Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35471654
PubMed Central
PMC9126188
DOI
10.1039/d1cs01083b
Knihovny.cz E-zdroje
- MeSH
- hydrogely * MeSH
- nanostruktury * chemie MeSH
- polymery MeSH
- spektrální analýza MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- hydrogely * MeSH
- polymery MeSH
Plasmonic nanomaterials have become an integral part of numerous technologies, where they provide important functionalities spanning from extraction and harvesting of light in thin film optical devices to probing of molecular species and their interactions on biochip surfaces. More recently, we witness increasing research efforts devoted to a new class of plasmonic nanomaterials that allow for on-demand tuning of their properties by combining metallic nanostructures and responsive hydrogels. This review addresses this recently emerged vibrant field, which holds potential to expand the spectrum of possible applications and deliver functions that cannot be achieved by separate research in each of the respective fields. It aims at providing an overview of key principles, design rules, and current implementations of both responsive hydrogels and metallic nanostructures. We discuss important aspects that capitalize on the combination of responsive polymer networks with plasmonic nanostructures to perform rapid mechanical actuation and actively controlled nanoscale confinement of light associated with resonant amplification of its intensity. The latest advances towards the implementation of such responsive plasmonic nanomaterials are presented, particularly covering the field of plasmonic biosensing that utilizes refractometric measurements as well as plasmon-enhanced optical spectroscopy readout, optically driven miniature soft actuators, and light-fueled micromachines operating in an environment resembling biological systems.
CEST Competence Center for Electrochemical Surface Technologies 3430 Tulln an der Donau Austria
FZU Institute of Physics Czech Academy of Sciences Na Slovance 2 Prague 182 21 Czech Republic
Zobrazit více v PubMed
Maier S. A. Atwater H. A. Plasmonics: Localization and Guiding of Electromagnetic Energy in Metal/Dielectric Structures. J. Appl. Phys. 2005:011101. doi: 10.1063/1.1951057. doi: 10.1063/1.1951057. DOI
Mayerhöfer T. G. Popp J. Periodic Array-Based Substrates for Surface-Enhanced Infrared Spectroscopy. Nanophotonics. 2018;7(1):39–79. doi: 10.1515/nanoph-2017-0005. DOI
Cardinal M. F. Vander Ende E. Hackler R. A. McAnally M. O. Stair P. C. Schatz G. C. Van Duyne R. P. Expanding Applications of SERS through Versatile Nanomaterials Engineering. Chem. Soc. Rev. 2017;46(13):3886–3903. doi: 10.1039/c7cs00207f. doi: 10.1039/C7CS00207F. PubMed DOI
Homola J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008;108(2):462–493. doi: 10.1021/cr068107d. doi: 10.1021/cr068107d. PubMed DOI
Bauch M. Toma K. Toma M. Zhang Q. Dostalek J. Plasmon-Enhanced Fluorescence Biosensors: A Review. Plasmonics. 2014;9(4):781–799. doi: 10.1007/s11468-013-9660-5. doi: 10.1007/s11468-013-9660-5. PubMed DOI PMC
Garoli D. Yamazaki H. MacCaferri N. Wanunu M. Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications. Nano Lett. 2019:7553–7562. doi: 10.1021/acs.nanolett.9b02759. doi: 10.1021/acs.nanolett.9b02759. PubMed DOI
Schwarz B. Reininger P. Ristanić D. Detz H. Andrews A. M. Schrenk W. Strasser G. Monolithically Integrated Mid-Infrared Lab-on-a-Chip Using Plasmonics and Quantum Cascade Structures. Nat. Commun. 2014;5(1):1–7. doi: 10.1038/ncomms5085. PubMed DOI PMC
Karabchevsky A. Katiyi A. Ang A. S. Hazan A. On-Chip Nanophotonics and Future Challenges. Nanophotonics. 2020;9(12):3733–3753. doi: 10.1515/nanoph-2020-0204. doi: 10.1515/nanoph-2020-0204. DOI
Ferry V. E. Verschuuren M. A. Li H. B. T. Verhagen E. Walters R. J. Schropp R. E. I. Atwater H. A. Polman A. Light Trapping in Ultrathin Plasmonic Solar Cells. Opt. Express. 2010;18(S2):A237. doi: 10.1364/oe.18.00a237. doi: 10.1364/OE.18.00A237. PubMed DOI
Romo-Herrera J. M. Alvarez-Puebla R. A. Liz-Marzán L. M. Controlled Assembly of Plasmonic Colloidal Nanoparticle Clusters. Nanoscale. 2011;3(4):1304–1315. doi: 10.1039/c0nr00804d. doi: 10.1039/C0NR00804D. PubMed DOI
Ai B. Yu Y. Möhwald H. Zhang G. Yang B. Plasmonic Films Based on Colloidal Lithography. Adv. Colloid Interface Sci. 2014;206:5–16. doi: 10.1016/j.cis.2013.11.010. doi: 10.1016/j.cis.2013.11.010. PubMed DOI
Schrittwieser S. Haslinger M. J. Mitteramskogler T. Mühlberger M. Shoshi A. Brückl H. Bauch M. Dimopoulos T. Schmid B. Schotter J. Multifunctional Nanostructures and Nanopocket Particles Fabricated by Nanoimprint Lithography. Nanomaterials. 2019;9(12):1790. doi: 10.3390/nano9121790. doi: 10.3390/nano9121790. PubMed DOI PMC
Jiang N. Zhuo X. Wang J. Active Plasmonics: Principles, Structures, and Applications. Chem. Rev. 2018;118(6):3054–3099. doi: 10.1021/acs.chemrev.7b00252. doi: 10.1021/acs.chemrev.7b00252. PubMed DOI
MacDonald K. F. Sámson Z. L. Stockman M. I. Zheludev N. I. Ultrafast Active Plasmonics. Nat. Photonics. 2009;3(1):55–58. doi: 10.1038/nphoton.2008.249. doi: 10.1038/nphoton.2008.249. DOI
Sidhaye D. S. Kashyap S. Sastry M. Hotha S. Prasad B. L. V. Gold Nanoparticle Networks with Photoresponsive Interparticle Spacings. Langmuir. 2005;21(17):7979–7984. doi: 10.1021/la051125q. doi: 10.1021/la051125q. PubMed DOI
Joshi G. K. Blodgett K. N. Muhoberac B. B. Johnson M. A. Smith K. A. Sardar R. Ultrasensitive Photoreversible Molecular Sensors of Azobenzene-Functionalized Plasmonic Nanoantennas. Nano Lett. 2014;14(2):532–540. doi: 10.1021/NL403576C. doi: 10.1021/nl403576c. PubMed DOI
Wei M. Gao Y. Li X. Serpe M. J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017;8(1):127–143. doi: 10.1039/c6py01585a. doi: 10.1039/C6PY01585A. DOI
Toma M. Jonas U. Mateescu A. Knoll W. Dostalek J. Active Control of SPR by Thermoresponsive Hydrogels for Biosensor Applications. J. Phys. Chem. C. 2013;117(22):11705–11712. doi: 10.1021/jp400255u. doi: 10.1021/jp400255u. PubMed DOI PMC
Pastoriza-Santos I. Kinnear C. Pérez-Juste J. Mulvaney P. Liz-Marzán L. M. Plasmonic Polymer Nanocomposites. Nat. Rev. Mater. 2018;3(10):375–391. doi: 10.1038/s41578-018-0050-7. doi: 10.1038/s41578-018-0050-7. DOI
Stuart M. A. C. Huck W. T. S. Genzer J. Müller M. Ober C. Stamm M. Sukhorukov G. B. Szleifer I. Tsukruk V. V. Urban M. Winnik F. Zauscher S. Luzinov I. Minko S. Emerging Applications of Stimuli-Responsive Polymer Materials. Nat. Mater. 2010;9(2):101–113. doi: 10.1038/nmat2614. doi: 10.1038/nmat2614. PubMed DOI
