. Surface-Attached Polymer Networks through Carbene Intermediates Generated from α-Diazo Esters. J. Polym. Sci., Part A: Polym. Chem. 2017;55(19):3276–3285. doi: 10.1002/pola.28702. doi: 10.1002/pola.28702. DOI

Wang Z. C. Xu X. D. Chen C. S. Yun L. Song J. C. Zhang X. Z. Zhuo R. X. In Situ Formation of Thermosensitive Pnipaam-Based Hydrogels by Michael-Type Addition Reaction. ACS Appl. Mater. Interfaces. 2010;2(4):1009–1018. doi: 10.1021/am900712e. doi: 10.1021/am900712e. PubMed DOI

Schuh K. Prucker O. Rühe J. Surface Attached Polymer Networks through Thermally Induced Cross-Linking of Sulfonyl Azide Group Containing Polymers. Macromolecules. 2008;41(23):9284–9289. doi: 10.1021/ma801387e. doi: 10.1021/ma801387e. DOI

Prucker O. Brandstetter T. Rühe J. Surface-Attached Hydrogel Coatings via C,H-Insertion Crosslinking for Biomedical and Bioanalytical Applications (Review) Biointerphases. 2018;13(1):010801. doi: 10.1116/1.4999786. doi: 10.1116/1.4999786. PubMed DOI

Kibrom A. Roskamp R. F. Jonas U. Menges B. Knoll W. Paulsen H. Naumann R. L. C. Hydrogel-Supported Protein-Tethered Bilayer Lipid Membranes: A New Approach toward Polymer-Supported Lipid Membranes. Soft Matter. 2011;7(1):237–246. doi: 10.1039/c0sm00618a. doi: 10.1039/C0SM00618A. DOI

Osada Y. Gong J. P. Tanaka Y. Polymer Gels. J. Macromol. Sci., Polym. Rev. 2004;44(1):87–112. doi: 10.1081/MC-120027935. doi: 10.1081/MC-120027935. DOI

Aulasevich A. Roskamp R. F. Jonas U. Menges B. Dostálek J. Knoll W. Optical Waveguide Spectroscopy for the Investigation of Protein-Functionalized Hydrogel Films. Macromol. Rapid Commun. 2009;30(9–10):872–877. doi: 10.1002/marc.200800747. doi: 10.1002/marc.200800747. PubMed DOI

Carl N. Sindram J. Gallei M. Egelhaaf S. U. Karg M. From Normal Diffusion to Superdiffusion: Photothermal Heating of Plasmonic Core–Shell Microgels. Phys. Rev. E. 2019;100(5):052605–052617. doi: 10.1103/PhysRevE.100.052605. doi: 10.1103/PhysRevE.100.052605. PubMed DOI

Ekblad T. Bergström G. Ederth T. Conlan S. L. Mutton R. Clare A. S. Wang S. Liu Y. Zhao Q. D’Souza F. Donnelly G. T. Willemsen P. R. Pettitt M. E. Callow M. E. Callow J. A. Liedberg B. Poly(Ethylene Glycol)-Containing Hydrogel Surfaces for Antifouling Applications in Marine and Freshwater Environments. Biomacromolecules. 2008;9(10):2775–2783. doi: 10.1021/bm800547m. doi: 10.1021/bm800547m. PubMed DOI

Thatiparti T. R. Kano A. Maruyama A. Takahara A. Novel Silver-Loaded Semi-Interpenetrating Polymer Network Gel Films with Antibacterial Activity. J. Polym. Sci., Part A: Polym. Chem. 2009;47(19):4950–4962. doi: 10.1002/pola.23546. doi: 10.1002/pola.23546. DOI

Andersson O. Larsson A. Ekblad T. Liedberg B. Gradient Hydrogel Matrix for Microarray and Biosensor Applications: An Imaging SPR Study. Biomacromolecules. 2009;10(1):142–148. doi: 10.1021/bm801029bPM-19067607. doi: 10.1021/bm801029b. PubMed DOI

Kausaite-Minkstimiene A. Ramanaviciene A. Kirlyte J. Ramanavicius A. Comparative Study of Random and Oriented Antibody Immobilization Techniques on the Binding Capacity of Immunosensor. Anal. Chem. 2010;82(15):6401–6408. doi: 10.1021/ac100468kPM-20669994. doi: 10.1021/ac100468k. PubMed DOI

Dannert C. Stokke B. T. Dias R. S. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polym. 2019;11(2):275. doi: 10.3390/polym11020275. PubMed DOI PMC

van den Brom C. R. Anac I. Roskamp R. F. Retsch M. Jonas U. Menges B. Preece J. A. The Swelling Behaviour of Thermoresponsive Hydrogel/Silica Nanoparticle Composites. J. Mater. Chem. 2010;20(23):4827–4839. doi: 10.1039/b927314j. doi: 10.1039/B927314J. DOI

Beebe D. J. Moore J. S. Bauer J. M. Yu Q. Liu R. H. Devadoss C. Jo B. H. Functional Hydrogel Structures for Autonomous Flow Control inside Microfluidic Channels. Nature. 2000;404(6778):588–590. doi: 10.1038/35007047. doi: 10.1038/35007047. PubMed DOI

