QCD challenges from pp to AA collisions: 4th edition

. 2024 ; 84 (4) : 421. [epub] 20240423

Status PubMed-not-MEDLINE Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39507516

This paper is a write-up of the ideas that were presented, developed and discussed at the fourth International Workshop on QCD Challenges from pp to AA, which took place in February 2023 in Padua, Italy. The goal of the workshop was to focus on some of the open questions in the field of high-energy heavy-ion physics and to stimulate the formulation of concrete suggestions for making progresses on both the experimental and theoretical sides. The paper gives a brief introduction to each topic and then summarizes the primary results.

Central China Normal University Wuhan China

CERN Geneva Switzerland

Charles University Prague Czech Republic

CPHT CNRS Ecole polytechnique Institut Polytechnique de Paris Palaiseau France

Czech Technical University Prague Prague Czech Republic

Departamento de Física Universidad de Oviedo Avda Oviedo Spain

GSI Helmholtzzentrum für Schwerionenforschung Darmstadt Germany

Helmholtz Research Academy Hesse for FAIR Goethe University Frankfurt Frankfurt Germany

INFN LNS Catania Italy

INFN Sezione di Cagliari Cagliari Italy

INFN Sezione di Catania Catania Italy

INFN Sezione di Firenze Florence Italy

INFN Sezione di Padova Padua Italy

INFN Sezione di Torino Turin Italy

Institut für Theoretische Physik Frankfurt Germany

Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias Oviedo Spain

Karlsruhe Institute of Technology Institut für Astroteilchenphysik Karlsruhe Germany

Los Alamos National Lab Santa Fe USA

Lund University Lund Sweden

Massachusetts Institute of Technology Cambridge USA

Monash University Melbourne Australia

Ruprecht Karls Universitaet Heidelberg Heidelberg Germany

Stefan Meyer Institute of the Austrian Academy of Sciences Vienna Austria

SUBATECH Nantes University IN2P3 CNRS IMT Atlantique Nantes France

Technische Universität Dortmund Dortmund Germany

The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences Kraków Poland

Universidad Nacional Autonoma Mexico City Mexico

Università and INFN Bologna Bologna Italy

Università and INFN Ferrara Ferrara Italy

Università and INFN Trieste Trieste Italy

Universita di Brescia Brescia Italy

Università di Catania Catania Italy

Università di Padova Padua Italy

Università di Torino Turin Italy

Università Sapienza Rome Italy

Universität Münster Münster Germany

Université Paris Saclay CNRS IJCLab Orsay France

University of Bergen Bergen Norway

University of Campinas UNICAMP Campinas Brazil

University of Cincinnati Cincinnati USA

University of Houston Houston USA

University of Jyväskylä and Helsinki Institute of Physics Helsinki Finland

Utrecht University Utrecht The Netherlands

Yonsei University Seoul Korea

Zobrazit více v PubMed

F. Karsch, Lattice simulations of the thermodynamics of strongly interacting elementary particles and the exploration of new phases of matter in relativistic heavy ion collisions. J. Phys. Conf. Ser. 46, 122–131 (2006). 10.1088/1742-6596/46/1/017. arXiv:hep-lat/0608003 [hep-lat]

S. Borsanyi et al., Is there still any [Image: see text] mystery in lattice QCD? Results with physical masses in the continuum limit III. JHEP 1009, 073 (2010). 10.1007/JHEP09(2010)073. arXiv:1005.3508 [hep-lat]

S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg et al., Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B 730, 99–104 (2014). 10.1016/j.physletb.2014.01.007. arXiv:1309.5258 [hep-lat]

A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H.T. Ding et al., The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 85, 054503 (2012). 10.1103/PhysRevD.85.054503. arXiv:1111.1710 [hep-lat]

M.C. Abreu et al., Evidence for deconfinement of quarks and gluons from the J / psi suppression pattern measured in Pb + Pb collisions at the CERN SPS. Phys. Lett. B 477, 28–36 (2000). 10.1016/S0370-2693(00)00237-9

E. Andersen et al., Strangeness enhancement at mid-rapidity in Pb Pb collisions at 158-A-GeV/c. Phys. Lett. B 449, 401–406 (1999). 10.1016/S0370-2693(99)00140-9

I. Arsene et al., Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1–27 (2005). 10.1016/j.nuclphysa.2005.02.130. arXiv:nucl-ex/0410020

K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005). 10.1016/j.nuclphysa.2005.03.086. arXiv:nucl-ex/0410003

B.B. Back et al., The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005). 10.1016/j.nuclphysa.2005.03.084. arXiv:nucl-ex/0410022

J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). 10.1016/j.nuclphysa.2005.03.085. arXiv:nucl-ex/0501009

Y. Schutz, U.A. Wiedemann (eds.) Quark Matter. Proceedings, 22nd International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Quark Matter 2011, Annecy, France, May 23–28, 2011, vol. 38, p. 120301 (2011). 10.1088/0954-3899/38/12/120301

G. Roland, K. Safarik, P. Steinberg, Heavy-ion collisions at the LHC. Prog. Part. Nucl. Phys. 77, 70–127 (2014). 10.1016/j.ppnp.2014.05.001

P. Braun-Munzinger, V. Koch, T. Schäfer, J. Stachel, Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rep. 621, 76–126 (2016). 10.1016/j.physrep.2015.12.003. arXiv:1510.00442 [nucl-th]

The ALICE experiment—a journey through QCD (2022). arXiv:2211.04384 [nucl-ex]

A. Adare et al., An Upgrade Proposal from the PHENIX Collaboration (2015). arXiv:1501.06197 [nucl-ex]

C. Ahdida et al., Letter of Intent: the NA60+ experiment (2022). arXiv:2212.14452 [nucl-ex]

R. Abdul Khalek et al., Science requirements and detector concepts for the electron-ion collider. EIC Yellow Report. Nucl. Phys. A 1026, 122447 (2022). 10.1016/j.nuclphysa.2022.122447. arXiv:2103.05419 [physics.ins-det]

Letter of intent for ALICE 3: a next-generation heavy-ion experiment at the LHC (2022). arXiv:2211.02491 [physics.ins-det]

R. Abdul Khalek, R. Gauld, T. Giani, E. R. Nocera, T.R. Rabemananjara, J. Rojo, nNNPDF3.0: evidence for a modified partonic structure in heavy nuclei. Eur. Phys. J. C 82(6), 507 (2022). 10.1140/epjc/s10052-022-10417-7. arXiv:2201.12363 [hep-ph]

K.J. Eskola, P. Paakkinen, H. Paukkunen, C.A. Salgado, EPPS21: a global QCD analysis of nuclear PDFs. Eur. Phys. J. C 82(5), 413 (2022). 10.1140/epjc/s10052-022-10359-0. arXiv:2112.12462 [hep-ph]

P. Duwentäster, T. Ježo, M. Klasen, K. Kovařík, A. Kusina, K.F. Muzakka, F.I. Olness, R. Ruiz, I. Schienbein, J.Y. Yu, Impact of heavy quark and quarkonium data on nuclear gluon PDFs. Phys. Rev. D 105(11), 114043 (2022). 10.1103/PhysRevD.105.114043. arXiv:2204.09982 [hep-ph]

I. Helenius, M. Walt, W. Vogelsang, NNLO nuclear parton distribution functions with electroweak-boson production data from the LHC. Phys. Rev. D 105(9), 094031 (2022). 10.1103/PhysRevD.105.094031. arXiv:2112.11904 [hep-ph]

L.D. McLerran, R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum. Phys. Rev. D 49, 3352–3355 (1994). 10.1103/PhysRevD.49.3352. arXiv:hep-ph/9311205 PubMed

R. Aaij et al., Study of prompt D0 meson production in [Image: see text] Pb collisions at [Image: see text] TeV. JHEP 10, 090 (2017). 10.1007/JHEP10(2017)090. arXiv:1707.02750 [hep-ex]

K.J. Eskola, P. Paakkinen, H. Paukkunen, C.A. Salgado, EPPS16: nuclear parton distributions with LHC data. Eur. Phys. J. C 77(3), 163 (2017). 10.1140/epjc/s10052-017-4725-9. arXiv:1612.05741 [hep-ph] PubMed PMC

R. Abdul Khalek, J. J. Ethier, J. Rojo, G. Weelden, nNNPDF2.0: quark flavor separation in nuclei from LHC data. JHEP 09, 183 (2020). 10.1007/JHEP09(2020)183. arXiv:2006.14629 [hep-ph]

R. Aaij et al., Measurement of the nuclear modification factor and prompt charged particle production in pPb and pp collisions at [Image: see text] TeV. Phys. Rev. Lett. 128(14), 142004 (2022). 10.1103/PhysRevLett.128.142004. arXiv:2108.13115 [hep-ex] PubMed

R. Aaij et al., Nuclear modification factor of neutral pions in the forward and backward regions in p-Pb collisions. Phys. Rev. Lett. 131(4), 042302 (2023). 10.1103/PhysRevLett.131.042302. arXiv:2204.10608 [nucl-ex] PubMed

S. Acharya et al., Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC. JHEP 11, 013 (2018). 10.1007/JHEP11(2018)013. arXiv:1802.09145 [nucl-ex]

S. Acharya et al., Neutral pion and [Image: see text] meson production in p-Pb collisions at [Image: see text] TeV. Eur. Phys. J. C 78(8), 624 (2018). 10.1140/epjc/s10052-018-6013-8. arXiv:1801.07051 [nucl-ex]

S. Acharya et al., Nuclear modification factor of light neutral-meson spectra up to high transverse momentum in p-Pb collisions at sNN = 8.16 TeV. Phys. Lett. B 827, 136943 (2022). 10.1016/j.physletb.2022.136943. arXiv:2104.03116 [nucl-ex]