Shi Q. Liu H. Tang D. Li Y. Li X. J. Xu F. Bioactuators Based on Stimulus-Responsive Hydrogels and Their Emerging Biomedical Applications. NPG Asia Mater. 2019;11(1):1–21. doi: 10.1038/s41427-019-0165-3. doi: 10.1038/s41427-018-0100-z. DOI
Özkale B. Parreira R. Bekdemir A. Pancaldi L. Özelçi E. Amadio C. Kaynak M. Stellacci F. Mooney D. J. Sakar M. S. Modular Soft Robotic Microdevices for Dexterous Biomanipulation. Lab Chip. 2019;19(5):778–788. doi: 10.1039/c8lc01200h. doi: 10.1039/C8LC01200H. PubMed DOI PMC
Hamajima S. Mitomo H. Tani T. Matsuo Y. Niikura K. Naya M. Ijiro K. Tani T. Naya M. Niikura K. Matsuo Y. Niikura K. Naya M. Ijiro K. Nanoscale Uniformity in the Active Tuning of a Plasmonic Array by Polymer Gel Volume Change. Nanoscale Adv. 2019;1(5):1731–1739. doi: 10.1039/c8na00404h. doi: 10.1039/C8NA00404H. PubMed DOI PMC
Zhang H. Koens L. Lauga E. Mourran A. Möller M. A Light-Driven Microgel Rotor. Small. 2019;15(46):1903379. doi: 10.1002/smll.201903379. doi: 10.1002/smll.201903379. PubMed DOI
Li J. Ji C. Yu X. Yin M. Kuckling D. Dually Cross-Linked Supramolecular Hydrogel as Surface Plasmon Resonance Sensor for Small Molecule Detection. Macromol. Rapid Commun. 2019;40(14):1–5. doi: 10.1002/marc.201900189. doi: 10.1002/marc.201900189. PubMed DOI
Jia H. Mailand E. Zhou J. Huang Z. Dietler G. Kolinski J. M. Wang X. Sakar M. S. Universal Soft Robotic Microgripper. Small. 2019;15(4):1803870. doi: 10.1002/SMLL.201803870. doi: 10.1002/smll.201803870. PubMed DOI
Kowalczyk A. Wagner B. Karbarz M. Nowicka A. M. A Dual DNA Biosensor Based on Two Redox Couples with a Hydrogel Sensing Platform Functionalized with Carboxyl Groups and Gold Nanoparticles. Sens. Actuators, B. 2015;208:220–227. doi: 10.1016/j.snb.2014.11.029. doi: 10.1016/j.snb.2014.11.029. DOI
Magnozzi M. Brasse Y. König T. A. F. Bisio F. Bittrich E. Fery A. Canepa M. Plasmonics of Au/Polymer Core/Shell Nanocomposites for Thermoresponsive Hybrid Metasurfaces. ACS Appl. Nano Mater. 2020;3(2):1674–1682. doi: 10.1021/acsanm.9b02403. doi: 10.1021/acsanm.9b02403. DOI
Yoon C. Xiao R. Park J. Cha J. Nguyen T. D. Gracias D. H. Functional Stimuli Responsive Hydrogel Devices by Self-Folding. Smart Mater. Struct. 2014;23(9):094008. doi: 10.1088/0964-1726/23/9/094008. doi: 10.1088/0964-1726/23/9/094008. DOI
Howaili F. Özliseli E. Küçüktürkmen B. Razavi S. M. Sadeghizadeh M. Rosenholm J. M. Stimuli-Responsive, Plasmonic Nanogel for Dual Delivery of Curcumin and Photothermal Therapy for Cancer Treatment. Front. Chem. 2021;8:1235. doi: 10.3389/fchem.2020.602941. PubMed DOI PMC
Kim J. H. Lee T. R. Discrete Thermally Responsive Hydrogel-Coated Gold Nanoparticles for Use as Drug-Delivery Vehicles. Drug Dev. Res. 2006;67(1):61–69. doi: 10.1002/DDR.20068. doi: 10.1002/ddr.20068. DOI
Jiang S. Wang K. Dai Y. Zhang X. Xia F. Near-Infrared Light-Triggered Dual Drug Release Using Gold Nanorod-Embedded Thermosensitive Nanogel-Crosslinked Hydrogels. Macromol. Mater. Eng. 2019;304(7):1900087. doi: 10.1002/mame.201900087. doi: 10.1002/mame.201900087. DOI
Sun Z. Yamauchi Y. Araoka F. Kim Y. S. Bergueiro J. Ishida Y. Ebina Y. Sasaki T. Hikima T. Aida T. An Anisotropic Hydrogel Actuator Enabling Earthworm-Like Directed Peristaltic Crawling. Angew. Chem. 2018;130(48):15998–16002. doi: 10.1002/ange.201810052. doi: 10.1002/ange.201810052. PubMed DOI
Wang C. Liu X. Wulf V. Vázquez-González M. Fadeev M. Willner I. DNA-Based Hydrogels Loaded with Au Nanoparticles or Au Nanorods: Thermoresponsive Plasmonic Matrices for Shape-Memory, Self-Healing, Controlled Release, and Mechanical Applications. ACS Nano. 2019;13(3):3424–3433. doi: 10.1021/acsnano.8b09470. doi: 10.1021/acsnano.8b09470. PubMed DOI
Rizzo F. Kehr N. S. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv. Healthcare Mater. 2021;10(1):2001341. doi: 10.1002/ADHM.202001341. doi: 10.1002/adhm.202001341. PubMed DOI
Homola J., Surface Plasmon Resonance Based Sensors, ed. J. Homola and O. S. Wolfbeis, Springer Series on Chemical Sensors and Biosensors, Springer: Berlin, Heidelberg, 2006, vol. 410.1007/b100321 DOI
Hoffman A. S. Hydrogels for Biomedical Applications. Adv. Drug Delivery Rev. 2012;64:18–23. doi: 10.1016/j.addr.2012.09.010. doi: 10.1016/j.addr.2012.09.010. PubMed DOI
Mateescu A. Wang Y. Dostalek J. Jonas U. Thin Hydrogel Films for Optical Biosensor Applications. Membr. 2012;2(1):49–69. doi: 10.3390/membranes2010040. PubMed DOI PMC
Wu S. Zhu M. Lian Q. Lu D. Spencer B. Adlam D. J. Hoyland J. A. Volk K. Karg M. Saunders B. R. Plasmonic and Colloidal Stability Behaviours of Au–Acrylic Core–Shell Nanoparticles with Thin PH-Responsive Shells. Nanoscale. 2018;10(39):18565–18575. doi: 10.1039/c8nr07440b. doi: 10.1039/C8NR07440B. PubMed DOI
Pandiyarajan C. K. Prucker O. Rühe J. Humidity Driven Swelling of the Surface-Attached Poly(N-Alkylacrylamide) Hydrogels. Macromolecules. 2016;49(21):8254–8264. doi: 10.1021/acs.macromol.6b01379. doi: 10.1021/acs.macromol.6b01379. DOI
Navarro R. Pérez Perrino M. Prucker O. Rühe J. Preparation of Surface-Attached Polymer Layers by Thermal or Photochemical Activation of α-Diazoester Moieties. Langmuir. 2013;29(34):10932–10939. doi: 10.1021/la402323k. doi: 10.1021/la402323k. PubMed DOI
Liu B. Liu X. Shi S. Huang R. Su R. Qi W. He Z. Design and Mechanisms of Antifouling Materials for Surface Plasmon Resonance Sensors. Acta Biomater. 2016;40:100–118. doi: 10.1016/j.actbio.2016.02.035PM-26921775. doi: 10.1016/j.actbio.2016.02.035. PubMed DOI
Mutschler T. Kieser B. Frank R. Gauglitz G. Characterization of Thin Polymer and Biopolymer Layers by Ellipsometry and Evanescent Field Technology. Anal. Bioanal. Chem. 2002;374(4):658–664. doi: 10.1007/s00216-002-1488-3. doi: 10.1007/s00216-002-1488-3. PubMed DOI
Wen H. Xiao W. Biswas S. Cong Z. Q. Liu X. M. Lam K. S. Liao Y. H. Deng W. Alginate Hydrogel Modified with a Ligand Interacting with A3β1 Integrin Receptor Promotes the Differentiation of 3D Neural Spheroids toward Oligodendrocytes in Vitro. ACS Appl. Mater. Interfaces. 2019;11(6):5821–5833. doi: 10.1021/acsami.8b19438. doi: 10.1021/acsami.8b19438. PubMed DOI
Hou X. Dai X. Yang J. Zhang B. Zhao D. Li C. Yin Z. Zhao Y. Liu B. Injectable Polypeptide-Engineered Hydrogel Depot for Amplifying the Anti-Tumor Immune Effect Induced by Chemo-Photothermal Therapy. J. Mater. Chem. B. 2020;8(37):8623–8633. doi: 10.1039/D0TB01370F. doi: 10.1039/D0TB01370F. PubMed DOI