Gupta S. Kuckling D. Kretschmer K. Choudhary V. Adler H.-J. Synthesis and Characterization of Stimuli-Sensitive Micro- and Nanohydrogels Based on Photocrosslinkable Poly(Dimethylaminoethyl Methacrylate) J. Polym. Sci., Part A: Polym. Chem. 2007;45(4):669–679. doi: 10.1002/pola.21846. doi: 10.1002/pola.21846. DOI

Sharifi M. Dolatabadi J. E. N. Fathi F. Zakariazadeh M. Barzegar A. Rashidi M. Tajalli H. Rashidi M. R. Surface Plasmon Resonance and Molecular Docking Studies of Bovine Serum Albumin Interaction with Neomycin: Kinetic and Thermodynamic Analysis. BioImpacts. 2017;7(2):91–97. doi: 10.15171/bi.2017.12. doi: 10.15171/bi.2017.12. PubMed DOI PMC

Fong C. C. Wong M. S. Fong W. F. Yang M. Effect of Hydrogel Matrix on Binding Kinetics of Protein-Protein Interactions on Sensor Surface. Anal. Chim. Acta. 2002;456(2):201–208. doi: 10.1016/S0003-2670(02)00033-8. doi: 10.1016/S0003-2670(02)00033-8. DOI

George S. M. Tandon S. Kandasubramanian B. Advancements in Hydrogel-Functionalized Immunosensing Platforms. ACS Omega. 2020;5(5):2060–2068. doi: 10.1021/acsomega.9b03816. doi: 10.1021/acsomega.9b03816. PubMed DOI PMC

Han I. K. Chung T. Han J. Kim Y. S. Nanocomposite Hydrogel Actuators Hybridized with Various Dimensional Nanomaterials for Stimuli Responsiveness Enhancement. Nano Convergence. 2019;6(1):18. doi: 10.1186/s40580-019-0188-zPM-31179510. doi: 10.1186/s40580-019-0188-z. PubMed DOI PMC

Vernerey F. Shen T. The Mechanics of Hydrogel Crawlers in Confined Environment. J. R. Soc. Interface. 2017;14(132):20170242. doi: 10.1098/rsif.2017.0242. doi: 10.1098/rsif.2017.0242. PubMed DOI PMC

Zhai L. Stimuli-Responsive Polymer Films. Chem. Soc. Rev. 2013;42(17):7148–7160. doi: 10.1039/c3cs60023h. doi: 10.1039/C3CS60023H. PubMed DOI

Barbey R. Lavanant L. Paripovic D. Schüwer N. Sugnaux C. Tugulu S. Klok H. A. Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications. Chem. Rev. 2009;109(11):5437–5527. doi: 10.1021/cr900045a. doi: 10.1021/cr900045a. PubMed DOI

Yoon C. Xiao R. Park J. Cha J. Nguyen T. D. Gracias D. H. Functional Stimuli Responsive Hydrogel Devices by Self-Folding. Smart Mater. Struct. 2014;23(9):094008. doi: 10.1088/0964-1726/23/9/094008. doi: 10.1088/0964-1726/23/9/094008. DOI

Sershen S. R. Mensing G. A. Ng M. Halas N. J. Beebe D. J. West J. L. Independent Optical Control of Microfluidic Valves Formed from Optomechanically Responsive Nanocomposite Hydrogels. Adv. Mater. 2005;17(11):1366–1368. doi: 10.1002/adma.200401239. doi: 10.1002/adma.200401239. PubMed DOI

Vogel N. Retsch M. Fustin C.-A. del Campo A. Jonas U. Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chem. Rev. 2015;115(13):6265–6311. doi: 10.1021/cr400081d. doi: 10.1021/cr400081d. PubMed DOI

Rodriguez-Emmenegger C. Preuss C. M. Yameen B. Pop-Georgievski O. Bachmann M. Mueller J. O. Bruns M. Goldmann A. S. Bastmeyer M. Barner-Kowollik C. Controlled Cell Adhesion on Poly(Dopamine) Interfaces Photopatterned with Non-Fouling Brushes. Adv. Mater. 2013;25(42):6123–6127. doi: 10.1002/adma.201302492. doi: 10.1002/adma.201302492. PubMed DOI

Hess A. J. Funk A. J. Liu Q. De La Cruz J. A. Sheetah G. H. Fleury B. Smalyukh I. I. Plasmonic Metamaterial Gels with Spatially Patterned Orientational Order via 3D Printing. ACS Omega. 2019;4(24):20558–20563. doi: 10.1021/acsomega.9b02418. doi: 10.1021/acsomega.9b02418. PubMed DOI PMC

Torgersen J. Qin X. H. Li Z. Ovsianikov A. Liska R. Stampfl J. Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix. Adv. Funct. Mater. 2013;23(36):4542–4554. doi: 10.1002/adfm.201203880. doi: 10.1002/adfm.201203880. DOI