V. Khachatryan et al., Charged-particle nuclear modification factors in PbPb and pPb collisions at [Image: see text] TeV. JHEP 04, 039 (2017). 10.1007/JHEP04(2017)039. arXiv:1611.01664 [nucl-ex]

M.S. Abdallah et al., Evidence for nonlinear gluon effects in QCD and their mass number dependence at STAR. Phys. Rev. Lett. 129(9), 092501 (2022). 10.1103/PhysRevLett.129.092501. arXiv:2111.10396 [nucl-ex] PubMed

C. Aidala et al., Nonperturbative transverse momentum broadening in dihadron angular correlations in [Image: see text] GeV proton-nucleus collisions. Phys. Rev. C 99(4), 044912 (2019). 10.1103/PhysRevC.99.044912. arXiv:1809.09045 [hep-ex]

M. Aaboud et al., Dijet azimuthal correlations and conditional yields in pp and p+Pb collisions at sNN=5.02 TeV with the ATLAS detector. Phys. Rev. C 100(3), 034903 (2019). 10.1103/PhysRevC.100.034903. arXiv:1901.10440 [nucl-ex]

J. Jalilian-Marian, A.H. Rezaeian, Prompt photon production and photon-hadron correlations at RHIC and the LHC from the Color Glass Condensate. Phys. Rev. D 86, 034016 (2012). 10.1103/PhysRevD.86.034016. arXiv:1204.1319 [hep-ph]

Letter of Intent: A Forward Calorimeter (FoCal) in the ALICE experiment (2020)

C.M. LHCb Collaboration, Framework TDR for the LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era. Technical report, CERN, Geneva (2021). https://cds.cern.ch/record/2776420

J.G. Contreras, J.D. Tapia Takaki, Ultra-peripheral heavy-ion collisions at the LHC. Int. J. Mod. Phys. A 30, 1542012 (2015). 10.1142/S0217751X15420129

S.R. Klein, H. Mäntysaari, Imaging the nucleus with high-energy photons. Nat. Rev. Phys. 1(11), 662–674 (2019). 10.1038/s42254-019-0107-6. arXiv:1910.10858 [hep-ex]

S. Acharya et al., Coherent photoproduction of [Image: see text] vector mesons in ultra-peripheral Pb-Pb collisions at [Image: see text] = 5.02 TeV. JHEP 06, 035 (2020). 10.1007/JHEP06(2020)035. arXiv:2002.10897 [nucl-ex]

S. Acharya et al., First measurement of coherent [Image: see text] 0 photoproduction in ultra-peripheral Xe–Xe collisions at sNN = 5.44 TeV. Phys. Lett. B 820, 136481 (2021). 10.1016/j.physletb.2021.136481. arXiv:2101.02581 [nucl-ex]

M. Abdallah et al., Tomography of ultrarelativistic nuclei with polarized photon-gluon collisions. Sci. Adv. 9(1), 3903 (2023). 10.1126/sciadv.abq3903. arXiv:2204.01625 [nucl-ex] PubMed PMC

S. Acharya et al., Coherent [Image: see text] and [Image: see text] photoproduction at midrapidity in ultra-peripheral Pb-Pb collisions at [Image: see text] TeV. Eur. Phys. J. C 81(8), 712 (2021). 10.1140/epjc/s10052-021-09437-6. arXiv:2101.04577 [nucl-ex]

R. Aaij et al., Study of coherent [Image: see text] production in lead-lead collisions at [Image: see text] = 5 TeV. JHEP 07, 117 (2022). 10.1007/JHEP07(2022)117. arXiv:2107.03223 [hep-ex]

R. Aaij et al., Study of exclusive photoproduction of charmonium in ultra-peripheral lead-lead collisions. JHEP 06, 146 (2023). 10.1007/JHEP06(2023)146. arXiv:2206.08221 [hep-ex]

Photon-nucleus energy dependence of coherent J/ [Image: see text] cross session in ultraperipheral PbPb collisions at [Image: see text] with CMS. Technical report, CERN, Geneva (2022). https://cds.cern.ch/record/2843162

V. Guzey, M. Strikman, M. Zhalov, Disentangling coherent and incoherent quasielastic [Image: see text] photoproduction on nuclei by neutron tagging in ultraperipheral ion collisions at the LHC. Eur. Phys. J. C 74(7), 2942 (2014). 10.1140/epjc/s10052-014-2942-z. arXiv:1312.6486 [hep-ph]

S. Acharya et al., Energy dependence of coherent photonuclear production of J/ [Image: see text] mesons in ultra-peripheral Pb-Pb collisions at [Image: see text]. JHEP 10, 119 (2023). 10.1007/JHEP10(2023)119. arXiv:2305.19060 [nucl-ex]

A. Tumasyan et al., Probing small Bjorken- [Image: see text] nuclear gluonic structure via coherent J/ [Image: see text] photoproduction in ultraperipheral PbPb collisions at [Image: see text] = 5.02 TeV (2023). arXiv:2303.16984 [nucl-ex] PubMed

J.G. Contreras, Gluon shadowing at small [Image: see text] from coherent [Image: see text] photoproduction data at energies available at the CERN Large Hadron Collider. Phys. Rev. C 96(1), 015203 (2017). 10.1103/PhysRevC.96.015203. arXiv:1610.03350 [nucl-ex]

S.R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, J. Butterworth, STARlight: a Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions. Comput. Phys. Commun. 212, 258–268 (2017). 10.1016/j.cpc.2016.10.016. arXiv:1607.03838 [hep-ph]

A. Accardi et al., Electron ion collider: the next QCD Frontier: understanding the glue that binds us all. Eur. Phys. J. A 52(9), 268 (2016). 10.1140/epja/i2016-16268-9. arXiv:1212.1701 [nucl-ex]

J. Cepila, J.G. Contreras, J.D. Tapia Takaki, Energy dependence of dissociative [Image: see text] photoproduction as a signature of gluon saturation at the LHC. Phys. Lett. B 766, 186–191 (2017). 10.1016/j.physletb.2016.12.063. arXiv:1608.07559 [hep-ph]

Exclusive and dissociative J/ [Image: see text] photoproduction, and exclusive dimuon production, in p [Image: see text] Pb collisions at [Image: see text] TeV (2023). arXiv:2304.12403 [nucl-ex]

S. Acharya et al., First measurement of the | [Image: see text] |-dependence of coherent [Image: see text] photonuclear production. Phys. Lett. B 817, 136280 (2021). 10.1016/j.physletb.2021.136280. arXiv:2101.04623 [nucl-ex]

C.A. Flett, S.P. Jones, A.D. Martin, M.G. Ryskin, T. Teubner, How to include exclusive [Image: see text] production data in global PDF analyses. Phys. Rev. D 101(9), 094011 (2020). 10.1103/PhysRevD.101.094011. arXiv:1908.08398 [hep-ph]

R. Aaij et al., Updated measurements of exclusive [Image: see text] and [Image: see text] (2S) production cross-sections in pp collisions at [Image: see text] TeV. J. Phys. G 41, 055002 (2014). 10.1088/0954-3899/41/5/055002. arXiv:1401.3288 [hep-ex]

R. Aaij et al., Central exclusive production of [Image: see text] and [Image: see text] mesons in [Image: see text] collisions at [Image: see text] TeV. JHEP 10, 167 (2018). 10.1007/JHEP10(2018)167. arXiv:1806.04079 [hep-ex]

B.B. Abelev et al., Exclusive [Image: see text] photoproduction off protons in ultra-peripheral p-Pb collisions at [Image: see text] TeV. Phys. Rev. Lett. 113(23), 232504 (2014). 10.1103/PhysRevLett.113.232504. arXiv:1406.7819 [nucl-ex] PubMed

S. Acharya, Energy dependence of exclusive [Image: see text] photoproduction off protons in ultra-peripheral p–Pb collisions at [Image: see text] TeV. . Eur. Phys. J. C 79(5), 402 (2019). 10.1140/epjc/s10052-019-6816-2. arXiv:1809.03235 [nucl-ex]

T. Herman, [Image: see text] photoproduction results from ALICE. Acta Phys. Polon. Suppl. 16(1), 98 (2023). 10.5506/APhysPolBSupp.16.1-A98

A. Aktas et al., Elastic J/psi production at HERA. Eur. Phys. J. C 46, 585–603 (2006). 10.1140/epjc/s2006-02519-5. arXiv:hep-ex/0510016

C. Alexa et al., Elastic and proton-dissociative photoproduction of J/psi mesons at HERA. Eur. Phys. J. C 73(6), 2466 (2013). 10.1140/epjc/s10052-013-2466-y. arXiv:1304.5162 [hep-ex]

S. Chekanov et al., Exclusive photoproduction of J/psi mesons at HERA. Eur. Phys. J. C 24, 345–360 (2002). 10.1007/s10052-002-0953-7. arXiv:hep-ex/0201043

R. Aaij et al., Measurement of the exclusive [Image: see text] production cross-section in pp collisions at [Image: see text] TeV and 8 TeV. JHEP 09, 084 (2015). 10.1007/JHEP09(2015)084. arXiv:1505.08139 [hep-ex]

A.M. Sirunyan, et al., Measurement of exclusive [Image: see text] photoproduction from protons in pPb collisions at [Image: see text] 5.02 TeV. Eur. Phys. J. C 79(3), 277 (2019). 10.1140/epjc/s10052-019-6774-8. arXiv:1809.11080 [hep-ex] [Erratum: Eur. Phys. J. C 82, 343 (2022)] PubMed PMC