Zhao L. Zhang X. Luo Q. Hou C. Xu J. Liu J. Engineering Nonmechanical Protein-Based Hydrogels with Highly Mechanical Properties: Comparison with Natural Muscles. Biomacromolecules. 2020;21(10):4212–4219. doi: 10.1021/acs.biomac.0c01002. doi: 10.1021/acs.biomac.0c01002. PubMed DOI
Kirillova A. Maxson R. Stoychev G. Gomillion C. T. Ionov L. 4D Biofabrication Using Shape-Morphing Hydrogels. Adv. Mater. 2017;29(46):1–8. doi: 10.1002/adma.201703443. doi: 10.1002/adma.201703443. PubMed DOI
Nešović K. Janković A. Radetić T. Perić-Grujić A. Vukašinović-Sekulić M. Kojić V. Rhee K. Y. Mišković-Stanković V. Poly(Vinyl Alcohol)/Chitosan Hydrogels with Electrochemically Synthesized Silver Nanoparticles for Wound Dressing Applications. J. Electrochem. Sci. Eng. 2020;10(2):185–198. doi: 10.5599/jese.732. doi: 10.5599/jese.732. DOI
Spicer C. D. Hydrogel Scaffolds for Tissue Engineering: The Importance of Polymer Choice. Polym. Chem. 2020;11:184–219. doi: 10.1039/c9py01021a. doi: 10.1039/C9PY01021A. DOI
Peppas N. A. Hilt J. Z. Khademhosseini A. Langer R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006;18(11):1345–1360. doi: 10.1002/adma.200501612. doi: 10.1002/adma.200501612. DOI
Ilievski F. Mazzeo A. D. Shepherd R. F. Chen X. Whitesides G. M. Soft Robotics for Chemists. Angew. Chemie. 2011;123(8):1930–1935. doi: 10.1002/ange.201006464. doi: 10.1002/ange.201006464. PubMed DOI
Khoo Z. X. Teoh J. E. M. Liu Y. Chua C. K. Yang S. An J. Leong K. F. Yeong W. Y. 3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing. Virtual Phys. Prototyp. 2015;10(3):103–122. doi: 10.1080/17452759.2015.1097054M4-Citavi. doi: 10.1080/17452759.2015.1097054. DOI
Li S. Zhao H. Shepherd R. F. Flexible and Stretchable Sensors for Fluidic Elastomer Actuated Soft Robots. MRS Bull. 2017;42(2):138–142. doi: 10.1557/mrs.2017.4. doi: 10.1557/mrs.2017.4. DOI
Schenderlein H. Voss A. Stark R. W. Biesalski M. Preparation and Characterization of Light-Switchable Polymer Networks Attached to Solid Substrates. Langmuir. 2013;29(14):4525–4534. doi: 10.1021/la305073p. doi: 10.1021/la305073p. PubMed DOI
Junk M. J. N. Anac I. Menges B. Jonas U. Analysis of Optical Gradient Profiles during Temperature- and Salt-Dependent Swelling of Thin Responsive Hydrogel Films. Langmuir. 2010;26(14):12253–12259. doi: 10.1021/la101185qPM-20504000. doi: 10.1021/la101185q. PubMed DOI
Harmon M. E. Kuckling D. Frank C. W. Photo-Cross-Linkable PNIPAAm Copolymers. 2. Effects of Constraint on Temperature and PH-Responsive Hydrogel Layers. Macromolecules. 2003;36(1):162–172. doi: 10.1021/ma021025g. doi: 10.1021/ma021025g. DOI
Anac I. Aulasevich A. Junk M. J. N. Jakubowicz P. Roskamp R. F. Menges B. Jonas U. Knoll W. Optical Characterization of Co-Nonsolvency Effects in Thin Responsive PNIPAAm-Based Gel Layers Exposed to Ethanol/Water Mixtures. Macromol. Chem. Phys. 2010;211(9):1018–1025. doi: 10.1002/macp.200900533M4-Citavi. doi: 10.1002/macp.200900533. DOI
Amaral A. J. R. Pasparakis G. Stimuli Responsive Self-Healing Polymers: Gels, Elastomers and Membranes. Polym. Chem. 2017;8(42):6464–6484. doi: 10.1039/c7py01386h. doi: 10.1039/C7PY01386H. DOI
Reinicke S. Schmelz J. Lapp A. Karg M. Hellweg T. Schmalz H. Smart Hydrogels Based on Double Responsive Triblock Terpolymers. Soft Matter. 2009;5(13):2648–2657. doi: 10.1039/b900539k. DOI
Thérien-Aubin H. Wu Z. L. Nie Z. Kumacheva E. Multiple Shape Transformations of Composite Hydrogel Sheets. J. Am. Chem. Soc. 2013;135(12):4834–4839. doi: 10.1021/ja400518c. doi: 10.1021/ja400518c. PubMed DOI
Seuring J. Agarwal S. Polymers with Upper Critical Solution Temperature in Aqueous Solution: Unexpected Properties from Known Building Blocks. ACS Macro Lett. 2013;2(7):597–600. doi: 10.1021/mz400227y. doi: 10.1021/mz400227y. PubMed DOI
Higashi N. Sonoda R. Koga T. Thermo-Responsive Amino Acid-Based Vinyl Polymers Showing Widely Tunable LCST/UCST Behavior in Water. RSC Adv. 2015;5(83):67652–67657. doi: 10.1039/c5ra13009c. doi: 10.1039/C5RA13009C. DOI
Roth P. J. Composing Well-Defined Stimulus-Responsive Materials through Postpolymerization Modification Reactions. Macromol. Chem. Phys. 2014;215(9):825–838. doi: 10.1002/macp.201400073. doi: 10.1002/macp.201400073. DOI
Zhu Y. Quek J. Y. Lowe A. B. Roth P. J. Thermoresponsive (Co)Polymers through Postpolymerization Modification of Poly(2-Vinyl-4,4-Dimethylazlactone) Macromolecules. 2013;46:6475. doi: 10.1021/ma401096r. doi: 10.1021/ma401096r. DOI
Woodfield P. A. Zhu Y. Pei Y. Roth P. J. Hydrophobically Modified Sulfobetaine Copolymers with Tunable Aqueous UCST through Postpolymerization Modification of Poly(Pentafluorophenyl Acrylate) Macromolecules. 2014;47:750. doi: 10.1021/ma402391a. doi: 10.1021/ma402391a. DOI
Natansohn A. Rochon P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002;102:4139–4175. doi: 10.1021/cr970155y. doi: 10.1021/cr970155y. PubMed DOI
Knoll W., Handbook of Biofunctional Surfaces, ed. W. Knoll, Jenny Stanford Publishing, 2012. 10.1201/B14900 DOI
Nicoletta F. P. Cupelli D. Formoso P. de Filpo G. Colella V. Gugliuzza A. Light Responsive Polymer Membranes: A Review. Membr. 2012;2(1):134–197. doi: 10.3390/MEMBRANES2010134. doi: 10.3390/membranes2010134. PubMed DOI PMC
Karg M. Pich A. Hellweg T. Hoare T. Lyon L. A. Crassous J. J. Suzuki D. Gumerov R. A. Schneider S. Potemkin I. I. Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. Langmuir. 2019;35(19):6231–6255. doi: 10.1021/acs.langmuir.8b04304PM-30998365. doi: 10.1021/acs.langmuir.8b04304. PubMed DOI
Schmid A. J. Dubbert J. Rudov A. A. Pedersen J. S. Lindner P. Karg M. Potemkin I. I. Richtering W. Multi-Shell Hollow Nanogels with Responsive Shell Permeability. Sci. Rep. 2016;6:22736. doi: 10.1038/srep22736PM-26984478. doi: 10.1038/srep22736. PubMed DOI PMC
Date P. Tanwar A. Ladage P. Kodam K. M. Ottoor D. Biodegradable and Biocompatible Agarose–Poly(Vinyl Alcohol) Hydrogel for the in Vitro Investigation of Ibuprofen Release. Chem. Pap. 2020;74(6):1965–1978. doi: 10.1007/s11696-019-01046-8. doi: 10.1007/s11696-019-01046-8. DOI
Coleman S. ter Schiphorst J. Azouz A. Ben Bakker S. Schenning A. P. H. J. Diamond D. Tuning Microfluidic Flow by Pulsed Light Oscillating Spiropyran-Based Polymer Hydrogel Valves. Sens. Actuators, B. 2017;245:81–86. doi: 10.1016/j.snb.2017.01.112. doi: 10.1016/j.snb.2017.01.112. DOI