Ciuciu A. I. Cywiński P. J. Two-Photon Polymerization of Hydrogels-Versatile Solutions to Fabricate Well-Defined 3D Structures. RSC Adv. 2014;4(85):45504–45516. doi: 10.1039/c4ra06892k. doi: 10.1039/C4RA06892K. DOI

You S. Li J. Zhu W. Yu C. Mei D. Chen S. Nanoscale 3D Printing of Hydrogels for Cellular Tissue Engineering. J. Mater. Chem. B. 2018;6(15):2187–2197. doi: 10.1039/c8tb00301g. doi: 10.1039/C8TB00301G. PubMed DOI PMC

Xing J. F. Zheng M. L. Duan X. M. Two-Photon Polymerization Microfabrication of Hydrogels: An Advanced 3D Printing Technology for Tissue Engineering and Drug Delivery. Chem. Soc. Rev. 2015;44(15):5031–5039. doi: 10.1039/c5cs00278h. doi: 10.1039/C5CS00278H. PubMed DOI

Dong X. Zou X. Liu X. Lu P. Yang J. Lin D. Zhang L. Zha L. Temperature-Tunable Plasmonic Property and SERS Activity of the Monodisperse Thermo-Responsive Composite Microgels with Core–Shell Structure Based on Gold Nanorod as Core. Colloids Surf., A. 2014;452(1):46–50. doi: 10.1016/j.colsurfa.2014.03.090. doi: 10.1016/j.colsurfa.2014.03.090. DOI

Quilis N. G. Hageneder S. Fossati S. Auer S. K. Venugopalan P. Bozdogan A. Petri C. Moreno-Cencerrado A. Toca-Herrera J. L. Jonas U. Dostalek J. UV-Laser Interference Lithography for Local Functionalization of Plasmonic Nanostructures with Responsive Hydrogel. J. Phys. Chem. C. 2020;124(5):3297–3305. doi: 10.1021/acs.jpcc.9b11059. doi: 10.1021/acs.jpcc.9b11059. PubMed DOI PMC

Magnozzi M. Brasse Y. König T. A. F. Bisio F. Bittrich E. Fery A. Canepa M. Plasmonics of Au/Polymer Core/Shell Nanocomposites for Thermoresponsive Hybrid Metasurfaces. ACS Appl. Nano Mater. 2020;3(2):1674–1682. doi: 10.1021/acsanm.9b02403. doi: 10.1021/acsanm.9b02403. DOI

Gehan H. Fillaud L. Chehimi M. M. Aubard J. Hohenau A. Felidj N. Mangeney C. Thermo-Induced Electromagnetic Coupling in Gold/Polymer Hybrid Plasmonic Structures Probed by Surface-Enhanced Raman Scattering. ACS Nano. 2010;4(11):6491–6500. doi: 10.1021/nn101451q. doi: 10.1021/nn101451q. PubMed DOI

Chen H. Wang Y. Li X. Liang B. Dong S. You T. Yin P. A CO2-Tunable Plasmonic Nanosensor Based on the Interfacial Assembly of Gold Nanoparticles on Diblock Copolymers Grafted from Gold Surfaces. RSC Adv. 2018;8(39):22177–22181. doi: 10.1039/c8ra02934b. doi: 10.1039/C8RA02934B. PubMed DOI PMC

Cormier S. Ding T. Turek V. Baumberg J. J. Actuating Single Nano-Oscillators with Light. Adv. Opt. Mater. 2018;6(6):1701281. doi: 10.1002/ADOM.201701281. doi: 10.1002/adom.201701281. DOI

Karg M. Pastoriza-Santos I. Pérez-Juste J. Hellweg T. Liz-Marzán L. M. Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties. Small. 2007;3(7):1222–1229. doi: 10.1002/smll.200700078. doi: 10.1002/smll.200700078. PubMed DOI

Fernandez-Lopez C. Polavarapu L. Solis D. M. Taboada J. M. Obelleiro F. Contreras-Caceres R. Pastoriza-Santos I. Perez-Juste J. Gold Nanorod-PNIPAM Hybrids with Reversible Plasmon Coupling: Synthesis, Modeling, and SERS Properties. ACS Appl. Mater. Interfaces. 2015;7(23):12530–12538. doi: 10.1021/am5087209. doi: 10.1021/am5087209. PubMed DOI

Liu X. Wang X. Zha L. Lin D. Yang J. Zhou J. Zhang L. Temperature- and PH-Tunable Plasmonic Properties and SERS Efficiency of the Silver Nanoparticles within the Dual Stimuli-Responsive Microgels. J. Mater. Chem. C. 2014;2(35):7326–7335. doi: 10.1039/c4tc00966e. doi: 10.1039/C4TC00966E. DOI

Turek V. A. Cormier S. Sierra-Martin B. Keyser U. F. Ding T. Baumberg J. J. The Crucial Role of Charge in Thermoresponsive-Polymer-Assisted Reversible Dis/Assembly of Gold Nanoparticles. Adv. Opt. Mater. 2018;6(8):1701270. doi: 10.1002/ADOM.201701270. doi: 10.1002/adom.201701270. DOI