A.M. Sirunyan, Measurement of exclusive [Image: see text] photoproduction in ultraperipheral pPb collisions at [Image: see text] 5.02 TeV. Eur. Phys. J. C 79(8), 702 (2019). 10.1140/epjc/s10052-019-7202-9. arXiv:1902.01339 [hep-ex] PubMed PMC

D.Y. Ivanov, A. Schafer, L. Szymanowski, G. Krasnikov, Exclusive photoproduction of a heavy vector meson in QCD. Eur. Phys. J. C 34(3), 297–316 (2004) [Erratum: Eur. Phys. J. C 75, 75 (2015)]. 10.1140/epjc/s2004-01712-x. arXiv:hep-ph/0401131

K.J. Eskola, C.A. Flett, V. Guzey, T. Löytäinen, H. Paukkunen, Next-to-leading order perturbative QCD predictions for exclusive J/ [Image: see text] photoproduction in oxygen-oxygen and lead-lead collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C 107(4), 044912 (2023). 10.1103/PhysRevC.107.044912. arXiv:2210.16048 [hep-ph]

K.J. Eskola, C.A. Flett, V. Guzey, T. Löytäinen, H. Paukkunen, Exclusive J/ [Image: see text] photoproduction in ultraperipheral Pb+Pb collisions at the CERN Large Hadron Collider calculated at next-to-leading order perturbative QCD. Phys. Rev. C 106(3), 035202 (2022). 10.1103/PhysRevC.106.035202. arXiv:2203.11613 [hep-ph]

K.J. Eskola, C.A. Flett, V. Guzey, T. Löytäinen, H. Paukkunen, Predictions for exclusive [Image: see text] photoproduction in ultraperipheral [Image: see text] collisions at the LHC at next-to-leading order in perturbative QCD. Eur. Phys. J. C 83(8), 758 (2023). 10.1140/epjc/s10052-023-11927-8. arXiv:2303.03007 [hep-ph]

A.G. Shuvaev, K.J. Golec-Biernat, A.D. Martin, M.G. Ryskin, Off diagonal distributions fixed by diagonal partons at small x and xi. Phys. Rev. D 60, 014015 (1999). 10.1103/PhysRevD.60.014015. arXiv:hep-ph/9902410

A. Shuvaev, Solution of the off forward leading logarithmic evolution equation based on the Gegenbauer moments inversion. Phys. Rev. D 60, 116005 (1999). 10.1103/PhysRevD.60.116005. arXiv:hep-ph/9902318

K.J. Golec-Biernat, A.D. Martin, M.G. Ryskin, Diagonal input for the evolution of off diagonal partons. Phys. Lett. B 456, 232–239 (1999). 10.1016/S0370-2693(99)00504-3. arXiv:hep-ph/9903327

S.P. Jones, A.D. Martin, M.G. Ryskin, T. Teubner, The exclusive [Image: see text] process at the LHC tamed to probe the low [Image: see text] gluon. Eur. Phys. J. C 76(11), 633 (2016). 10.1140/epjc/s10052-016-4493-y. arXiv:1610.02272 [hep-ph]

S.P. Jones, A.D. Martin, M.G. Ryskin, T. Teubner, Exclusive [Image: see text] and [Image: see text] photoproduction and the low [Image: see text] gluon. J. Phys. G 43(3), 035002 (2016). 10.1088/0954-3899/43/3/035002. arXiv:1507.06942 [hep-ph]

C.A. Flett, A.D. Martin, M.G. Ryskin, T. Teubner, Very low [Image: see text] gluon density determined by LHCb exclusive [Image: see text] data. Phys. Rev. D 102, 114021 (2020). 10.1103/PhysRevD.102.114021. arXiv:2006.13857 [hep-ph]

L. Apolinário, Y.-J. Lee, M. Winn, Heavy quarks and jets as probes of the QGP. Prog. Part. Nucl. Phys. 127, 103990 (2022). 10.1016/j.ppnp.2022.103990. arXiv:2203.16352 [hep-ph]

J. Casalderrey-Solana, Y. Mehtar-Tani, C.A. Salgado, K. Tywoniuk, New picture of jet quenching dictated by color coherence. Phys. Lett. B 725, 357–360 (2013). 10.1016/j.physletb.2013.07.046. arXiv:1210.7765 [hep-ph]

ALICE Collaboration, Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb [Image: see text] Pb collisions at [Image: see text] TeV. Phys. Rev. Lett. 128(10), 102001 (2022). 10.1103/PhysRevLett.128.102001. arXiv:2107.12984 [nucl-ex] PubMed

ATLAS Collaboration, Measurement of substructure-dependent jet suppression in Pb+Pb collisions at 5.02 TeV with the ATLAS detector. Phys. Rev. C 107(5), 054909 (2023). 10.1103/PhysRevC.107.054909. arXiv:2211.11470 [nucl-ex]

ATLAS Collaboration, Measurement of suppression of large-radius jets and its dependence on substructure in Pb+Pb collisions at [Image: see text] TeV with the ATLAS detector (2023). arXiv:2301.05606 [nucl-ex] PubMed

L. Cunqueiro, A.M. Sickles, Studying the QGP with Jets at the LHC and RHIC. Prog. Part. Nucl. Phys. 124, 103940 (2022). 10.1016/j.ppnp.2022.103940. arXiv:2110.14490 [nucl-ex]

D. Krohn, J. Thaler, L.-T. Wang, Jet trimming. JHEP 02, 084 (2010). 10.1007/JHEP02(2010)084. arXiv:0912.1342 [hep-ph]

ATLAS Collaboration, Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and [Image: see text] collisions at [Image: see text] TeV with the ATLAS detector. Phys. Rev. C 100(6), 064901 (2019). 10.1103/PhysRevC.100.064901. arXiv:1908.05264 [nucl-ex] [Erratum: Phys. Rev. C 101, 059903 (2020)]

J. Brewer, Q. Brodsky, K. Rajagopal, Disentangling jet modification in jet simulations and in Z+jet data. JHEP 02, 175 (2022). 10.1007/JHEP02(2022)175. arXiv:2110.13159 [hep-ph]

Y.-L. Du, D. Pablos, K. Tywoniuk, Deep learning jet modifications in heavy-ion collisions. JHEP 21, 206 (2020). 10.1007/JHEP03(2021)206. arXiv:2012.07797 [hep-ph]

Y. Mehtar-Tani, A. Soto-Ontoso, K. Tywoniuk, Dynamical grooming of QCD jets. Phys. Rev. D 101(3), 034004 (2020). 10.1103/PhysRevD.101.034004. arXiv:1911.00375 [hep-ph]

P. Caucal, A. Soto-Ontoso, A. Takacs, Dynamically groomed jet radius in heavy-ion collisions. Phys. Rev. D 105(11), 114046 (2022). 10.1103/PhysRevD.105.114046. arXiv:2111.14768 [hep-ph]

ALICE Collaboration, Measurements of the groomed jet radius and momentum splitting fraction with the soft drop and dynamical grooming algorithms in pp collisions at [Image: see text] = 5.02 TeV. JHEP 05, 244 (2023). 10.1007/JHEP05(2023)244. arXiv:2204.10246 [nucl-ex]

P. Caucal, A. Soto-Ontoso, A. Takacs, Dynamical grooming meets LHC data. JHEP 07, 020 (2021). 10.1007/JHEP07(2021)020. arXiv:2103.06566 [hep-ph]

P. Caucal, E. Iancu, A.H. Mueller, G. Soyez, Vacuum-like jet fragmentation in a dense QCD medium. Phys. Rev. Lett. 120, 232001 (2018). 10.1103/PhysRevLett.120.232001. arXiv:1801.09703 [hep-ph] PubMed

M. Spousta, B. Cole, Interpreting single jet measurements in Pb [Image: see text] Pb collisions at the LHC. Eur. Phys. J. C 76(2), 50 (2016). 10.1140/epjc/s10052-016-3896-0. arXiv:1504.05169 [hep-ph]

J.-W. Qiu, F. Ringer, N. Sato, P. Zurita, Factorization of jet cross sections in heavy-ion collisions. Phys. Rev. Lett. 122(25), 252301 (2019). 10.1103/PhysRevLett.122.252301. arXiv:1903.01993 [hep-ph] PubMed

D. Pablos, A. Soto-Ontoso, Pushing forward jet substructure measurements in heavy-ion collisions. Phys. Rev. D 107(9), 094003 (2023). 10.1103/PhysRevD.107.094003. arXiv:2210.07901 [hep-ph]

C.L. Basham, L.S. Brown, S.D. Ellis, S.T. Love, Energy correlations in electron-positron annihilation: testing QCD. Phys. Rev. Lett. 41, 1585 (1978). 10.1103/PhysRevLett.41.1585

D.M. Hofman, J. Maldacena, Conformal collider physics: energy and charge correlations. JHEP 05, 012 (2008). 10.1088/1126-6708/2008/05/012. arXiv:0803.1467 [hep-th]

P. Kravchuk, D. Simmons-Duffin, Light-ray operators in conformal field theory. JHEP 11, 102 (2018). 10.1007/JHEP11(2018)102. arXiv:1805.00098 [hep-th]

L.J. Dixon, I. Moult, H.X. Zhu, Collinear limit of the energy-energy correlator. Phys. Rev. D 100(1), 014009 (2019). 10.1103/PhysRevD.100.014009. arXiv:1905.01310 [hep-ph]

C. Andres, F. Dominguez, R. Kunnawalkam Elayavalli, J. Holguin, C. Marquet, I. Moult, Resolving the scales of the quark-gluon plasma with energy correlators (2022). arXiv:2209.11236 [hep-ph] PubMed

C. Andres, F. Dominguez, J. Holguin, C. Marquet, I. Moult, A coherent view of the quark-gluon plasma from energy correlators (2023). arXiv:2303.03413 [hep-ph] PubMed