Ter Schiphorst J. Saez J. Diamond D. Benito-Lopez F. Schenning A. P. H. J. Light-Responsive Polymers for Microfluidic Applications. Lab Chip. 2018;18(5):699–709. doi: 10.1039/C7LC01297G. doi: 10.1039/C7LC01297G. PubMed DOI
Ramanan S. N. Shahkaramipour N. Tran T. Zhu L. Venna S. R. Lim C. K. Singh A. Prasad P. N. Lin H. Self-Cleaning Membranes for Water Purification by Co-Deposition of Photo-Mobile 4,4′-Azodianiline and Bio-Adhesive Polydopamine. J. Membr. Sci. 2018;554:164–174. doi: 10.1016/J.MEMSCI.2018.02.068. doi: 10.1016/j.memsci.2018.02.068. DOI
Yin J. Li C. Wang D. Liu S. FRET-Derived Ratiometric Fluorescent K+ Sensors Fabricated from Thermoresponsive Poly(N-Isopropylacrylamide) Microgels Labeled with Crown Ether Moieties. J. Phys. Chem. B. 2010;114(38):12213–12220. doi: 10.1021/jp1052369. doi: 10.1021/jp1052369. PubMed DOI
Ter Schiphorst J. Coleman S. Stumpel J. E. Ben Azouz A. Diamond D. Schenning A. P. H. J. Molecular Design of Light-Responsive Hydrogels, for in Situ Generation of Fast and Reversible Valves for Microfluidic Applications. Chem. Mater. 2015;27(17):5925–5931. doi: 10.1021/acs.chemmater.5b01860. doi: 10.1021/acs.chemmater.5b01860. DOI
Song J. E. Cho E. C. Dual-Responsive and Multi-Functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids. Sci. Rep. 2016;6(1):1–10. doi: 10.1038/srep34622. doi: 10.1038/s41598-016-0001-8. PubMed DOI PMC
Young R. J. and Lovell P. A., Introduction to Polymers, CRC Press, 3rd edn, 2011
Mondal S. Das S. Nandi A. K. A Review on Recent Advances in Polymer and Peptide Hydrogels. Soft Matter. 2020;16(6):1404–1454. doi: 10.1039/c9sm02127bPM-31984400. doi: 10.1039/C9SM02127B. PubMed DOI
Takashima Y. Nakayama T. Miyauchi M. Kawaguchi Y. Yamaguchi H. Harada A. Complex Formation and Gelation between Copolymers Containing Pendant Azobenzene Groups and Cyclodextrin Polymers. Chem. Lett. 2004;33(7):890–891. doi: 10.1246/cl.2004.890. doi: 10.1246/cl.2004.890. DOI
Gooch A. Murphy N. S. Thomson N. H. Wilson A. J. Side-Chain Supramolecular Polymers Employing Conformer Independent Triple Hydrogen Bonding Arrays. Macromolecules. 2013;46(24):9634–9641. doi: 10.1021/ma402069b. doi: 10.1021/ma402069b. PubMed DOI PMC
Stroganov V. Zakharchenko S. Sperling E. Meyer A. K. Schmidt O. G. Ionov L. Biodegradable Self-Folding Polymer Films with Controlled Thermo-Triggered Folding. Adv. Funct. Mater. 2014;24(27):4357–4363. doi: 10.1002/adfm.201400176. doi: 10.1002/adfm.201400176. DOI
Paredes Juárez G. A. Spasojevic M. Faas M. M. de Vos P. Immunological and Technical Considerations in Application of Alginate-Based Microencapsulation Systems. Front. Bioeng. Biotechnol. 2014;2(AUG):1–15. doi: 10.3389/fbioe.2014.00026. PubMed DOI PMC
Harada A. Takashima Y. Nakahata M. Supramolecular Polymeric Materials via Cyclodextrin-Guest Interactions. Acc. Chem. Res. 2014;47(7):2128–2140. doi: 10.1021/ar500109h. doi: 10.1021/ar500109h. PubMed DOI
Osterwinter G. J. Navarro-Crespo R. Prucker O. Henze M. Rühe J. Surface-Attached Polymer Networks through Carbene Intermediates Generated from α-Diazo Esters. J. Polym. Sci., Part A: Polym. Chem. 2017;55(19):3276–3285. doi: 10.1002/pola.28702. doi: 10.1002/pola.28702. DOI
Wang Z. C. Xu X. D. Chen C. S. Yun L. Song J. C. Zhang X. Z. Zhuo R. X. In Situ Formation of Thermosensitive Pnipaam-Based Hydrogels by Michael-Type Addition Reaction. ACS Appl. Mater. Interfaces. 2010;2(4):1009–1018. doi: 10.1021/am900712e. doi: 10.1021/am900712e. PubMed DOI
Schuh K. Prucker O. Rühe J. Surface Attached Polymer Networks through Thermally Induced Cross-Linking of Sulfonyl Azide Group Containing Polymers. Macromolecules. 2008;41(23):9284–9289. doi: 10.1021/ma801387e. doi: 10.1021/ma801387e. DOI
Prucker O. Brandstetter T. Rühe J. Surface-Attached Hydrogel Coatings via C,H-Insertion Crosslinking for Biomedical and Bioanalytical Applications (Review) Biointerphases. 2018;13(1):010801. doi: 10.1116/1.4999786. doi: 10.1116/1.4999786. PubMed DOI
Kibrom A. Roskamp R. F. Jonas U. Menges B. Knoll W. Paulsen H. Naumann R. L. C. Hydrogel-Supported Protein-Tethered Bilayer Lipid Membranes: A New Approach toward Polymer-Supported Lipid Membranes. Soft Matter. 2011;7(1):237–246. doi: 10.1039/c0sm00618a. doi: 10.1039/C0SM00618A. DOI
Osada Y. Gong J. P. Tanaka Y. Polymer Gels. J. Macromol. Sci., Polym. Rev. 2004;44(1):87–112. doi: 10.1081/MC-120027935. doi: 10.1081/MC-120027935. DOI
Aulasevich A. Roskamp R. F. Jonas U. Menges B. Dostálek J. Knoll W. Optical Waveguide Spectroscopy for the Investigation of Protein-Functionalized Hydrogel Films. Macromol. Rapid Commun. 2009;30(9–10):872–877. doi: 10.1002/marc.200800747. doi: 10.1002/marc.200800747. PubMed DOI
Carl N. Sindram J. Gallei M. Egelhaaf S. U. Karg M. From Normal Diffusion to Superdiffusion: Photothermal Heating of Plasmonic Core–Shell Microgels. Phys. Rev. E. 2019;100(5):052605–052617. doi: 10.1103/PhysRevE.100.052605. doi: 10.1103/PhysRevE.100.052605. PubMed DOI
Ekblad T. Bergström G. Ederth T. Conlan S. L. Mutton R. Clare A. S. Wang S. Liu Y. Zhao Q. D’Souza F. Donnelly G. T. Willemsen P. R. Pettitt M. E. Callow M. E. Callow J. A. Liedberg B. Poly(Ethylene Glycol)-Containing Hydrogel Surfaces for Antifouling Applications in Marine and Freshwater Environments. Biomacromolecules. 2008;9(10):2775–2783. doi: 10.1021/bm800547m. doi: 10.1021/bm800547m. PubMed DOI
Thatiparti T. R. Kano A. Maruyama A. Takahara A. Novel Silver-Loaded Semi-Interpenetrating Polymer Network Gel Films with Antibacterial Activity. J. Polym. Sci., Part A: Polym. Chem. 2009;47(19):4950–4962. doi: 10.1002/pola.23546. doi: 10.1002/pola.23546. DOI
Andersson O. Larsson A. Ekblad T. Liedberg B. Gradient Hydrogel Matrix for Microarray and Biosensor Applications: An Imaging SPR Study. Biomacromolecules. 2009;10(1):142–148. doi: 10.1021/bm801029bPM-19067607. doi: 10.1021/bm801029b. PubMed DOI
Kausaite-Minkstimiene A. Ramanaviciene A. Kirlyte J. Ramanavicius A. Comparative Study of Random and Oriented Antibody Immobilization Techniques on the Binding Capacity of Immunosensor. Anal. Chem. 2010;82(15):6401–6408. doi: 10.1021/ac100468kPM-20669994. doi: 10.1021/ac100468k. PubMed DOI
Dannert C. Stokke B. T. Dias R. S. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polym. 2019;11(2):275. doi: 10.3390/polym11020275. PubMed DOI PMC
van den Brom C. R. Anac I. Roskamp R. F. Retsch M. Jonas U. Menges B. Preece J. A. The Swelling Behaviour of Thermoresponsive Hydrogel/Silica Nanoparticle Composites. J. Mater. Chem. 2010;20(23):4827–4839. doi: 10.1039/b927314j. doi: 10.1039/B927314J. DOI