Hamajima S. Mitomo H. Tani T. Matsuo Y. Niikura K. Naya M. Ijiro K. Nanoscale Uniformity in the Active Tuning of a Plasmonic Array by Polymer Gel Volume Change. Nanoscale Adv. 2019;1(5):1731–1739. doi: 10.1039/c8na00404h. doi: 10.1039/C8NA00404H. PubMed DOI PMC

Gisbert Quilis N. van Dongen M. Venugopalan P. Kotlarek D. D. Petri C. Moreno Cencerrado A. Stanescu S. Toca Herrera J. L. Jonas U. Möller M. Mourran A. Dostalek J. Quilis N. G. van Dongen M. Venugopalan P. Kotlarek D. D. Petri C. Cencerrado A. M. Stanescu S. Herrera J. L. T. Jonas U. Moeller M. Mourran A. Dostalek J. Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane. Adv. Opt. Mater. 2019;7(15):1–11. doi: 10.1002/adom.201900342. doi: 10.1002/adom.201900342. DOI

Kotlarek D. Fossati S. Venugopalan P. Gisbert Quilis N. Slabý J. Homola J. Lequeux M. Amiard F. Lamy De La Chapelle M. Jonas U. Dostálek J. Actuated Plasmonic Nanohole Arrays for Sensing and Optical Spectroscopy Applications. Nanoscale. 2020;12(17):9756–9768. doi: 10.1039/d0nr00761g. doi: 10.1039/D0NR00761G. PubMed DOI

Auguié B. Barnes W. L. Collective Resonances in Gold Nanoparticle Arrays. Phys. Rev. Lett. 2008;101(14):143902. doi: 10.1103/PhysRevLett.101.143902. doi: 10.1103/PhysRevLett.101.143902. PubMed DOI

Volk K. Fitzgerald J. P. S. S. Ruckdeschel P. Retsch M. König T. A. F. F. Karg M. Reversible Tuning of Visible Wavelength Surface Lattice Resonances in Self-Assembled Hybrid Monolayers. Adv. Opt. Mater. 2017;5(9):1600971. doi: 10.1002/adom.201600971. doi: 10.1002/adom.201600971. DOI

Wang Q. Liu L. Wang Y. Liu P. Jiang H. Xu Z. Ma Z. Oren S. Chow E. K. C. Lu M. Dong L. Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer. Sci. Rep. 2016;5(1):18567. doi: 10.1038/srep18567. doi: 10.1038/srep18567. PubMed DOI PMC

Gisbert Quilis N. Lequeux M. Venugopalan P. Khan I. Knoll W. Boujday S. Lamy De La Chapelle M. Dostalek J. Tunable Laser Interference Lithography Preparation of Plasmonic Nanoparticle Arrays Tailored for SERS. Nanoscale. 2018;10(21):10268–10276. doi: 10.1039/c7nr08905h. doi: 10.1039/C7NR08905H. PubMed DOI

Grzelczak M. Pérez-Juste J. Mulvaney P. Liz-Marzán L. M. Shape Control in Gold Nanoparticle Synthesis. Chem. Soc. Rev. 2008;37(9):1783–1791. doi: 10.1039/b711490g. doi: 10.1039/B711490G. PubMed DOI

Sun Z. Song C. Wang C. Hu Y. Wu J. Hydrogel-Based Controlled Drug Delivery for Cancer Treatment: A Review. Mol. Pharm. 2020;17(2):373–391. doi: 10.1021/acs.molpharmaceut.9b01020. PubMed DOI

Manikas A. C. Aliberti A. Causa F. Battista E. Netti P. A. Thermoresponsive PNIPAAm Hydrogel Scaffolds with Encapsulated AuNPs Show High Analyte-Trapping Ability and Tailored Plasmonic Properties for High Sensing Efficiency. J. Mater. Chem. B. 2014;3(1):53–58. doi: 10.1039/C4TB01551G. doi: 10.1039/C4TB01551G. PubMed DOI

Yin P. G. Chen Y. Jiang L. You T. T. Lu X. Y. Guo L. Yang S. Controlled Dispersion of Silver Nanoparticles into the Bulk of Thermosensitive Polymer Microspheres: Tunable Plasmonic Coupling by Temperature Detected by Surface Enhanced Raman Scattering. Macromol. Rapid Commun. 2011;32(13):1000–1006. doi: 10.1002/marc.201100143. doi: 10.1002/marc.201100143. PubMed DOI

Müller M. B. Kuttner C. König T. A. F. Tsukruk V. V. Förster S. Karg M. Fery A. Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays. ACS Nano. 2014;8(9):9410–9421. doi: 10.1021/nn503493c. doi: 10.1021/nn503493c. PubMed DOI PMC

Fernández-Rodríguez M. Á. Elnathan R. Ditcovski R. Grillo F. Conley G. M. Timpu F. Rauh A. Geisel K. Ellenbogen T. Grange R. Scheffold F. Karg M. Richtering W. Voelcker N. H. Isa L. Tunable 2D Binary Colloidal Alloys for Soft Nanotemplating. Nanoscale. 2018;10(47):22189–22195. doi: 10.1039/C8NR07059H. doi: 10.1039/C8NR07059H. PubMed DOI