B.B. Abelev et al., Multiparticle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider. Phys. Rev. C 90(5), 054901 (2014). 10.1103/PhysRevC.90.054901. arXiv:1406.2474 [nucl-ex]

M. Aaboud et al., Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in [Image: see text] and [Image: see text] collisions with the ATLAS detector at the CERN Large Hadron Collider. Phys. Rev. C 97(2), 024904 (2018). 10.1103/PhysRevC.97.024904. arXiv:1708.03559 [hep-ex]

A.M. Sirunyan et al., Observation of correlated azimuthal anisotropy Fourier harmonics in [Image: see text] and [Image: see text] collisions at the LHC. Phys. Rev. Lett. 120(9), 092301 (2018). 10.1103/PhysRevLett.120.092301. arXiv:1709.09189 [nucl-ex] PubMed

C. Aidala et al., Creation of quark-gluon plasma droplets with three distinct geometries. Nat. Phys. 15(3), 214–220 (2019). 10.1038/s41567-018-0360-0. arXiv:1805.02973 [nucl-ex]

B.I. Abelev et al., Enhanced strange baryon production in Au + Au collisions compared to p + p at s(NN)**(1/2) = 200-GeV. Phys. Rev. C 77, 044908 (2008). 10.1103/PhysRevC.77.044908. arXiv:0705.2511 [nucl-ex]

J. Adam et al., Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions. Nat. Phys. 13, 535–539 (2017). 10.1038/nphys4111. arXiv:1606.07424 [nucl-ex]

J.L. Nagle, W.A. Zajc, Small system collectivity in relativistic hadronic and nuclear collisions. Annu. Rev. Nucl. Part. Sci. 68, 211–235 (2018). 10.1146/annurev-nucl-101916-123209. arXiv:1801.03477 [nucl-ex]

G. Aad et al., Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS. Phys. Rev. C 104(1), 014903 (2021). 10.1103/PhysRevC.104.014903. arXiv:2101.10771 [nucl-ex]

K. Werner, Core-corona separation in ultra-relativistic heavy ion collisions. Phys. Rev. Lett. 98, 152301 (2007). 10.1103/PhysRevLett.98.152301. arXiv:0704.1270 [nucl-th] PubMed

Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). 10.1103/PhysRevC.72.064901. arXiv:nucl-th/0411110

W. Cassing, E.L. Bratkovskaya, Parton-hadron-string dynamics: an off-shell transport approach for relativistic energies. Nucl. Phys. A 831, 215–242 (2009). 10.1016/j.nuclphysa.2009.09.007. arXiv:0907.5331 [nucl-th]

Y. Kanakubo, Y. Tachibana, T. Hirano, Interplay between core and corona components in high-energy nuclear collisions. Phys. Rev. C 105(2), 024905 (2022). 10.1103/PhysRevC.105.024905. arXiv:2108.07943 [nucl-th]

Y. Kanakubo, Y. Tachibana, T. Hirano, Nonequilibrium components in the region of very low transverse momentum in high-energy nuclear collisions. Phys. Rev. C 106(5), 054908 (2022). 10.1103/PhysRevC.106.054908. arXiv:2207.13966 [nucl-th]

K. Werner, I. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov, Event-by-event simulation of the three-dimensional hydrodynamic evolution from flux tube initial conditions in ultrarelativistic heavy ion collisions. Phys. Rev. C 82, 044904 (2010). 10.1103/PhysRevC.82.044904. arXiv:1004.0805 [nucl-th]

K. Werner, B. Guiot, I. Karpenko, T. Pierog, Analysing radial flow features in p-Pb and p-p collisions at several TeV by studying identified particle production in EPOS3. Phys. Rev. C 89(6), 064903 (2014). 10.1103/PhysRevC.89.064903. arXiv:1312.1233 [nucl-th]

K. Werner, On a deep connection between factorization and saturation: new insight into modeling high-energy proton-proton and nucleus-nucleus scattering in the EPOS4 framework (2023). arXiv:2301.12517 [hep-ph]

K. Werner, Core-corona procedure and microcanonical hadronization to understand strangeness enhancement in proton-proton and heavy ion collisions in the EPOS4 framework. arXiv:2306.10277 [hep-ph]

EPOS4: A Monte Carlo Tool for Simulating High-energy Scatterings. https://klaus.pages.in2p3.fr/epos4/

K. Werner, Core-corona procedure and microcanonical hadronization to understand strangeness enhancement in proton-proton and heavy ion collisions in the EPOS4 framework (2023). arXiv:2306.10277 [hep-ph]

P. Bozek, I. Wyskiel, Directed flow in ultrarelativistic heavy-ion collisions. Phys. Rev. C 81, 054902 (2010). 10.1103/PhysRevC.81.054902. arXiv:1002.4999 [nucl-th]

W. Zhao, S. Ryu, C. Shen, B. Schenke, 3D structure of anisotropic flow in small collision systems at energies available at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 107(1), 014904 (2023). 10.1103/PhysRevC.107.014904. arXiv:2211.16376 [nucl-th]

L. Oliva, P. Moreau, V. Voronyuk, E. Bratkovskaya, Influence of electromagnetic fields in proton-nucleus collisions at relativistic energy. Phys. Rev. C 101(1), 014917 (2020). 10.1103/PhysRevC.101.014917. arXiv:1909.06770 [nucl-th]

S. Chatterjee, P. Bożek, Large directed flow of open charm mesons probes the three dimensional distribution of matter in heavy ion collisions. Phys. Rev. Lett. 120(19), 192301 (2018). 10.1103/PhysRevLett.120.192301. arXiv:1712.01189 [nucl-th] PubMed

M.R. Haque, S. Singha, B. Mohanty, Probing the profile of bulk matter in p+Pb collisions via directed flow of heavy quarks. Phys. Rev. C 104(2), 024901 (2021). 10.1103/PhysRevC.104.024901. arXiv:2107.07457 [hep-ph]

L. Oliva, S. Plumari, V. Greco, Directed flow of D mesons at RHIC and LHC: non-perturbative dynamics, longitudinal bulk matter asymmetry and electromagnetic fields. JHEP 05, 034 (2021). 10.1007/JHEP05(2021)034. arXiv:2009.11066 [hep-ph]

J.E. Bernhard, J.S. Moreland, S.A. Bass, Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma. Nat. Phys. 15(11), 1113–1117 (2019). 10.1038/s41567-019-0611-8

D. Everett et al., Multisystem Bayesian constraints on the transport coefficients of QCD matter. Phys. Rev. C 103(5), 054904 (2021). 10.1103/PhysRevC.103.054904. arXiv:2011.01430 [hep-ph]

G. Nijs, W. Schee, Hadronic nucleus-nucleus cross section and the nucleon size. Phys. Rev. Lett. 129(23), 232301 (2022). 10.1103/PhysRevLett.129.232301. arXiv:2206.13522 [nucl-th] PubMed

A. Mazeliauskas, D. Teaney, Fluctuations of harmonic and radial flow in heavy ion collisions with principal components. Phys. Rev. C 93(2), 024913 (2016). 10.1103/PhysRevC.93.024913. arXiv:1509.07492 [nucl-th]

P. Bozek, Transverse-momentum-flow correlations in relativistic heavy-ion collisions. Phys. Rev. C 93(4), 044908 (2016). 10.1103/PhysRevC.93.044908. arXiv:1601.04513 [nucl-th]

S.H. Lim, J.L. Nagle, Exploring origins for correlations between flow harmonics and transverse momentum in small collision systems. Phys. Rev. C 103(6), 064906 (2021). 10.1103/PhysRevC.103.064906. arXiv:2103.01348 [nucl-th]

G. Aad, et al., Measurement of flow harmonics correlations with mean transverse momentum in lead–lead and proton–lead collisions at  [Image: see text] with the ATLAS detector. Eur. Phys. J. C 79(12) (2019). 10.1140/epjc/s10052-019-7489-6

Correlations between multiparticle cumulants and mean transverse momentum in small collision systems with the CMS detector. Technical report, CERN, Geneva (2022). https://cds.cern.ch/record/2805932

A. Banfi, G.P. Salam, G. Zanderighi, Phenomenology of event shapes at hadron colliders. JHEP 06, 038 (2010). 10.1007/JHEP06(2010)038. arXiv:1001.4082 [hep-ph]

A. Ortiz, G. Paić, E. Cuautle, Mid-rapidity charged hadron transverse spherocity in pp collisions simulated with Pythia. Nucl. Phys. A 941, 78–86 (2015). 10.1016/j.nuclphysa.2015.05.010. arXiv:1503.03129 [hep-ph]

S. Acharya et al., Charged-particle production as a function of multiplicity and transverse spherocity in pp collisions at [Image: see text] and 13 TeV. Eur. Phys. J. C 79(10), 857 (2019). 10.1140/epjc/s10052-019-7350-y. arXiv:1905.07208 [nucl-ex]

N. Mallick, R. Sahoo, S. Tripathy, A. Ortiz, Study of transverse spherocity and azimuthal anisotropy in Pb-Pb collisions at [Image: see text] = 5.02 TeV using a multi-phase transport model. J. Phys. G 48(4), 045104 (2021). 10.1088/1361-6471/abeb59. arXiv:2008.13616 [hep-ph]

L. Oliva, W. Fan, P. Moreau, S.A. Bass, E. Bratkovskaya, Nonequilibrium effects and transverse spherocity in ultrarelativistic proton-nucleus collisions. Phys. Rev. C 106(4), 044910 (2022). 10.1103/PhysRevC.106.044910. arXiv:2204.04194 [nucl-th]