Beebe D. J. Moore J. S. Bauer J. M. Yu Q. Liu R. H. Devadoss C. Jo B. H. Functional Hydrogel Structures for Autonomous Flow Control inside Microfluidic Channels. Nature. 2000;404(6778):588–590. doi: 10.1038/35007047. doi: 10.1038/35007047. PubMed DOI
Gupta S. Kuckling D. Kretschmer K. Choudhary V. Adler H.-J. Synthesis and Characterization of Stimuli-Sensitive Micro- and Nanohydrogels Based on Photocrosslinkable Poly(Dimethylaminoethyl Methacrylate) J. Polym. Sci., Part A: Polym. Chem. 2007;45(4):669–679. doi: 10.1002/pola.21846. doi: 10.1002/pola.21846. DOI
Sharifi M. Dolatabadi J. E. N. Fathi F. Zakariazadeh M. Barzegar A. Rashidi M. Tajalli H. Rashidi M. R. Surface Plasmon Resonance and Molecular Docking Studies of Bovine Serum Albumin Interaction with Neomycin: Kinetic and Thermodynamic Analysis. BioImpacts. 2017;7(2):91–97. doi: 10.15171/bi.2017.12. doi: 10.15171/bi.2017.12. PubMed DOI PMC
Fong C. C. Wong M. S. Fong W. F. Yang M. Effect of Hydrogel Matrix on Binding Kinetics of Protein-Protein Interactions on Sensor Surface. Anal. Chim. Acta. 2002;456(2):201–208. doi: 10.1016/S0003-2670(02)00033-8. doi: 10.1016/S0003-2670(02)00033-8. DOI
George S. M. Tandon S. Kandasubramanian B. Advancements in Hydrogel-Functionalized Immunosensing Platforms. ACS Omega. 2020;5(5):2060–2068. doi: 10.1021/acsomega.9b03816. doi: 10.1021/acsomega.9b03816. PubMed DOI PMC
Han I. K. Chung T. Han J. Kim Y. S. Nanocomposite Hydrogel Actuators Hybridized with Various Dimensional Nanomaterials for Stimuli Responsiveness Enhancement. Nano Convergence. 2019;6(1):18. doi: 10.1186/s40580-019-0188-zPM-31179510. doi: 10.1186/s40580-019-0188-z. PubMed DOI PMC
Vernerey F. Shen T. The Mechanics of Hydrogel Crawlers in Confined Environment. J. R. Soc. Interface. 2017;14(132):20170242. doi: 10.1098/rsif.2017.0242. doi: 10.1098/rsif.2017.0242. PubMed DOI PMC
Zhai L. Stimuli-Responsive Polymer Films. Chem. Soc. Rev. 2013;42(17):7148–7160. doi: 10.1039/c3cs60023h. doi: 10.1039/C3CS60023H. PubMed DOI
Barbey R. Lavanant L. Paripovic D. Schüwer N. Sugnaux C. Tugulu S. Klok H. A. Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications. Chem. Rev. 2009;109(11):5437–5527. doi: 10.1021/cr900045a. doi: 10.1021/cr900045a. PubMed DOI
Yoon C. Xiao R. Park J. Cha J. Nguyen T. D. Gracias D. H. Functional Stimuli Responsive Hydrogel Devices by Self-Folding. Smart Mater. Struct. 2014;23(9):094008. doi: 10.1088/0964-1726/23/9/094008. doi: 10.1088/0964-1726/23/9/094008. DOI
Sershen S. R. Mensing G. A. Ng M. Halas N. J. Beebe D. J. West J. L. Independent Optical Control of Microfluidic Valves Formed from Optomechanically Responsive Nanocomposite Hydrogels. Adv. Mater. 2005;17(11):1366–1368. doi: 10.1002/adma.200401239. doi: 10.1002/adma.200401239. PubMed DOI
Vogel N. Retsch M. Fustin C.-A. del Campo A. Jonas U. Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chem. Rev. 2015;115(13):6265–6311. doi: 10.1021/cr400081d. doi: 10.1021/cr400081d. PubMed DOI
Rodriguez-Emmenegger C. Preuss C. M. Yameen B. Pop-Georgievski O. Bachmann M. Mueller J. O. Bruns M. Goldmann A. S. Bastmeyer M. Barner-Kowollik C. Controlled Cell Adhesion on Poly(Dopamine) Interfaces Photopatterned with Non-Fouling Brushes. Adv. Mater. 2013;25(42):6123–6127. doi: 10.1002/adma.201302492. doi: 10.1002/adma.201302492. PubMed DOI
Hess A. J. Funk A. J. Liu Q. De La Cruz J. A. Sheetah G. H. Fleury B. Smalyukh I. I. Plasmonic Metamaterial Gels with Spatially Patterned Orientational Order via 3D Printing. ACS Omega. 2019;4(24):20558–20563. doi: 10.1021/acsomega.9b02418. doi: 10.1021/acsomega.9b02418. PubMed DOI PMC
Torgersen J. Qin X. H. Li Z. Ovsianikov A. Liska R. Stampfl J. Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix. Adv. Funct. Mater. 2013;23(36):4542–4554. doi: 10.1002/adfm.201203880. doi: 10.1002/adfm.201203880. DOI
Ciuciu A. I. Cywiński P. J. Two-Photon Polymerization of Hydrogels-Versatile Solutions to Fabricate Well-Defined 3D Structures. RSC Adv. 2014;4(85):45504–45516. doi: 10.1039/c4ra06892k. doi: 10.1039/C4RA06892K. DOI
You S. Li J. Zhu W. Yu C. Mei D. Chen S. Nanoscale 3D Printing of Hydrogels for Cellular Tissue Engineering. J. Mater. Chem. B. 2018;6(15):2187–2197. doi: 10.1039/c8tb00301g. doi: 10.1039/C8TB00301G. PubMed DOI PMC
Xing J. F. Zheng M. L. Duan X. M. Two-Photon Polymerization Microfabrication of Hydrogels: An Advanced 3D Printing Technology for Tissue Engineering and Drug Delivery. Chem. Soc. Rev. 2015;44(15):5031–5039. doi: 10.1039/c5cs00278h. doi: 10.1039/C5CS00278H. PubMed DOI
Dong X. Zou X. Liu X. Lu P. Yang J. Lin D. Zhang L. Zha L. Temperature-Tunable Plasmonic Property and SERS Activity of the Monodisperse Thermo-Responsive Composite Microgels with Core–Shell Structure Based on Gold Nanorod as Core. Colloids Surf., A. 2014;452(1):46–50. doi: 10.1016/j.colsurfa.2014.03.090. doi: 10.1016/j.colsurfa.2014.03.090. DOI
Quilis N. G. Hageneder S. Fossati S. Auer S. K. Venugopalan P. Bozdogan A. Petri C. Moreno-Cencerrado A. Toca-Herrera J. L. Jonas U. Dostalek J. UV-Laser Interference Lithography for Local Functionalization of Plasmonic Nanostructures with Responsive Hydrogel. J. Phys. Chem. C. 2020;124(5):3297–3305. doi: 10.1021/acs.jpcc.9b11059. doi: 10.1021/acs.jpcc.9b11059. PubMed DOI PMC
Magnozzi M. Brasse Y. König T. A. F. Bisio F. Bittrich E. Fery A. Canepa M. Plasmonics of Au/Polymer Core/Shell Nanocomposites for Thermoresponsive Hybrid Metasurfaces. ACS Appl. Nano Mater. 2020;3(2):1674–1682. doi: 10.1021/acsanm.9b02403. doi: 10.1021/acsanm.9b02403. DOI
Gehan H. Fillaud L. Chehimi M. M. Aubard J. Hohenau A. Felidj N. Mangeney C. Thermo-Induced Electromagnetic Coupling in Gold/Polymer Hybrid Plasmonic Structures Probed by Surface-Enhanced Raman Scattering. ACS Nano. 2010;4(11):6491–6500. doi: 10.1021/nn101451q. doi: 10.1021/nn101451q. PubMed DOI
Chen H. Wang Y. Li X. Liang B. Dong S. You T. Yin P. A CO2-Tunable Plasmonic Nanosensor Based on the Interfacial Assembly of Gold Nanoparticles on Diblock Copolymers Grafted from Gold Surfaces. RSC Adv. 2018;8(39):22177–22181. doi: 10.1039/c8ra02934b. doi: 10.1039/C8RA02934B. PubMed DOI PMC
Cormier S. Ding T. Turek V. Baumberg J. J. Actuating Single Nano-Oscillators with Light. Adv. Opt. Mater. 2018;6(6):1701281. doi: 10.1002/ADOM.201701281. doi: 10.1002/adom.201701281. DOI