Mourran A. Zhang H. Vinokur R. Möller M. Soft Microrobots Employing Nonequilibrium Actuation via Plasmonic Heating. Adv. Mater. 2017;29(2):1604825. doi: 10.1002/adma.201604825. doi: 10.1002/adma.201604825. PubMed DOI

Pirani F. Sharma N. Moreno-Cencerrado A. Fossati S. Petri C. Descrovi E. Toca-Herrera J. L. Jonas U. Dostalek J. Optical Waveguide-Enhanced Diffraction for Observation of Responsive Hydrogel Nanostructures. Macromol. Chem. Phys. 2017;218(6):1–10. doi: 10.1002/macp.201600400. doi: 10.1002/macp.201600400. DOI

Sharma N. Petri C. Jonas U. Dostalek J. Reversibly Tunable Plasmonic Bandgap by Responsive Hydrogel Grating. Opt. Express. 2016;24(3):2457. doi: 10.1364/OE.24.002457. doi: 10.1364/OE.24.002457. PubMed DOI

Beines P. W. Klosterkamp I. Menges B. Jonas U. Knoll W. Responsive Thin Hydrogel Layers from Photo-Cross-Linkable Poly(N-Isopropylacrylamide) Terpolymers. Langmuir. 2007;23(4):2231–2238. doi: 10.1021/la063264t. doi: 10.1021/la063264t. PubMed DOI

Schwärzle D. Hou X. Prucker O. Rühe J. Polymer Microstructures through Two-Photon Crosslinking. Adv. Mater. 2017;29(39):1703469. doi: 10.1002/ADMA.201703469. doi: 10.1002/adma.201703469. PubMed DOI

Quilis N. G. Hageneder S. Fossati S. Auer S. K. Venugopalan P. Bozdogan A. Petri C. Moreno-Cencerrado A. Toca-Herrera J. L. Jonas U. Dostalek J. UV-Laser Interference Lithography for Local Functionalization of Plasmonic Nanostructures with Responsive Hydrogel. J. Phys. Chem. C. 2020;124(5):3297–3305. doi: 10.1021/acs.jpcc.9b11059. doi: 10.1021/acs.jpcc.9b11059. PubMed DOI PMC

Baffou G. Berto P. Bermúdez Ureña E. Quidant R. Monneret S. Polleux J. Rigneault H. Photoinduced Heating of Nanoparticle Arrays. ACS Nano. 2013;7(8):6478–6488. doi: 10.1021/nn401924n. doi: 10.1021/nn401924n. PubMed DOI

Winkler P. Belitsch M. Tischler A. Häfele V. Ditlbacher H. Krenn J. R. Hohenau A. Nguyen M. Félidj N. Mangeney C. Nanoplasmonic Heating and Sensing to Reveal the Dynamics of Thermoresponsive Polymer Brushes. Appl. Phys. Lett. 2015;107(14):141906. doi: 10.1063/1.4932968. doi: 10.1063/1.4932968. DOI

Auer S. K. Fossati S. Jonas U. Dostálek J. Observation of Rapid Collapsing and Swelling of Crosslinked PNIPAAm-Based Hydrogel Film by Plasmonic Heating and Resonance Detuning. J. Phys. Chem. B. 2022 doi: 10.1021/acs.jpcb.2c01160. DOI

Ding T. Valev V. K. Salmon A. R. Forman C. J. Smoukov S. K. Scherman O. A. Frenkel D. Baumberg J. J. Light-Induced Actuating Nanotransducers. Proc. Natl. Acad. Sci. U. S. A. 2016;113(20):5503–5507. doi: 10.1073/pnas.1524209113. doi: 10.1073/pnas.1524209113. PubMed DOI PMC

Leroux Y. R. Lacroix J. C. Chane-Ching K. I. Fave C. Félidj N. Lévi G. Aubard J. Krenn J. R. Hohenau A. Conducting Polymer Electrochemical Switching as an Easy Means for Designing Active Plasmonic Devices. J. Am. Chem. Soc. 2005;127(46):16022–16023. doi: 10.1021/ja054915v. doi: 10.1021/ja054915v. PubMed DOI

Jeon J. W. Zhou J. Geldmeier J. A. Ponder J. F. Mahmoud M. A. El-Sayed M. Reynolds J. R. Tsukruk V. V. Dual-Responsive Reversible Plasmonic Behavior of Core–Shell Nanostructures with PH-Sensitive and Electroactive Polymer Shells. Chem. Mater. 2016;28(20):7551–7563. doi: 10.1021/acs.chemmater.6b04026. doi: 10.1021/acs.chemmater.6b04026. DOI

Jiang N. Shao L. Wang J. (Gold Nanorod Core)/(Polyaniline Shell) Plasmonic Switches with Large Plasmon Shifts and Modulation Depths. Adv. Mater. 2014;26(20):3282–3289. doi: 10.1002/adma.201305905. doi: 10.1002/adma.201305905. PubMed DOI