T. Martin, P. Skands, S. Farrington, Probing collective effects in hadronisation with the extremes of the underlying event. Eur. Phys. J. C 76(5), 299 (2016). 10.1140/epjc/s10052-016-4135-4. arXiv:1603.05298 [hep-ph]

G. Bencedi, A. Ortiz, A. Paz, Disentangling the hard gluon bremsstrahlung effects from the relative transverse activity classifier in pp collisions. Phys. Rev. D 104(1), 016017 (2021). 10.1103/PhysRevD.104.016017. arXiv:2105.04838 [hep-ph]

A. Ortiz, G. Paic, A look into the “hedgehog” events in pp collisions. Rev. Mex. Fis. Suppl. 3(4), 040911 (2022). 10.31349/SuplRevMexFis.3.040911. arXiv:2204.13733 [hep-ph]

A. Ortiz, A. Khuntia, O. Vázquez-Rueda, S. Tripathy, G. Bencedi, S. Prasad, F. Fan, Unveiling the effects of multiple soft partonic interactions in pp collisions at s=13.6 TeV using a new event classifier. Phys. Rev. D 107(7), 076012 (2023). 10.1103/PhysRevD.107.076012. arXiv:2211.06093 [hep-ph]

A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671–1678 (1998). 10.1103/PhysRevC.58.1671. arXiv:nucl-ex/9805001

G. Aad et al., Measurement of the correlation between flow harmonics of different order in lead-lead collisions at [Image: see text] =2.76 TeV with the ATLAS detector. Phys. Rev. C 92(3), 034903 (2015). 10.1103/PhysRevC.92.034903. arXiv:1504.01289 [hep-ex]

F. Becattini, Spin and polarization: a new direction in relativistic heavy ion physics. Rep. Prog. Phys. 85(12), 122301 (2022). 10.1088/1361-6633/ac97a9. arXiv:2204.01144 [nucl-th] PubMed

W.M. Serenone, J.G.P. Barbon, D.D. Chinellato, M.A. Lisa, C. Shen, J. Takahashi, G. Torrieri, [Image: see text] polarization from thermalized jet energy. Phys. Lett. B 820, 136500 (2021). 10.1016/j.physletb.2021.136500

V.H. Ribeiro, D.D. Chinellato, M.A. Lisa, W.M. Serenone, C. Shen, J. Takahashi, G. Torrieri, [Image: see text] polarization from vortex ring as medium response for jet thermalization (2023)

C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3 (2022). 10.21468/SciPostPhysCodeb.8. arXiv:2203.11601 [hep-ph]

J. Bellm et al., Herwig 7.2 release note. Eur. Phys. J. C 80(5), 452 (2020). 10.1140/epjc/s10052-020-8011-x. arXiv:1912.06509 [hep-ph]

J.R. Christiansen, P.Z. Skands, String formation beyond leading colour. JHEP 08, 003 (2015). 10.1007/JHEP08(2015)003. arXiv:1505.01681 [hep-ph]

S. Gieseke, P. Kirchgaeßer, S. Plätzer, Baryon production from cluster hadronisation. Eur. Phys. J. C 78(2), 99 (2018). 10.1140/epjc/s10052-018-5585-7. arXiv:1710.10906 [hep-ph]

C. Bierlich, G. Gustafson, L. Lönnblad, A. Tarasov, Effects of overlapping strings in pp collisions. JHEP 03, 148 (2015). 10.1007/JHEP03(2015)148. arXiv:1412.6259 [hep-ph]

N. Fischer, T. Sjöstrand, Thermodynamical string fragmentation. JHEP 01, 140 (2017). 10.1007/JHEP01(2017)140. arXiv:1610.09818 [hep-ph]

C.B. Duncan, P. Kirchgaeßer, Kinematic strangeness production in cluster hadronization. Eur. Phys. J. C 79(1), 61 (2019). 10.1140/epjc/s10052-019-6573-2. arXiv:1811.10336 [hep-ph]

C. Bierlich, S. Chakraborty, G. Gustafson, L. Lönnblad, Strangeness enhancement across collision systems without a plasma. Phys. Lett. B 835, 137571 (2022). 10.1016/j.physletb.2022.137571. arXiv:2205.11170 [hep-ph]

S. Schael et al., Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013). 10.1016/j.physrep.2013.07.004. arXiv:1302.3415 [hep-ex]

A. Ortiz Velasquez, P. Christiansen, E. Cuautle Flores, I. Maldonado Cervantes, G. Paić, Color reconnection and flowlike patterns in [Image: see text] collisions. Phys. Rev. Lett. 111(4), 042001 (2013). 10.1103/PhysRevLett.111.042001. arXiv:1303.6326 [hep-ph] PubMed

C. Bierlich, G. Gustafson, L. Lönnblad, A shoving model for collectivity in hadronic collisions (2016). arXiv:1612.05132 [hep-ph]

C.B. Duncan, P. Skands, Fragmentation of two repelling lund strings. SciPost Phys. 8, 080 (2020). 10.21468/SciPostPhys.8.5.080. arXiv:1912.09639 [hep-ph]

C. Bierlich, S. Chakraborty, G. Gustafson, L. Lönnblad, Setting the string shoving picture in a new frame. JHEP 03, 270 (2021). 10.1007/JHEP03(2021)270. arXiv:2010.07595 [hep-ph]

V. Greco, C.M. Ko, P. Levai, Parton coalescence at RHIC. Phys. Rev. C 68, 034904 (2003). 10.1103/PhysRevC.68.034904. arXiv:nucl-th/0305024 PubMed

R.J. Fries, V. Greco, P. Sorensen, Coalescence models for hadron formation from quark gluon plasma. Annu. Rev. Nucl. Part. Sci. 58, 177–205 (2008). 10.1146/annurev.nucl.58.110707.171134. arXiv:0807.4939 [nucl-th]

L. Ravagli, R. Rapp, Quark coalescence based on a transport equation. Phys. Lett. B 655, 126–131 (2007). 10.1016/j.physletb.2007.07.043. arXiv:0705.0021 [hep-ph]

V. Minissale, F. Scardina, V. Greco, Hadrons from coalescence plus fragmentation in AA collisions at energies available at the BNL Relativistic Heavy Ion Collider to the CERN Large Hadron Collider. Phys. Rev. C 92(5), 054904 (2015). 10.1103/PhysRevC.92.054904. arXiv:1502.06213 [nucl-th]

Y. Oh, C.M. Ko, S.H. Lee, S. Yasui, Heavy baryon/meson ratios in relativistic heavy ion collisions. Phys. Rev. C 79, 044905 (2009). 10.1103/PhysRevC.79.044905. arXiv:0901.1382 [nucl-th]

S. Plumari, V. Minissale, S.K. Das, G. Coci, V. Greco, Charmed Hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC. Eur. Phys. J. C 78(4), 348 (2018). 10.1140/epjc/s10052-018-5828-7. arXiv:1712.00730 [hep-ph]

V. Minissale, S. Plumari, V. Greco, Charm hadrons in pp collisions at LHC energy within a coalescence plus fragmentation approach. Phys. Lett. B 821, 136622 (2021). 10.1016/j.physletb.2021.136622. arXiv:2012.12001 [hep-ph]

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Decoding the phase structure of QCD via particle production at high energy. Nature 561(7723), 321–330 (2018). 10.1038/s41586-018-0491-6. arXiv:1710.09425 [nucl-th] PubMed

J. Cleymans, P.M. Lo, K. Redlich, N. Sharma, Multiplicity dependence of (multi)strange baryons in the canonical ensemble with phase shift corrections. Phys. Rev. C 103(1), 014904 (2021). 10.1103/PhysRevC.103.014904. arXiv:2009.04844 [hep-ph]

V. Vovchenko, B. Dönigus, H. Stoecker, Canonical statistical model analysis of p-p, p-Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C 100(5), 054906 (2019). 10.1103/PhysRevC.100.054906. arXiv:1906.03145 [hep-ph]

A. Beraudo, A. De Pace, D. Pablos, F. Prino, M. Monteno, M. Nardi, Heavy-flavor transport and hadronization in pp collisions (2023). arXiv:2306.02152 [hep-ph]

R. Aaij et al., Observation of multiplicity dependent prompt [Image: see text] and [Image: see text] production in [Image: see text] collisions. Phys. Rev. Lett. 126(9), 092001 (2021). 10.1103/PhysRevLett.126.092001. arXiv:2009.06619 [hep-ex] PubMed

K. Ackerstaff et al., Production of K0(S) and Lambda in quark and gluon jets from Z0 decay. Eur. Phys. J. C 8, 241–254 (1999). 10.1007/s100529901058. arXiv:hep-ex/9805025

N. Hunt-Smith, P. Skands, String fragmentation with a time-dependent tension. Eur. Phys. J. C 80(11), 1073 (2020). 10.1140/epjc/s10052-020-08654-9. arXiv:2005.06219 [hep-ph]

P. Abreu et al., Tuning and test of fragmentation models based on identified particles and precision event shape data. Z. Phys. C 73, 11–60 (1996). 10.1007/s002880050295

J. Adam et al., Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at [Image: see text] TeV. Eur. Phys. J. C 77(8), 569 (2017). 10.1140/epjc/s10052-017-5129-6. arXiv:1612.08975 [nucl-ex]

P.A. Zyla et al., Review of particle physics. PTEP 2020(8), 083-01 (2020). 10.1093/ptep/ptaa104

T. Sjöstrand, M. Utheim, A framework for hadronic rescattering in pp collisions. Eur. Phys. J. C 80(10), 907 (2020). 10.1140/epjc/s10052-020-8399-3. arXiv:2005.05658 [hep-ph]