Karg M. Pastoriza-Santos I. Pérez-Juste J. Hellweg T. Liz-Marzán L. M. Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties. Small. 2007;3(7):1222–1229. doi: 10.1002/smll.200700078. doi: 10.1002/smll.200700078. PubMed DOI
Fernandez-Lopez C. Polavarapu L. Solis D. M. Taboada J. M. Obelleiro F. Contreras-Caceres R. Pastoriza-Santos I. Perez-Juste J. Gold Nanorod-PNIPAM Hybrids with Reversible Plasmon Coupling: Synthesis, Modeling, and SERS Properties. ACS Appl. Mater. Interfaces. 2015;7(23):12530–12538. doi: 10.1021/am5087209. doi: 10.1021/am5087209. PubMed DOI
Liu X. Wang X. Zha L. Lin D. Yang J. Zhou J. Zhang L. Temperature- and PH-Tunable Plasmonic Properties and SERS Efficiency of the Silver Nanoparticles within the Dual Stimuli-Responsive Microgels. J. Mater. Chem. C. 2014;2(35):7326–7335. doi: 10.1039/c4tc00966e. doi: 10.1039/C4TC00966E. DOI
Turek V. A. Cormier S. Sierra-Martin B. Keyser U. F. Ding T. Baumberg J. J. The Crucial Role of Charge in Thermoresponsive-Polymer-Assisted Reversible Dis/Assembly of Gold Nanoparticles. Adv. Opt. Mater. 2018;6(8):1701270. doi: 10.1002/ADOM.201701270. doi: 10.1002/adom.201701270. DOI
Hamajima S. Mitomo H. Tani T. Matsuo Y. Niikura K. Naya M. Ijiro K. Nanoscale Uniformity in the Active Tuning of a Plasmonic Array by Polymer Gel Volume Change. Nanoscale Adv. 2019;1(5):1731–1739. doi: 10.1039/c8na00404h. doi: 10.1039/C8NA00404H. PubMed DOI PMC
Gisbert Quilis N. van Dongen M. Venugopalan P. Kotlarek D. D. Petri C. Moreno Cencerrado A. Stanescu S. Toca Herrera J. L. Jonas U. Möller M. Mourran A. Dostalek J. Quilis N. G. van Dongen M. Venugopalan P. Kotlarek D. D. Petri C. Cencerrado A. M. Stanescu S. Herrera J. L. T. Jonas U. Moeller M. Mourran A. Dostalek J. Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane. Adv. Opt. Mater. 2019;7(15):1–11. doi: 10.1002/adom.201900342. doi: 10.1002/adom.201900342. DOI
Kotlarek D. Fossati S. Venugopalan P. Gisbert Quilis N. Slabý J. Homola J. Lequeux M. Amiard F. Lamy De La Chapelle M. Jonas U. Dostálek J. Actuated Plasmonic Nanohole Arrays for Sensing and Optical Spectroscopy Applications. Nanoscale. 2020;12(17):9756–9768. doi: 10.1039/d0nr00761g. doi: 10.1039/D0NR00761G. PubMed DOI
Auguié B. Barnes W. L. Collective Resonances in Gold Nanoparticle Arrays. Phys. Rev. Lett. 2008;101(14):143902. doi: 10.1103/PhysRevLett.101.143902. doi: 10.1103/PhysRevLett.101.143902. PubMed DOI
Volk K. Fitzgerald J. P. S. S. Ruckdeschel P. Retsch M. König T. A. F. F. Karg M. Reversible Tuning of Visible Wavelength Surface Lattice Resonances in Self-Assembled Hybrid Monolayers. Adv. Opt. Mater. 2017;5(9):1600971. doi: 10.1002/adom.201600971. doi: 10.1002/adom.201600971. DOI
Wang Q. Liu L. Wang Y. Liu P. Jiang H. Xu Z. Ma Z. Oren S. Chow E. K. C. Lu M. Dong L. Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer. Sci. Rep. 2016;5(1):18567. doi: 10.1038/srep18567. doi: 10.1038/srep18567. PubMed DOI PMC
Gisbert Quilis N. Lequeux M. Venugopalan P. Khan I. Knoll W. Boujday S. Lamy De La Chapelle M. Dostalek J. Tunable Laser Interference Lithography Preparation of Plasmonic Nanoparticle Arrays Tailored for SERS. Nanoscale. 2018;10(21):10268–10276. doi: 10.1039/c7nr08905h. doi: 10.1039/C7NR08905H. PubMed DOI
Grzelczak M. Pérez-Juste J. Mulvaney P. Liz-Marzán L. M. Shape Control in Gold Nanoparticle Synthesis. Chem. Soc. Rev. 2008;37(9):1783–1791. doi: 10.1039/b711490g. doi: 10.1039/B711490G. PubMed DOI
Sun Z. Song C. Wang C. Hu Y. Wu J. Hydrogel-Based Controlled Drug Delivery for Cancer Treatment: A Review. Mol. Pharm. 2020;17(2):373–391. doi: 10.1021/acs.molpharmaceut.9b01020. PubMed DOI
Manikas A. C. Aliberti A. Causa F. Battista E. Netti P. A. Thermoresponsive PNIPAAm Hydrogel Scaffolds with Encapsulated AuNPs Show High Analyte-Trapping Ability and Tailored Plasmonic Properties for High Sensing Efficiency. J. Mater. Chem. B. 2014;3(1):53–58. doi: 10.1039/C4TB01551G. doi: 10.1039/C4TB01551G. PubMed DOI
Yin P. G. Chen Y. Jiang L. You T. T. Lu X. Y. Guo L. Yang S. Controlled Dispersion of Silver Nanoparticles into the Bulk of Thermosensitive Polymer Microspheres: Tunable Plasmonic Coupling by Temperature Detected by Surface Enhanced Raman Scattering. Macromol. Rapid Commun. 2011;32(13):1000–1006. doi: 10.1002/marc.201100143. doi: 10.1002/marc.201100143. PubMed DOI
Müller M. B. Kuttner C. König T. A. F. Tsukruk V. V. Förster S. Karg M. Fery A. Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays. ACS Nano. 2014;8(9):9410–9421. doi: 10.1021/nn503493c. doi: 10.1021/nn503493c. PubMed DOI PMC
Fernández-Rodríguez M. Á. Elnathan R. Ditcovski R. Grillo F. Conley G. M. Timpu F. Rauh A. Geisel K. Ellenbogen T. Grange R. Scheffold F. Karg M. Richtering W. Voelcker N. H. Isa L. Tunable 2D Binary Colloidal Alloys for Soft Nanotemplating. Nanoscale. 2018;10(47):22189–22195. doi: 10.1039/C8NR07059H. doi: 10.1039/C8NR07059H. PubMed DOI
Mourran A. Zhang H. Vinokur R. Möller M. Soft Microrobots Employing Nonequilibrium Actuation via Plasmonic Heating. Adv. Mater. 2017;29(2):1604825. doi: 10.1002/adma.201604825. doi: 10.1002/adma.201604825. PubMed DOI
Pirani F. Sharma N. Moreno-Cencerrado A. Fossati S. Petri C. Descrovi E. Toca-Herrera J. L. Jonas U. Dostalek J. Optical Waveguide-Enhanced Diffraction for Observation of Responsive Hydrogel Nanostructures. Macromol. Chem. Phys. 2017;218(6):1–10. doi: 10.1002/macp.201600400. doi: 10.1002/macp.201600400. DOI
Sharma N. Petri C. Jonas U. Dostalek J. Reversibly Tunable Plasmonic Bandgap by Responsive Hydrogel Grating. Opt. Express. 2016;24(3):2457. doi: 10.1364/OE.24.002457. doi: 10.1364/OE.24.002457. PubMed DOI
Beines P. W. Klosterkamp I. Menges B. Jonas U. Knoll W. Responsive Thin Hydrogel Layers from Photo-Cross-Linkable Poly(N-Isopropylacrylamide) Terpolymers. Langmuir. 2007;23(4):2231–2238. doi: 10.1021/la063264t. doi: 10.1021/la063264t. PubMed DOI
Schwärzle D. Hou X. Prucker O. Rühe J. Polymer Microstructures through Two-Photon Crosslinking. Adv. Mater. 2017;29(39):1703469. doi: 10.1002/ADMA.201703469. doi: 10.1002/adma.201703469. PubMed DOI
Quilis N. G. Hageneder S. Fossati S. Auer S. K. Venugopalan P. Bozdogan A. Petri C. Moreno-Cencerrado A. Toca-Herrera J. L. Jonas U. Dostalek J. UV-Laser Interference Lithography for Local Functionalization of Plasmonic Nanostructures with Responsive Hydrogel. J. Phys. Chem. C. 2020;124(5):3297–3305. doi: 10.1021/acs.jpcc.9b11059. doi: 10.1021/acs.jpcc.9b11059. PubMed DOI PMC