Kuckling D. Harmon M. E. Frank C. W. Photo-Cross-Linkable PNIPAAm Copolymers. 1. Synthesis and Characterization of Constrained Temperature-Responsive Hydrogel Layers. Macromolecules. 2002;35(16):6377–6383. doi: 10.1021/ma0203041. doi: 10.1021/ma0203041. DOI

Sergelen K. Petri C. Jonas U. Dostalek J. Free-Standing Hydrogel-Particle Composite Membrane with Dynamically Controlled Permeability. Biointerphases. 2017;12(5):051002. doi: 10.1116/1.4996952. doi: 10.1116/1.4996952. PubMed DOI

Choe A. Yeom J. Shanker R. Kim M. P. Kang S. Ko H. Stretchable and Wearable Colorimetric Patches Based on Thermoresponsive Plasmonic Microgels Embedded in a Hydrogel Film. NPG Asia Mater. 2018;10(9):912–922. doi: 10.1038/s41427-018-0086-6. doi: 10.1038/s41427-018-0086-6. DOI

Mishra S. K. Gupta B. D. Surface Plasmon Resonance Based Fiber Optic PH Sensor Utilizing Ag/ITO/Al/Hydrogel Layers. Analyst. 2013;138(9):2640–2646. doi: 10.1039/c3an00097d. doi: 10.1039/C3AN00097D. PubMed DOI

Mesch M. Zhang C. Braun P. V. Giessen H. Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing. ACS Photonics. 2015;2(4):475–480. doi: 10.1021/acsphotonics.5b00004. doi: 10.1021/acsphotonics.5b00004. DOI

Elsherif M. Hassan M. U. Yetisen A. K. Butt H. Glucose Sensing with Phenylboronic Acid Functionalized Hydrogel-Based Optical Diffusers. ACS Nano. 2018;12(3):2283–2291. doi: 10.1021/acsnano.7b07082. doi: 10.1021/acsnano.7b07082. PubMed DOI PMC

Aliberti A. Ricciardi A. Giaquinto M. Micco A. Bobeico E. La Ferrara V. Ruvo M. Cutolo A. Cusano A. Microgel Assisted Lab-on-Fiber Optrode. Sci. Rep. 2017;7(1):1–11. doi: 10.1038/s41598-017-14852-5. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC

Wei M. Li X. Serpe M. J. Stimuli-Responsive Microgel-Based Surface Plasmon Resonance Transducer for Glucose Detection Using a Competitive Assay with Concanavalin A. ACS Appl. Polym. Mater. 2019;1(3):519–525. doi: 10.1021/acsapm.8b00207. doi: 10.1021/acsapm.8b00207. DOI

Yang H. M. Teoh J. Y. Yim G. H. Park Y. Kim Y. G. Kim J. Yoo D. Label-Free Analysis of Multivalent Protein Binding Using Bioresponsive Nanogels and Surface Plasmon Resonance (SPR) ACS Appl. Mater. Interfaces. 2020;12(5):5413–5419. doi: 10.1021/acsami.9b17328. doi: 10.1021/acsami.9b17328. PubMed DOI

Jiang Y. Colazo M. G. Serpe M. J. Poly(N-Isopropylacrylamide) Microgel-Based Sensor for Progesterone in Aqueous Samples. Colloid Polym. Sci. 2016;294(11):1733–1741. doi: 10.1007/s00396-016-3926-3. doi: 10.1007/s00396-016-3926-3. DOI

Li J. Ji C. Lü B. Rodin M. Paradies J. Yin M. Kuckling D. Dually Crosslinked Supramolecular Hydrogel for Cancer Biomarker Sensing. ACS Appl. Mater. Interfaces. 2020;12(33):36873–36881. doi: 10.1021/acsami.0c08722. doi: 10.1021/acsami.0c08722. PubMed DOI

Jiang Y. Colazo M. G. Serpe M. J. Poly(N-Isopropylacrylamide) Microgel-Based Etalons for the Label-Free Quantitation of Estradiol-17B in Aqueous Solutions and Milk Samples. Anal. Bioanal. Chem. 2018;410(18):4397–4407. doi: 10.1007/s00216-018-1095-6. doi: 10.1007/s00216-018-1095-6. PubMed DOI

Huang C. J. Dostalek J. Knoll W. Long Range Surface Plasmon and Hydrogel Optical Waveguide Field-Enhanced Fluorescence Biosensor with 3D Hydrogel Binding Matrix: On the Role of Diffusion Mass Transfer. Biosens. Bioelectron. 2010;26(4):1425–1431. doi: 10.1016/j.bios.2010.07.072. doi: 10.1016/j.bios.2010.07.072. PubMed DOI

Huang C. J. Jonas U. Dostalek J. Knoll W. Biosensor platform based on surface plasmon-enhanced fluorescence spectroscopy and responsive hydrogel binding matrix. SPIE Proceedings Optical Sensors. 2009;7356:510–516. doi: 10.1117/12.820988. DOI