S. Acharya et al., Production of [Image: see text] , [Image: see text] ([Image: see text]), [Image: see text] and [Image: see text] in jets and in the underlying event in pp and p [Image: see text] Pb collisions. JHEP 07, 136 (2023). 10.1007/JHEP07(2023)136. arXiv:2211.08936 [nucl-ex]

S. Acharya et al., Enhanced deuteron coalescence probability in jets. Phys. Rev. Lett. 131(4), 042301 (2023). 10.1103/PhysRevLett.131.042301. arXiv:2211.15204 [nucl-ex] PubMed

S. Acharya, et al., Studying strangeness and baryon production mechanisms through angular correlations between charged [Image: see text] baryons and identified hadrons in pp collisions at [Image: see text] = 13 TeV (2023). arXiv:2308.16706 [hep-ex]

S. Acharya et al., Charm-quark fragmentation fractions and production cross section at midrapidity in pp collisions at the LHC. Phys. Rev. D 105(1), 011103 (2022). 10.1103/PhysRevD.105.L011103. arXiv:2105.06335 [nucl-ex]

M. He, R. Rapp, Charm-baryon production in proton-proton collisions. Phys. Lett. B 795, 117–121 (2019). 10.1016/j.physletb.2019.06.004. arXiv:1902.08889 [nucl-th]

D. Ebert, R.N. Faustov, V.O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture. Phys. Rev. D 84, 014025 (2011). 10.1103/PhysRevD.84.014025. arXiv:1105.0583 [hep-ph]

M. He, R. Rapp, Bottom hadrochemistry in high-energy hadronic collisions. Phys. Rev. Lett. 131(1), 012301 (2023). 10.1103/PhysRevLett.131.012301. arXiv:2209.13419 [hep-ph] PubMed

A. Andronic, P. Braun-Munzinger, M.K. Köhler, A. Mazeliauskas, K. Redlich, J. Stachel, V. Vislavicius, The multiple-charm hierarchy in the statistical hadronization model. JHEP 07, 035 (2021). 10.1007/JHEP07(2021)035. arXiv:2104.12754 [hep-ph]

A. Beraudo et al., Extraction of heavy-flavor transport coefficients in QCD matter. Nucl. Phys. A 979, 21–86 (2018). 10.1016/j.nuclphysa.2018.09.002. arXiv:1803.03824 [nucl-th]

N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C.-Z. Yuan, The [Image: see text] states: experimental and theoretical status and perspectives. Phys. Rep. 873, 1–154 (2020). 10.1016/j.physrep.2020.05.001. arXiv:1907.07583 [hep-ex]

R. Aaij et al., Observation of an exotic narrow doubly charmed tetraquark. Nat. Phys. 18(7), 751–754 (2022). 10.1038/s41567-022-01614-y. arXiv:2109.01038 [hep-ex]

R. Aaij et al., Study of the doubly charmed tetraquark [Image: see text]. Nat. Commun. 13(1), 3351 (2022). 10.1038/s41467-022-30206-w. arXiv:2109.01056 [hep-ex] PubMed PMC

A. Esposito, E.G. Ferreiro, A. Pilloni, A.D. Polosa, C.A. Salgado, The nature of X(3872) from high-multiplicity pp collisions. Eur. Phys. J. C 81(7), 669 (2021). 10.1140/epjc/s10052-021-09425-w. arXiv:2006.15044 [hep-ph]

B. Wu, X. Du, M. Sibila, R. Rapp, [Image: see text] transport in heavy-ion collisions. Eur. Phys. J. A 57(4), 122 (2021). 10.1140/epja/s10050-021-00623-4arXiv:2006.09945 [nucl-th] [Erratum: Eur. Phys. J. A 57, 314 (2021)]

S.H. Lee, S. Noh, D. Park, H.-O. Yoon, Exotic particles and heavy ion collisions. EPJ Web Conf. 276, 06015 (2023). 10.1051/epjconf/202327606015

Modification of [Image: see text] and [Image: see text] production in [Image: see text] Pb collisions at [Image: see text] TeV. Technical report, CERN, Geneva (2022). https://cds.cern.ch/record/2807146

R. Aaij et al., Observation of structure in the [Image: see text] -pair mass spectrum. Sci. Bull. 65(23), 1983–1993 (2020). 10.1016/j.scib.2020.08.032. arXiv:2006.16957 [hep-ex] PubMed

G. Aad et al., Observation of an excess of di-charmonium events in the four-muon final state with the ATLAS detector (2023). arXiv:2304.08962 [hep-ex] PubMed

A. Hayrapetyan et al., Observation of new structure in the J/ [Image: see text] J/ [Image: see text] mass spectrum in proton-proton collisions at [Image: see text] = 13 TeV (2023). arXiv:2306.07164 [hep-ex]

A.M. Sirunyan et al., Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies. Phys. Lett. B 813, 136036 (2021). 10.1016/j.physletb.2020.136036. arXiv:2009.07065 [hep-ex]

G. Aad et al., Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in [Image: see text] collisions at [Image: see text] TeV with the ATLAS detector. Phys. Rev. Lett. 124(8), 082301 (2020). 10.1103/PhysRevLett.124.082301. arXiv:1909.01650 [nucl-ex] PubMed

Azimuthal anisotropy of jet particles in p-Pb and Pb-Pb collisions at [Image: see text] = 5.02 TeV (2022). arXiv:2212.12609 [nucl-ex]

G. Aad et al., Measurement of the sensitivity of two-particle correlations in [Image: see text] collisions to the presence of hard scatterings (2023). arXiv:2303.17357 [nucl-ex] PubMed

S. Acharya et al., Measurement of inclusive charged-particle b-jet production in pp and p-Pb collisions at [Image: see text] = 5.02 TeV. JHEP 01, 178 (2022). 10.1007/JHEP01(2022)178. arXiv:2110.06104 [nucl-ex]

V. Khachatryan et al., Measurement of inclusive jet production and nuclear modifications in pPb collisions at [Image: see text] 5.02 TeV. Eur. Phys. J. C 76(7), 372 (2016). 10.1140/epjc/s10052-016-4205-7. arXiv:1601.02001 [nucl-ex] PubMed PMC

G. Aad et al., Centrality and rapidity dependence of inclusive jet production in [Image: see text] TeV proton-lead collisions with the ATLAS detector. Phys. Lett. B 748, 392–413 (2015). 10.1016/j.physletb.2015.07.023. arXiv:1412.4092 [hep-ex]

Measurement of the prompt [Image: see text] nuclear modification factor in [Image: see text] Pb collisions at [Image: see text] TeV (2022). arXiv:2205.03936 [nucl-ex] PubMed

C. Zhang, C. Marquet, G.-Y. Qin, S.-Y. Wei, B.-W. Xiao, Elliptic flow of heavy quarkonia in [Image: see text] collisions. Phys. Rev. Lett. 122(17), 172302 (2019). 10.1103/PhysRevLett.122.172302. arXiv:1901.10320 [hep-ph] PubMed

Azimuthal anisotropy of [Image: see text] (1S) mesons in pPb collisions at [Image: see text] = 8.16 TeV (2022)

A. Ipp, D.I. Müller, D. Schuh, Anisotropic momentum broadening in the 2+1D Glasma: analytic weak field approximation and lattice simulations. Phys. Rev. D 102(7), 074001 (2020). 10.1103/PhysRevD.102.074001. arXiv:2001.10001 [hep-ph]

J.H. Liu, S.K. Das, V. Greco, M. Ruggieri, Ballistic diffusion of heavy quarks in the early stage of relativistic heavy ion collisions at RHIC and the LHC. Phys. Rev. D 103(3) (2021). 10.1103/physrevd.103.034029

A. Collaboration, ALICE physics projections for a short oxygen-beam run at the LHC, ALICE-PUBLIC-2021-004 (2021)

Study of charged particle production at high pT using event topology in pp, pPb and PbPb collisions at [Image: see text]  TeV. Phys. Lett. B 843, 137649 (2023). 10.1016/j.physletb.2022.137649. arXiv:2204.10157 [nucl-ex]

F. Krizek, Search for jet quenching in high-multiplicity [Image: see text] collisions using inclusive and semi-inclusive jet production in ALICE. Acta Phys. Polon. Supp. 16(1), 69 (2023). 10.5506/APhysPolBSupp.16.1-A69

K. Boguslavski, A. Kurkela, T. Lappi, F. Lindenbauer, J. Peuron, Jet momentum broadening during initial stages in heavy-ion collisions (2023). arXiv:2303.12595 [hep-ph]

C. Andres, L. Apolinário, F. Dominguez, M.G. Martinez, C.A. Salgado, Medium-induced radiation with vacuum propagation in the pre-hydrodynamics phase. JHEP 03, 189 (2023). 10.1007/JHEP03(2023)189. arXiv:2211.10161 [hep-ph]

I. Grishmanovskii, T. Song, O. Soloveva, C. Greiner, E. Bratkovskaya, Exploring jet transport coefficients by elastic scattering in the strongly interacting quark-gluon plasma. Phys. Rev. C 106(1), 014903 (2022). 10.1103/PhysRevC.106.014903. arXiv:2204.01561 [nucl-th]

T. Song, I. Grishmanovskii, O. Soloveva, Soft gluon emission from heavy quark scattering in strongly interacting quark-gluon plasma. Phys. Rev. D 107(3), 036009 (2023). 10.1103/PhysRevD.107.036009. arXiv:2210.04010 [nucl-th]

I. Grishmanovskii, O. Soloveva, T. Song, C. Greiner, E. Bratkovskaya, Inelastic and elastic parton scatterings in the strongly interacting quark-gluon plasma (2023). arXiv:2308.03105 [hep-ph]

P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, Exploring the partonic phase at finite chemical potential within an extended off-shell transport approach. Phys. Rev. C 100(1), 014911 (2019). 10.1103/PhysRevC.100.014911. arXiv:1903.10257 [nucl-th]