Baffou G. Berto P. Bermúdez Ureña E. Quidant R. Monneret S. Polleux J. Rigneault H. Photoinduced Heating of Nanoparticle Arrays. ACS Nano. 2013;7(8):6478–6488. doi: 10.1021/nn401924n. doi: 10.1021/nn401924n. PubMed DOI
Winkler P. Belitsch M. Tischler A. Häfele V. Ditlbacher H. Krenn J. R. Hohenau A. Nguyen M. Félidj N. Mangeney C. Nanoplasmonic Heating and Sensing to Reveal the Dynamics of Thermoresponsive Polymer Brushes. Appl. Phys. Lett. 2015;107(14):141906. doi: 10.1063/1.4932968. doi: 10.1063/1.4932968. DOI
Auer S. K. Fossati S. Jonas U. Dostálek J. Observation of Rapid Collapsing and Swelling of Crosslinked PNIPAAm-Based Hydrogel Film by Plasmonic Heating and Resonance Detuning. J. Phys. Chem. B. 2022 doi: 10.1021/acs.jpcb.2c01160. DOI
Ding T. Valev V. K. Salmon A. R. Forman C. J. Smoukov S. K. Scherman O. A. Frenkel D. Baumberg J. J. Light-Induced Actuating Nanotransducers. Proc. Natl. Acad. Sci. U. S. A. 2016;113(20):5503–5507. doi: 10.1073/pnas.1524209113. doi: 10.1073/pnas.1524209113. PubMed DOI PMC
Leroux Y. R. Lacroix J. C. Chane-Ching K. I. Fave C. Félidj N. Lévi G. Aubard J. Krenn J. R. Hohenau A. Conducting Polymer Electrochemical Switching as an Easy Means for Designing Active Plasmonic Devices. J. Am. Chem. Soc. 2005;127(46):16022–16023. doi: 10.1021/ja054915v. doi: 10.1021/ja054915v. PubMed DOI
Jeon J. W. Zhou J. Geldmeier J. A. Ponder J. F. Mahmoud M. A. El-Sayed M. Reynolds J. R. Tsukruk V. V. Dual-Responsive Reversible Plasmonic Behavior of Core–Shell Nanostructures with PH-Sensitive and Electroactive Polymer Shells. Chem. Mater. 2016;28(20):7551–7563. doi: 10.1021/acs.chemmater.6b04026. doi: 10.1021/acs.chemmater.6b04026. DOI
Jiang N. Shao L. Wang J. (Gold Nanorod Core)/(Polyaniline Shell) Plasmonic Switches with Large Plasmon Shifts and Modulation Depths. Adv. Mater. 2014;26(20):3282–3289. doi: 10.1002/adma.201305905. doi: 10.1002/adma.201305905. PubMed DOI
Kuckling D. Harmon M. E. Frank C. W. Photo-Cross-Linkable PNIPAAm Copolymers. 1. Synthesis and Characterization of Constrained Temperature-Responsive Hydrogel Layers. Macromolecules. 2002;35(16):6377–6383. doi: 10.1021/ma0203041. doi: 10.1021/ma0203041. DOI
Sergelen K. Petri C. Jonas U. Dostalek J. Free-Standing Hydrogel-Particle Composite Membrane with Dynamically Controlled Permeability. Biointerphases. 2017;12(5):051002. doi: 10.1116/1.4996952. doi: 10.1116/1.4996952. PubMed DOI
Choe A. Yeom J. Shanker R. Kim M. P. Kang S. Ko H. Stretchable and Wearable Colorimetric Patches Based on Thermoresponsive Plasmonic Microgels Embedded in a Hydrogel Film. NPG Asia Mater. 2018;10(9):912–922. doi: 10.1038/s41427-018-0086-6. doi: 10.1038/s41427-018-0086-6. DOI
Mishra S. K. Gupta B. D. Surface Plasmon Resonance Based Fiber Optic PH Sensor Utilizing Ag/ITO/Al/Hydrogel Layers. Analyst. 2013;138(9):2640–2646. doi: 10.1039/c3an00097d. doi: 10.1039/C3AN00097D. PubMed DOI
Mesch M. Zhang C. Braun P. V. Giessen H. Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing. ACS Photonics. 2015;2(4):475–480. doi: 10.1021/acsphotonics.5b00004. doi: 10.1021/acsphotonics.5b00004. DOI
Elsherif M. Hassan M. U. Yetisen A. K. Butt H. Glucose Sensing with Phenylboronic Acid Functionalized Hydrogel-Based Optical Diffusers. ACS Nano. 2018;12(3):2283–2291. doi: 10.1021/acsnano.7b07082. doi: 10.1021/acsnano.7b07082. PubMed DOI PMC
Aliberti A. Ricciardi A. Giaquinto M. Micco A. Bobeico E. La Ferrara V. Ruvo M. Cutolo A. Cusano A. Microgel Assisted Lab-on-Fiber Optrode. Sci. Rep. 2017;7(1):1–11. doi: 10.1038/s41598-017-14852-5. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Wei M. Li X. Serpe M. J. Stimuli-Responsive Microgel-Based Surface Plasmon Resonance Transducer for Glucose Detection Using a Competitive Assay with Concanavalin A. ACS Appl. Polym. Mater. 2019;1(3):519–525. doi: 10.1021/acsapm.8b00207. doi: 10.1021/acsapm.8b00207. DOI
Yang H. M. Teoh J. Y. Yim G. H. Park Y. Kim Y. G. Kim J. Yoo D. Label-Free Analysis of Multivalent Protein Binding Using Bioresponsive Nanogels and Surface Plasmon Resonance (SPR) ACS Appl. Mater. Interfaces. 2020;12(5):5413–5419. doi: 10.1021/acsami.9b17328. doi: 10.1021/acsami.9b17328. PubMed DOI
Jiang Y. Colazo M. G. Serpe M. J. Poly(N-Isopropylacrylamide) Microgel-Based Sensor for Progesterone in Aqueous Samples. Colloid Polym. Sci. 2016;294(11):1733–1741. doi: 10.1007/s00396-016-3926-3. doi: 10.1007/s00396-016-3926-3. DOI
Li J. Ji C. Lü B. Rodin M. Paradies J. Yin M. Kuckling D. Dually Crosslinked Supramolecular Hydrogel for Cancer Biomarker Sensing. ACS Appl. Mater. Interfaces. 2020;12(33):36873–36881. doi: 10.1021/acsami.0c08722. doi: 10.1021/acsami.0c08722. PubMed DOI
Jiang Y. Colazo M. G. Serpe M. J. Poly(N-Isopropylacrylamide) Microgel-Based Etalons for the Label-Free Quantitation of Estradiol-17B in Aqueous Solutions and Milk Samples. Anal. Bioanal. Chem. 2018;410(18):4397–4407. doi: 10.1007/s00216-018-1095-6. doi: 10.1007/s00216-018-1095-6. PubMed DOI
Huang C. J. Dostalek J. Knoll W. Long Range Surface Plasmon and Hydrogel Optical Waveguide Field-Enhanced Fluorescence Biosensor with 3D Hydrogel Binding Matrix: On the Role of Diffusion Mass Transfer. Biosens. Bioelectron. 2010;26(4):1425–1431. doi: 10.1016/j.bios.2010.07.072. doi: 10.1016/j.bios.2010.07.072. PubMed DOI
Huang C. J. Jonas U. Dostalek J. Knoll W. Biosensor platform based on surface plasmon-enhanced fluorescence spectroscopy and responsive hydrogel binding matrix. SPIE Proceedings Optical Sensors. 2009;7356:510–516. doi: 10.1117/12.820988. DOI
Hageneder S. Jungbluth V. Soldo R. Petri C. Pertiller M. Kreivi M. Weinhäusel A. Jonas U. Dostalek J. Responsive Hydrogel Binding Matrix for Dual Signal Amplification in Fluorescence Affinity Biosensors and Peptide Microarrays. ACS Appl. Mater. Interfaces. 2021;13(23):27645–27655. doi: 10.1021/acsami.1c05950. doi: 10.1021/acsami.1c05950. PubMed DOI
Álvarez-Puebla R. A. Contreras-Cáceres R. Pastoriza-Santos I. Pérez-Juste J. Liz-Marzán L. M. Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis. Angew. Chem., Int. Ed. 2009;48(1):138–143. doi: 10.1002/anie.200804059. doi: 10.1002/anie.200804059. PubMed DOI
Manikas A. C. Aliberti A. Causa F. Battista E. Netti P. A. Thermoresponsive PNIPAAm Hydrogel Scaffolds with Encapsulated AuNPs Show High Analyte-Trapping Ability and Tailored Plasmonic Properties for High Sensing Efficiency. J. Mater. Chem. B. 2015;3(1):53–58. doi: 10.1039/c4tb01551g. doi: 10.1039/C4TB01551G. PubMed DOI