Hageneder S. Jungbluth V. Soldo R. Petri C. Pertiller M. Kreivi M. Weinhäusel A. Jonas U. Dostalek J. Responsive Hydrogel Binding Matrix for Dual Signal Amplification in Fluorescence Affinity Biosensors and Peptide Microarrays. ACS Appl. Mater. Interfaces. 2021;13(23):27645–27655. doi: 10.1021/acsami.1c05950. doi: 10.1021/acsami.1c05950. PubMed DOI

Álvarez-Puebla R. A. Contreras-Cáceres R. Pastoriza-Santos I. Pérez-Juste J. Liz-Marzán L. M. Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis. Angew. Chem., Int. Ed. 2009;48(1):138–143. doi: 10.1002/anie.200804059. doi: 10.1002/anie.200804059. PubMed DOI

Manikas A. C. Aliberti A. Causa F. Battista E. Netti P. A. Thermoresponsive PNIPAAm Hydrogel Scaffolds with Encapsulated AuNPs Show High Analyte-Trapping Ability and Tailored Plasmonic Properties for High Sensing Efficiency. J. Mater. Chem. B. 2015;3(1):53–58. doi: 10.1039/c4tb01551g. doi: 10.1039/C4TB01551G. PubMed DOI

Elashnikov R. Mares D. Podzimek T. Švorčík V. Lyutakov O. Sandwiched Gold/PNIPAm/Gold Microstructures for Smart Plasmonics Application: Towards the High Detection Limit and Raman Quantitative Measurements. Analyst. 2017;142(16):2974–2981. doi: 10.1039/c7an00419b. doi: 10.1039/C7AN00419B. PubMed DOI

Guselnikova O. Postnikov P. Kalachyova Y. Kolska Z. Libansky M. Zima J. Svorcik V. Lyutakov O. Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating. ChemNanoMat. 2017;3(2):135–144. doi: 10.1002/cnma.201600284. doi: 10.1002/cnma.201600284. DOI

Wu Y. Zhou F. Yang L. Liu J. A Shrinking Strategy for Creating Dynamic SERS Hot Spots on the Surface of Thermosensitive Polymer Nanospheres. Chem. Commun. 2013;49(44):5025–5027. doi: 10.1039/c3cc40875b. doi: 10.1039/C3CC40875B. PubMed DOI

Curtis T. Taylor A. K. Alden S. E. Swanson C. Lo J. Knight L. Silva A. Gates B. D. Emory S. R. Rider D. A. Synthesis and Characterization of Tunable, PH-Responsive Nanoparticle-Microgel Composites for Surface-Enhanced Raman Scattering Detection. ACS Omega. 2018;3(9):10572–10588. doi: 10.1021/acsomega.8b01561. doi: 10.1021/acsomega.8b01561. PubMed DOI PMC

Jiang C. Ma X. Xue M. Lian H. Z. Application of Thermoresponsive Hydrogel/Gold Nanorods Composites in the Detection of Diquat. Talanta. 2017;174(May):192–197. doi: 10.1016/j.talanta.2017.06.010. doi: 10.1016/j.talanta.2017.06.010. PubMed DOI

Liu Y. Yue S. Wang Y. N. Y. Wang Y. N. Y. Xu Z. R. A Multicolor-SERS Dual-Mode PH Sensor Based on Smart Nano-in-Micro Particles. Sens. Actuators, B. 2020;310:127889. doi: 10.1016/j.snb.2020.127889. doi: 10.1016/j.snb.2020.127889. DOI

Li H. Wang X. Wang Z. Jiang J. Wei M. Zheng J. Yan Y. Li C. Thermo-Responsive Molecularly Imprinted Sensor Based on the Surface-Enhanced Raman Scattering for Selective Detection of R6G in the Water. Dalton Trans. 2017;46(34):11282–11290. doi: 10.1039/c7dt02495a. doi: 10.1039/C7DT02495A. PubMed DOI

Nagatani K. Kiribayashi S. Okada Y. Otake K. Yoshida K. Tadokoro S. Nishimura T. Yoshida T. Koyanagi E. Fukushima M. Kawatsuma S. Emergency Response to the Nuclear Accident at the Fukushima Daiichi Nuclear Power Plants Using Mobile Rescue Robots. J. F. Robot. 2013;30(1):44–63. doi: 10.1002/rob.21439. doi: 10.1002/rob.21439. DOI

Davies B. A Review of Robotics in Surgery. Proc. Inst. Mech. Eng. 2000;214(1):129–140. doi: 10.1243/0954411001535309. doi: 10.1243/0954411001535309. PubMed DOI

Hughes J. Culha U. Giardina F. Guenther F. Rosendo A. Iida F. Soft Manipulators and Grippers: A Review. Front. Robot. AI. 2016:3. doi: 10.3389/frobt.2016.00069. DOI

Nikolov S. V. Yeh P. D. Alexeev A. Self-Propelled Microswimmer Actuated by Stimuli-Sensitive Bilayered Hydrogel. ACS Macro Lett. 2015;4(1):84–88. doi: 10.1021/mz5007014. doi: 10.1021/mz5007014. PubMed DOI