P.B. Arnold, W. Xiao, High-energy jet quenching in weakly-coupled quark-gluon plasmas. Phys. Rev. D 78, 125008 (2008). 10.1103/PhysRevD.78.125008. arXiv:0810.1026 [hep-ph]

S. Caron-Huot, O(g) plasma effects in jet quenching. Phys. Rev. D 79, 065039 (2009). 10.1103/PhysRevD.79.065039. arXiv:0811.1603 [hep-ph]

A. Tumasyan et al., Fragmentation of jets containing a prompt J [Image: see text] meson in PbPb and pp collisions at [Image: see text] 5.02 TeV. Phys. Lett. B 825, 136842 (2022). 10.1016/j.physletb.2021.136842. arXiv:2106.13235 [hep-ex]

S. Acharya et al., Prompt D0, D+, and D∗+ production in Pb–Pb collisions at [Image: see text] = 5.02 TeV. JHEP 01, 174 (2022). 10.1007/JHEP01(2022)174. arXiv:2110.09420 [nucl-ex]

T. Song, H. Berrehrah, D. Cabrera, J.M. Torres-Rincon, L. Tolos, W. Cassing, E. Bratkovskaya, Tomography of the quark-gluon-plasma by charm quarks. Phys. Rev. C 92(1), 014910 (2015). 10.1103/PhysRevC.92.014910. arXiv:1503.03039 [nucl-th]

S. Plumari, G. Coci, V. Minissale, S.K. Das, Y. Sun, V. Greco, Heavy-light flavor correlations of anisotropic flows at LHC energies within event-by-event transport approach. Phys. Lett. B 805, 135460 (2020). 10.1016/j.physletb.2020.135460. arXiv:1912.09350 [hep-ph]

M.L. Sambataro, Y. Sun, V. Minissale, S. Plumari, V. Greco, Event-shape engineering analysis of D meson in ultrarelativistic heavy-ion collisions. Eur. Phys. J. C 82(9), 833 (2022). 10.1140/epjc/s10052-022-10802-2. arXiv:2206.03160 [hep-ph]

F. Prino, R. Rapp, Open heavy flavor in QCD matter and in nuclear collisions. J. Phys. G Nucl. Part. Phys. 43(9), 093002 (2016). 10.1088/0954-3899/43/9/093002

J. Zhao, K. Zhou, S. Chen, P. Zhuang, Heavy flavors under extreme conditions in high energy nuclear collisions (2020)

M.L. Sambataro, V. Minissale, S. Plumari, V. Greco, B meson production in Pb+Pb at 5.02 ATeV at LHC: estimating the diffusion coefficient in the infinite mass limit. Phys. Lett. B 849, 138480 (2024). 10.1016/j.physletb.2024.138480. arXiv:2304.02953 [hep-ph]

M. Nahrgang, J. Aichelin, P.B. Gossiaux, K. Werner, Azimuthal correlations of heavy quarks in Pb + Pb collisions at [Image: see text] TeV at the CERN Large Hadron Collider. Phys. Rev. C 90(2), 024907 (2014). 10.1103/PhysRevC.90.024907. arXiv:1305.3823 [hep-ph]

F. Özel, P. Freire, Masses, radii, and the equation of state of neutron stars. Annu. Rev. Astron. Astrophys. 54, 401–440 (2016). 10.1146/annurev-astro-081915-023322. arXiv:1603.02698 [astro-ph.HE]

T.E. Riley et al., A [Image: see text] view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887(1), 21 (2019). 10.3847/2041-8213/ab481c. arXiv:1912.05702 [astro-ph.HE]

P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Shapiro delay measurement of a two solar mass neutron star. Nature 467, 1081–1083 (2010). 10.1038/nature09466. arXiv:1010.5788 [astro-ph.HE] PubMed

J. Antoniadis et al., A massive pulsar in a compact relativistic binary. Science 340, 6131 (2013). 10.1126/science.1233232. arXiv:1304.6875 [astro-ph.HE] PubMed

H.T. Cromartie et al., Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 4(1), 72–76 (2019). 10.1038/s41550-019-0880-2. arXiv:1904.06759 [astro-ph.HE]

B.P. Abbott et al., GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017). 10.1103/PhysRevLett.119.161101. arXiv:1710.05832 [gr-qc] PubMed

J.M. Lattimer, Neutron star mass and radius measurements. Universe 5(7), 159 (2019). 10.3390/universe5070159

J.M. Lattimer, Neutron stars and the nuclear matter equation of state. Annu. Rev. Nucl. Part. Sci. 71, 433–464 (2021). 10.1146/annurev-nucl-102419-124827

H. Djapo, B.-J. Schaefer, J. Wambach, On the appearance of hyperons in neutron stars. Phys. Rev. C 81, 035803 (2010). 10.1103/PhysRevC.81.035803. arXiv:0811.2939 [nucl-th]

L. Tolos, L. Fabbietti, Strangeness in nuclei and neutron stars. Prog. Part. Nucl. Phys. 112, 103770 (2020). 10.1016/j.ppnp.2020.103770. arXiv:2002.09223 [nucl-ex]

S. Acharya et al., p-p, p- [Image: see text] and [Image: see text]- [Image: see text] correlations studied via femtoscopy in pp reactions at [Image: see text] = 7 TeV. Phys. Rev. C 99(2), 024001 (2019). 10.1103/PhysRevC.99.024001. arXiv:1805.12455 [nucl-ex]

S. Acharya et al., First observation of an attractive interaction between a proton and a cascade baryon. Phys. Rev. Lett. 123(11), 112002 (2019). 10.1103/PhysRevLett.123.112002. arXiv:1904.12198 [nucl-ex] PubMed

A. Collaboration et al., Unveiling the strong interaction among hadrons at the LHC. Nature 588, 232–238 (2020). 10.1038/s41586-020-3001-6. arXiv:2005.11495 [nucl-ex] [Erratum: Nature 590, E13 (2021)]

S. Acharya et al., Search for a common baryon source in high-multiplicity pp collisions at the LHC. Phys. Lett. B 811, 135849 (2020). 10.1016/j.physletb.2020.135849. arXiv:2004.08018 [nucl-ex]

S. Acharya et al., Investigation of the p- [Image: see text] 0 interaction via femtoscopy in pp collisions. Phys. Lett. B 805, 135419 (2020). 10.1016/j.physletb.2020.135419. arXiv:1910.14407 [nucl-ex]

S. Acharya et al., Study of the [Image: see text]- [Image: see text] interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC. Phys. Lett. B 797, 134822 (2019). 10.1016/j.physletb.2019.134822. arXiv:1905.07209 [nucl-ex]

S. Acharya et al., Exploring the N [Image: see text]-N [Image: see text] coupled system with high precision correlation techniques at the LHC. Phys. Lett. B 833, 137272 (2022). 10.1016/j.physletb.2022.137272. arXiv:2104.04427 [nucl-ex]

S. Acharya et al., First study of the two-body scattering involving charm hadrons. Phys. Rev. D 106(5), 052010 (2022). 10.1103/PhysRevD.106.052010. arXiv:2201.05352 [nucl-ex]

First measurement of the [Image: see text]- [Image: see text] interaction in proton-proton collisions at the LHC (2022). 10.1016/j.physletb.2022.137223. arXiv:2204.10258 [nucl-ex]

Towards the understanding of the genuine three-body interaction for p [Image: see text] p [Image: see text] p and p [Image: see text] p [Image: see text] (2022). arXiv:2206.03344 [nucl-ex]

S. Acharya et al., Scattering studies with low-energy kaon-proton femtoscopy in proton-proton collisions at the LHC. Phys. Rev. Lett. 124(9), 092301 (2020). 10.1103/PhysRevLett.124.092301. arXiv:1905.13470 [nucl-ex] PubMed

S. Acharya et al., Kaon-proton strong interaction at low relative momentum via femtoscopy in Pb-Pb collisions at the LHC. Phys. Lett. B 822, 136708 (2021). 10.1016/j.physletb.2021.136708. arXiv:2105.05683 [nucl-ex]

Constraining the [Image: see text] coupled channel dynamics using femtoscopic correlations at the LHC (2022). arXiv:2205.15176 [nucl-ex]

K. Sasaki et al., [Image: see text] and N [Image: see text] interactions from lattice QCD near the physical point. Nucl. Phys. A 998, 121737 (2020). 10.1016/j.nuclphysa.2020.121737. arXiv:1912.08630 [hep-lat]

D. Soldin, Update on the combined analysis of muon measurements from nine air shower experiments. PoS ICRC2021, 349 (2021). 10.22323/1.395.0349. arXiv:2108.08341 [astro-ph.HE]

H.P. Dembinski, R. Engel, A. Fedynitch, T. Gaisser, F. Riehn, T. Stanev, Data-driven model of the cosmic-ray flux and mass composition from 10 GeV to [Image: see text] GeV. PoS ICRC2017, 533 (2018). 10.22323/1.301.0533. arXiv:1711.11432 [astro-ph.HE]

T. Pierog, K. Werner, EPOS model and ultra high energy cosmic rays. Nucl. Phys. B Proc. Suppl. 196, 102–105 (2009). 10.1016/j.nuclphysbps.2009.09.017. arXiv:0905.1198 [hep-ph]

T. Pierog, I. Karpenko, J.M. Katzy, E. Yatsenko, K. Werner, EPOS LHC: test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C 92(3), 034906 (2015). 10.1103/PhysRevC.92.034906. arXiv:1306.0121 [hep-ph]