Elashnikov R. Mares D. Podzimek T. Švorčík V. Lyutakov O. Sandwiched Gold/PNIPAm/Gold Microstructures for Smart Plasmonics Application: Towards the High Detection Limit and Raman Quantitative Measurements. Analyst. 2017;142(16):2974–2981. doi: 10.1039/c7an00419b. doi: 10.1039/C7AN00419B. PubMed DOI
Guselnikova O. Postnikov P. Kalachyova Y. Kolska Z. Libansky M. Zima J. Svorcik V. Lyutakov O. Large-Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm-Grafted Gold Grating. ChemNanoMat. 2017;3(2):135–144. doi: 10.1002/cnma.201600284. doi: 10.1002/cnma.201600284. DOI
Wu Y. Zhou F. Yang L. Liu J. A Shrinking Strategy for Creating Dynamic SERS Hot Spots on the Surface of Thermosensitive Polymer Nanospheres. Chem. Commun. 2013;49(44):5025–5027. doi: 10.1039/c3cc40875b. doi: 10.1039/C3CC40875B. PubMed DOI
Curtis T. Taylor A. K. Alden S. E. Swanson C. Lo J. Knight L. Silva A. Gates B. D. Emory S. R. Rider D. A. Synthesis and Characterization of Tunable, PH-Responsive Nanoparticle-Microgel Composites for Surface-Enhanced Raman Scattering Detection. ACS Omega. 2018;3(9):10572–10588. doi: 10.1021/acsomega.8b01561. doi: 10.1021/acsomega.8b01561. PubMed DOI PMC
Jiang C. Ma X. Xue M. Lian H. Z. Application of Thermoresponsive Hydrogel/Gold Nanorods Composites in the Detection of Diquat. Talanta. 2017;174(May):192–197. doi: 10.1016/j.talanta.2017.06.010. doi: 10.1016/j.talanta.2017.06.010. PubMed DOI
Liu Y. Yue S. Wang Y. N. Y. Wang Y. N. Y. Xu Z. R. A Multicolor-SERS Dual-Mode PH Sensor Based on Smart Nano-in-Micro Particles. Sens. Actuators, B. 2020;310:127889. doi: 10.1016/j.snb.2020.127889. doi: 10.1016/j.snb.2020.127889. DOI
Li H. Wang X. Wang Z. Jiang J. Wei M. Zheng J. Yan Y. Li C. Thermo-Responsive Molecularly Imprinted Sensor Based on the Surface-Enhanced Raman Scattering for Selective Detection of R6G in the Water. Dalton Trans. 2017;46(34):11282–11290. doi: 10.1039/c7dt02495a. doi: 10.1039/C7DT02495A. PubMed DOI
Nagatani K. Kiribayashi S. Okada Y. Otake K. Yoshida K. Tadokoro S. Nishimura T. Yoshida T. Koyanagi E. Fukushima M. Kawatsuma S. Emergency Response to the Nuclear Accident at the Fukushima Daiichi Nuclear Power Plants Using Mobile Rescue Robots. J. F. Robot. 2013;30(1):44–63. doi: 10.1002/rob.21439. doi: 10.1002/rob.21439. DOI
Davies B. A Review of Robotics in Surgery. Proc. Inst. Mech. Eng. 2000;214(1):129–140. doi: 10.1243/0954411001535309. doi: 10.1243/0954411001535309. PubMed DOI
Hughes J. Culha U. Giardina F. Guenther F. Rosendo A. Iida F. Soft Manipulators and Grippers: A Review. Front. Robot. AI. 2016:3. doi: 10.3389/frobt.2016.00069. DOI
Nikolov S. V. Yeh P. D. Alexeev A. Self-Propelled Microswimmer Actuated by Stimuli-Sensitive Bilayered Hydrogel. ACS Macro Lett. 2015;4(1):84–88. doi: 10.1021/mz5007014. doi: 10.1021/mz5007014. PubMed DOI
Hauser A. W. Evans A. A. Na J. H. Hayward R. C. Photothermally Reprogrammable Buckling of Nanocomposite Gel Sheets. Angew. Chem., Int. Ed. 2015;54(18):5434–5437. doi: 10.1002/anie.201412160. doi: 10.1002/anie.201412160. PubMed DOI
O’Grady M. L. Kuo P. L. Parker K. K. Optimization of Electroactive Hydrogel Actuators. ACS Appl. Mater. Interfaces. 2010;2(2):343–346. doi: 10.1021/am900755w. doi: 10.1021/am900755w. PubMed DOI
Hribar K. C. Choi Y. S. Ondeck M. Engler A. J. Chen S. Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness. Adv. Funct. Mater. 2014;24(31):4922–4926. doi: 10.1002/adfm.201400274. doi: 10.1002/adfm.201400274. PubMed DOI PMC
Stoychev G. Turcaud S. Dunlop J. W. C. Ionov L. Hierarchical Multi-Step Folding of Polymer Bilayers. Adv. Funct. Mater. 2013;23(18):2295–2300. doi: 10.1002/adfm.201203245. doi: 10.1002/adfm.201203245. DOI
Guo H. Liu Y. Yang Y. Wu G. Demella K. Raghavan S. R. Nie Z. A Shape-Shifting Composite Hydrogel Sheet with Spatially Patterned Plasmonic Nanoparticles. J. Mater. Chem. B. 2019;7(10):1679–1683. doi: 10.1039/c8tb01959b. doi: 10.1039/C8TB01959B. PubMed DOI
Zhang H. Mourran A. Möller M. Dynamic Switching of Helical Microgel Ribbons. Nano Lett. 2017;17(3):2010–2014. doi: 10.1021/acs.nanolett.7b00015. doi: 10.1021/acs.nanolett.7b00015. PubMed DOI PMC
Guo H. Liu Y. Yang Y. Wu G. Demella K. Raghavan S. R. Nie Z. A Shape-Shifting Composite Hydrogel Sheet with Spatially Patterned Plasmonic Nanoparticles. J. Mater. Chem. B. 2019;7(10):1679–1683. doi: 10.1039/c8tb01959b. doi: 10.1039/C8TB01959B. PubMed DOI
Yang Y. Tan Y. Wang X. An W. Xu S. Liao W. Wang Y. Photothermal Nanocomposite Hydrogel Actuator with Electric-Field-Induced Gradient and Oriented Structure. ACS Appl. Mater. Interfaces. 2018;10(9):7688–7692. doi: 10.1021/acsami.7b17907. doi: 10.1021/acsami.7b17907. PubMed DOI
Özkale B. Parreira R. Bekdemir A. Pancaldi L. Özelçi E. Amadio C. Kaynak M. Stellacci F. Mooney D. J. Sakar M. S. Modular Soft Robotic Microdevices for Dexterous Biomanipulation. Lab Chip. 2019;19(5):778–788. doi: 10.1039/c8lc01200h. doi: 10.1039/C8LC01200H. PubMed DOI PMC
Delaney C. McCluskey P. Coleman S. Whyte J. Kent N. Diamond D. Precision Control of Flow Rate in Microfluidic Channels Using Photoresponsive Soft Polymer Actuators. Lab Chip. 2017;17(11):2013–2021. doi: 10.1039/c7lc00368d. doi: 10.1039/C7LC00368D. PubMed DOI
Yuk H. Lin S. Ma C. Takaffoli M. Fang N. X. Zhao X. Hydraulic Hydrogel Actuators and Robots Optically and Sonically Camouflaged in Water. Nat. Commun. 2017;8:1–12. doi: 10.1038/ncomms14230. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC
Jia H. Mailand E. Zhou J. Huang Z. Dietler G. Kolinski J. M. Wang X. Sakar M. S. Universal Soft Robotic Microgripper. Small. 2019;15(4):1803870. doi: 10.1002/SMLL.201803870. doi: 10.1002/smll.201803870. PubMed DOI
Wang J. Gao W. Nano/Microscale Motors: Biomedical Opportunities and Challenges. ACS Nano. 2012;6(7):5745–5751. doi: 10.1021/nn3028997. doi: 10.1021/nn3028997. PubMed DOI
Patra D. Sengupta S. Duan W. Zhang H. Pavlick R. Sen A. Intelligent, Self-Powered, Drug Delivery Systems. Nanoscale. 2013;5(4):1273–1283. doi: 10.1039/c2nr32600k. doi: 10.1039/C2NR32600K. PubMed DOI
Rehor I. Maslen C. Moerman P. G. van Ravensteijn B. G. P. van Alst R. Groenewold J. Eral H. B. Kegel W. K. Photoresponsive Hydrogel Microcrawlers Exploit Friction Hysteresis to Crawl by Reciprocal Actuation. Soft Rob. 2020:1–9. doi: 10.1089/soro.2019.0169. PubMed DOI
Plasmon-Enhanced Multiphoton Polymer Crosslinking for Selective Modification of Plasmonic Hotspots