Hauser A. W. Evans A. A. Na J. H. Hayward R. C. Photothermally Reprogrammable Buckling of Nanocomposite Gel Sheets. Angew. Chem., Int. Ed. 2015;54(18):5434–5437. doi: 10.1002/anie.201412160. doi: 10.1002/anie.201412160. PubMed DOI

O’Grady M. L. Kuo P. L. Parker K. K. Optimization of Electroactive Hydrogel Actuators. ACS Appl. Mater. Interfaces. 2010;2(2):343–346. doi: 10.1021/am900755w. doi: 10.1021/am900755w. PubMed DOI

Hribar K. C. Choi Y. S. Ondeck M. Engler A. J. Chen S. Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness. Adv. Funct. Mater. 2014;24(31):4922–4926. doi: 10.1002/adfm.201400274. doi: 10.1002/adfm.201400274. PubMed DOI PMC

Stoychev G. Turcaud S. Dunlop J. W. C. Ionov L. Hierarchical Multi-Step Folding of Polymer Bilayers. Adv. Funct. Mater. 2013;23(18):2295–2300. doi: 10.1002/adfm.201203245. doi: 10.1002/adfm.201203245. DOI

Guo H. Liu Y. Yang Y. Wu G. Demella K. Raghavan S. R. Nie Z. A Shape-Shifting Composite Hydrogel Sheet with Spatially Patterned Plasmonic Nanoparticles. J. Mater. Chem. B. 2019;7(10):1679–1683. doi: 10.1039/c8tb01959b. doi: 10.1039/C8TB01959B. PubMed DOI

Zhang H. Mourran A. Möller M. Dynamic Switching of Helical Microgel Ribbons. Nano Lett. 2017;17(3):2010–2014. doi: 10.1021/acs.nanolett.7b00015. doi: 10.1021/acs.nanolett.7b00015. PubMed DOI PMC

Guo H. Liu Y. Yang Y. Wu G. Demella K. Raghavan S. R. Nie Z. A Shape-Shifting Composite Hydrogel Sheet with Spatially Patterned Plasmonic Nanoparticles. J. Mater. Chem. B. 2019;7(10):1679–1683. doi: 10.1039/c8tb01959b. doi: 10.1039/C8TB01959B. PubMed DOI

Yang Y. Tan Y. Wang X. An W. Xu S. Liao W. Wang Y. Photothermal Nanocomposite Hydrogel Actuator with Electric-Field-Induced Gradient and Oriented Structure. ACS Appl. Mater. Interfaces. 2018;10(9):7688–7692. doi: 10.1021/acsami.7b17907. doi: 10.1021/acsami.7b17907. PubMed DOI

Özkale B. Parreira R. Bekdemir A. Pancaldi L. Özelçi E. Amadio C. Kaynak M. Stellacci F. Mooney D. J. Sakar M. S. Modular Soft Robotic Microdevices for Dexterous Biomanipulation. Lab Chip. 2019;19(5):778–788. doi: 10.1039/c8lc01200h. doi: 10.1039/C8LC01200H. PubMed DOI PMC

Delaney C. McCluskey P. Coleman S. Whyte J. Kent N. Diamond D. Precision Control of Flow Rate in Microfluidic Channels Using Photoresponsive Soft Polymer Actuators. Lab Chip. 2017;17(11):2013–2021. doi: 10.1039/c7lc00368d. doi: 10.1039/C7LC00368D. PubMed DOI

Yuk H. Lin S. Ma C. Takaffoli M. Fang N. X. Zhao X. Hydraulic Hydrogel Actuators and Robots Optically and Sonically Camouflaged in Water. Nat. Commun. 2017;8:1–12. doi: 10.1038/ncomms14230. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC

Jia H. Mailand E. Zhou J. Huang Z. Dietler G. Kolinski J. M. Wang X. Sakar M. S. Universal Soft Robotic Microgripper. Small. 2019;15(4):1803870. doi: 10.1002/SMLL.201803870. doi: 10.1002/smll.201803870. PubMed DOI

Wang J. Gao W. Nano/Microscale Motors: Biomedical Opportunities and Challenges. ACS Nano. 2012;6(7):5745–5751. doi: 10.1021/nn3028997. doi: 10.1021/nn3028997. PubMed DOI

Patra D. Sengupta S. Duan W. Zhang H. Pavlick R. Sen A. Intelligent, Self-Powered, Drug Delivery Systems. Nanoscale. 2013;5(4):1273–1283. doi: 10.1039/c2nr32600k. doi: 10.1039/C2NR32600K. PubMed DOI

Rehor I. Maslen C. Moerman P. G. van Ravensteijn B. G. P. van Alst R. Groenewold J. Eral H. B. Kegel W. K. Photoresponsive Hydrogel Microcrawlers Exploit Friction Hysteresis to Crawl by Reciprocal Actuation. Soft Rob. 2020:1–9. doi: 10.1089/soro.2019.0169. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plasmon-Enhanced Multiphoton Polymer Crosslinking for Selective Modification of Plasmonic Hotspots

. 2024 Oct 31 ; 128 (43) : 18641-18650. [epub] 20241022

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...