C. Bierlich, J.R. Christiansen, Effects of color reconnection on hadron flavor observables. Phys. Rev. D 92(9), 094010 (2015). 10.1103/PhysRevD.92.094010. arXiv:1507.02091 [hep-ph]

C. Bierlich, G. Gustafson, L. Lönnblad, Collectivity without plasma in hadronic collisions. Phys. Lett. B 779, 58–63 (2018). 10.1016/j.physletb.2018.01.069. arXiv:1710.09725 [hep-ph]

J. Albrecht et al., The muon puzzle in cosmic-ray induced air showers and its connection to the large hadron collider. Astrophys. Space Sci. 367(3), 27 (2022). 10.1007/s10509-022-04054-5. arXiv:2105.06148 [astro-ph.HE]

R. Ulrich, R. Engel, M. Unger, Hadronic multiparticle production at ultra-high energies and extensive air showers. Phys. Rev. D 83, 054026 (2011). 10.1103/PhysRevD.83.054026. arXiv:1010.4310 [hep-ph]

S. Baur, H. Dembinski, M. Perlin, T. Pierog, R. Ulrich, K. Werner, Core-corona effect in hadron collisions and muon production in air showers (2019). arXiv:1902.09265 [hep-ph]

T. Pierog, S. Baur, H. Dembinski, M. Perlin, R. Ulrich, K. Werner, When heavy ions meet cosmic rays: potential impact of QGP formation on the muon puzzle. PoS ICRC2021, 469 (2021). 10.22323/1.395.0469

L.A. Anchordoqui, C. García Canal, S.J. Sciutto, J.F. Soriano, Through the looking-glass with ALICE into the quark-gluon plasma: a new test for hadronic interaction models used in air shower simulations. Phys. Lett. B 810, 135837 (2020). 10.1016/j.physletb.2020.135837. arXiv:1907.09816 [hep-ph]

O. Adriani et al., Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector. Phys. Rev. D 94(3), 032007 (2016). 10.1103/PhysRevD.94.032007. arXiv:1507.08764 [hep-ex]

O. Adriani et al., Measurement of forward photon production cross-section in proton-proton collisions at [Image: see text] = 13 TeV with the LHCf detector. Phys. Lett. B 780, 233–239 (2018). 10.1016/j.physletb.2017.12.050. arXiv:1703.07678 [hep-ex]

O. Adriani et al., Measurement of energy flow, cross section and average inelasticity of forward neutrons produced in [Image: see text] = 13 TeV proton-proton collisions with the LHCf Arm2 detector. JHEP 07, 016 (2020). 10.1007/JHEP07(2020)016. arXiv:2003.02192 [hep-ex]

A.M. Sirunyan et al., Measurement of the average very forward energy as a function of the track multiplicity at central pseudorapidities in proton-proton collisions at [Image: see text]. Eur. Phys. J. C 79(11), 893 (2019). 10.1140/epjc/s10052-019-7402-3. arXiv:1908.01750 [hep-ex] PubMed PMC

R. Aaij et al., Measurement of prompt charged-particle production in pp collisions at [Image: see text] = 13 TeV. JHEP 01, 166 (2022). 10.1007/JHEP01(2022)166. arXiv:2107.10090 [hep-ex]

Nuclear modification factor of neutral pions in the forward and backward regions in [Image: see text] Pb collisions (2022). arXiv:2204.10608 [nucl-ex] PubMed

Evidence for modification of [Image: see text] quark hadronization in high-multiplicity [Image: see text] collisions at [Image: see text] TeV (2022). arXiv:2204.13042 [hep-ex] PubMed

O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, R. Bellotti, M. Boezio, E.A. Bogomolov, L. Bonechi, M. Bongi, V. Bonvicini, S. Borisov, Pamela results on the cosmic-ray antiproton flux from 60 mev to 180 gev in kinetic energy. Phys. Rev. Lett. 105(12) (2010). 10.1103/physrevlett.105.121101 PubMed

M. Aguilar, L. Ali Cavasonza, G. Ambrosi et al., Towards understanding the origin of cosmic-ray positrons. Phys. Rev. Lett. 122, 041102 (2019). 10.1103/PhysRevLett.122.041102 PubMed

Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature 552(7683), 63–66 (2017). 10.1038/nature24475 PubMed

M. Aguilar et al., Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 117(9), 091103 (2016). 10.1103/PhysRevLett.117.091103 PubMed

W.B. Atwood et al., The large area telescope on the fermi gamma-ray space telescope mission. Astrophys. J. 697, 1071–1102 (2009). 10.1088/0004-637X/697/2/1071. arXiv:0902.1089 [astro-ph.IM]

T. Aramaki, C.J. Hailey, S.E. Boggs, P. Doetinchem, H. Fuke, S.I. Mognet, R.A. Ong, K. Perez, J. Zweerink, Antideuteron sensitivity for the GAPS experiment. Astropart. Phys. 74, 6–13 (2016). 10.1016/j.astropartphys.2015.09.001

G. Giesen, M. Boudaud, Y. Génolini, V. Poulin, M. Cirelli, P. Salati, P.D. Serpico, Ams-02 antiprotons, at last! secondary astrophysical component and immediate implications for dark matter. J. Cosmol. Astropart. Phys. 2015(09), 023 (2015). 10.1088/1475-7516/2015/09/023

A. Cuoco, J. Heisig, L. Klamt, M. Korsmeier, M. Krämer, Scrutinizing the evidence for dark matter in cosmic-ray antiprotons. Phys. Rev. D 99(10) (2019). 10.1103/physrevd.99.103014

M. Di Mauro, M.W. Winkler, Multimessenger constraints on the dark matter interpretation of the [Image: see text]-lat galactic center excess. Phys. Rev. D 103, 123005 (2021). 10.1103/PhysRevD.103.123005

L. Orusa, S. Manconi, F. Donato, M.D. Mauro, Constraining positron emission from pulsar populations with AMS-02 data. J. Cosmol. Astropart. Phys. 2021(12), 014 (2021). 10.1088/1475-7516/2021/12/014

M. Korsmeier, F. Donato, M.D. Mauro, Production cross sections of cosmic antiprotons in the light of new data from the NA61 and LHCb experiments. Phys. Rev. D 97(10) (2018). 10.1103/physrevd.97.103019

L. Orusa, M.D. Mauro, F. Donato, M. Korsmeier, New determination of the production cross section for secondary positrons and electrons in the galaxy. Phys. Rev. D 105(12) (2022). 10.1103/physrevd.105.123021

L. Orusa, M. Di Mauro, F. Donato, M. Korsmeier, New determination of the production cross section for [Image: see text] rays in the galaxy. Phys. Rev. D 107, 083031 (2023). 10.1103/PhysRevD.107.083031

M.W. Winkler, Cosmic ray antiprotons at high energies. J. Cosmol. Astropart. Phys. 2017(02), 048 (2017). 10.1088/1475-7516/2017/02/048

F. Donato, N. Fornengo, P. Salati, Antideuterons as a signature of supersymmetric dark matter. Phys. Rev. D 62(4) (2000). 10.1103/physrevd.62.043003

M. Cirelli, N. Fornengo, M. Taoso, A. Vittino, Anti-helium from dark matter annihilations. J. High Energy Phys. 2014(8) (2014). 10.1007/jhep08(2014)009

M.W. Winkler, T. Linden, Dark matter annihilation can produce a detectable antihelium flux through [Image: see text] decays. Phys. Rev. Lett. 126, 101101 (2021). 10.1103/PhysRevLett.126.101101 PubMed

M. Di Mauro, F. Donato, M. Korsmeier, S. Manconi, L. Orusa, Novel prediction for secondary positrons and electrons in the galaxy. Phys. Rev. D 108, 063024 (2023). 10.1103/PhysRevD.108.063024

S. Abdollahi et al., Incremental fermi large area telescope fourth source catalog. Astrophys. J. Suppl. 260(2), 53 (2022). 10.3847/1538-4365/ac6751. arXiv:2201.11184 [astro-ph.HE]

A. Aduszkiewicz et al., Measurements of [Image: see text] , K±, p and [Image: see text] spectra in proton-proton interactions at 20, 31, 40, 80 and 158 [Image: see text] with the NA61/SHINE spectrometer at the CERN SPS. Eur. Phys. J. C 77(10), 671 (2017). 10.1140/epjc/s10052-017-5260-4. arXiv:1705.02467 [nucl-ex]

B. Adams et al., Letter of intent: a new QCD facility at the M2 beam line of the CERN SPS (COMPASS++/AMBER) (2019)

R. Aaij et al., Measurement of antiproton production in [Image: see text] collisions at [Image: see text]. Phys. Rev. Lett. 121, 222001 (2018). 10.1103/PhysRevLett.121.222001 PubMed

R. Aaij et al., Measurement of antiproton production from antihyperon decays in pHe collisions at [Image: see text] GeV. Eur. Phys. J. C 83, 543 (2023). 10.1140/epjc/s10052-023-11673-x. arXiv:2205.09009 [hep-ex]

L. Collaboration, LHCb SMOG Upgrade. Technical report, CERN, Geneva (2019). 10.17181/CERN.SAQC.EOWH. https://cds.cern.ch/record/2673690

S. Mariani, Fixed-target physics with the LHCb experiment at CERN Presented 08 Apr 2022. https://cds.cern.ch/record/2806641

A. Bursche, H.P. Dembinski, P. Di Nezza, M. Ferro-Luzzi, F. Fleuret, G. Graziani, G. Manca, E.A. Maurice, N. Neri, L.L. Pappalardo, P. Robbe, M. Schmelling, M.A. Winn, V. Zhukov, Physics opportunities with the fixed-target program of the LHCb experiment using an unpolarized gas target. Technical report, CERN, Geneva (2018). https://cds.cern.ch/record/2649878

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...