Improvements in upper extremity isometric muscle strength, dexterity, and self-care independence during the sub-acute phase of stroke recovery: an observational study on the effects of intensive comprehensive rehabilitation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
39507626
PubMed Central
PMC11539894
DOI
10.3389/fneur.2024.1442120
Knihovny.cz E-resources
- Keywords
- dexterity, ischemic stroke, isometric grip strength, maximum strength during key, tripod, and tip-tip pinch, physiotherapy, rehabilitation,
- Publication type
- Journal Article MeSH
BACKGROUND: Stroke often impairs upper extremity motor function, with recovery in the sub-acute phase being crucial for regaining independence. This study examines changes in isometric muscle strength, dexterity, and self-care independence during this period, and evaluates the effects of a comprehensive intensive rehabilitation (COMIRESTROKE). METHODS: Individuals in sub-acute stroke recovery and age- and sex-matched controls were assessed for pre- and post-rehabilitation differences in primary outcomes (grip/pinch strength, Nine Hole Peg Test [NHPT], Action Research Arm Test [ARAT]). COMIRESTROKE's effects on primary and secondary outcomes (National Institute of Health Stroke Scale [NIHSS], Modified Rankin Scale [MRS], Functional Independence Measure [FIM]) were evaluated. Outcomes were analyzed for dominant and non-dominant limbs, both regardless of impairment and with a focus on impaired limbs. RESULTS: Fifty-two individuals with stroke (NIHSS 7.51 ± 5.71, age 70.25 ± 12.66 years, 21.36 ± 12.06 days post-stroke) and forty-six controls participated. At baseline, individuals with stroke showed significantly lower strength (dominant grip, key pinch, tip-tip pinch, p adj < 0.05), higher NHPT scores (p adj < 0.05), and lower ARAT scores (p adj < 0.001). COMIRESTROKE led to improvements in dominant key pinch, non-dominant tip-tip pinch, NHPT, and both dominant and non-dominant ARAT (p adj < 0.05). Notably, non-dominant key pinch improved significantly when considering only impaired hands. Pre- and post-test differences between groups were significant only for ARAT (both limbs), even after adjustment (p adj < 0.05). All secondary outcomes (NIHSS, MRS, FIM) showed significant improvement post-COMIRESTROKE (p adj < 0.001). CONCLUSION: Individuals with stroke exhibit reduced muscle strength and dexterity, impairing independence. However, comprehensive intensive rehabilitation significantly improves these functions. Data are available from the corresponding author upon request and are part of a sub-study of NCT05323916.
Center of Scientific Information 3rd Faculty of Medicine Charles University Prague Czechia
Department of Rehabilitation Medicine 3rd Faculty of Medicine Charles University Prague Czechia
See more in PubMed
Liao WW, Wu CY, Hsieh YW, Lin KC, Chang WY. Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clin Rehabil. (2012) 26:111–20. doi: 10.1177/0269215511416383, PMID: PubMed DOI
de Silva MAS, Cook C, Stinear CM, Wolf SL, Borich MR. Paretic upper extremity strength at acute rehabilitation evaluation predicts motor function outcome after stroke. MedRxiv. (2021). doi: 10.1101/2021.10.05.21264572 DOI
Ingram LA, Butler AA, Brodie MA, Lord SR, Gandevia SC. Quantifying upper limb motor impairment in chronic stroke: a physiological profiling approach. J Appl Physiol. (2021) 131:949–65. doi: 10.1152/japplphysiol.00078.2021, PMID: PubMed DOI
Lin KC, Chang YF, Wu CY, Chen YA. Effects of constraint-induced therapy versus bilateral arm training on motor performance, daily functions, and quality of life in stroke survivors. Neurorehabil Neural Repair. (2009) 23:441–8. doi: 10.1177/1545968308328719 PubMed DOI
Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. (2009) 8:741–54. doi: 10.1016/S1474-4422(09)70150-4 PubMed DOI
Santisteban L, Teremetz M, Bleton JP, Baron JC, Maier MA, Lindberg PG. Upper limb outcome measures used in stroke rehabilitation studies: a systematic literature review. PLoS One. (2016) 11:e0154792. doi: 10.1371/journal.pone.0154792, PMID: PubMed DOI PMC
Sathian K, Buxbaum LJ, Cohen LG, Krakauer JW, Lang CE, Corbetta M, et al. . Neurological principles and rehabilitation of action disorders: common clinical deficits. Neurorehabil Neural Repair. (2011) 25:21S–32S. doi: 10.1177/1545968311410941, PMID: PubMed DOI PMC
Prado-Medeiros CL, Silva MP, Lessi GC, Alves MZ, Tannus A, Lindquist AR, et al. . Muscle atrophy and functional deficits of knee extensors and flexors in people with chronic stroke. Phys Ther. (2012) 92:429–39. doi: 10.2522/ptj.20090127, PMID: PubMed DOI
Kwakkel G, Kollen B. Predicting improvement in the upper paretic limb after stroke: a longitudinal prospective study. Restor Neurol Neurosci. (2007) 25:453–60. Available at: https://content.iospress.com/articles/restorative-neurology-and-neuroscience/rnn00380 PMID: PubMed
Mercier C, Bourbonnais D. Relative shoulder flexor and handgrip strength is related to upper limb function after stroke. Clin Rehabil. (2004) 18:215–21. doi: 10.1191/0269215504cr724oa PubMed DOI
Rabelo M, Nunes GS, da Costa Amante NM, de Noronha M, Fachin-Martins E. Reliability of muscle strength assessment in chronic post-stroke hemiparesis: a systematic review and meta-analysis. Top Stroke Rehabil. (2016) 23:26–35. doi: 10.1179/1945511915Y.0000000008, PMID: PubMed DOI
Thompson-Butel AG, Lin G, Shiner CT, McNulty PA. Comparison of three tools to measure improvements in upper-limb function with poststroke therapy. Neurorehabil Neural Repair. (2014) 29:341–8. doi: 10.1177/1545968314547766 PubMed DOI
Van Harlinger W, Blalock L, Merritt JL. Upper limb strength: study providing normative data for a clinical handheld dynamometer. PM R. (2015) 7:135–40. doi: 10.1016/j.pmrj.2014.09.007, PMID: PubMed DOI
Hartman-Maeir A, Soroker N, Ring H, Avni N, Katz N. Activities, participation and satisfaction one-year post stroke. Disabil Rehabil. (2007) 29:559–66. doi: 10.1080/09638280600924996 PubMed DOI
Etoh S, Noma T, Miyata R, Shimodozono M. Effects of repetitive facilitative exercise on spasticity in the upper paretic limb after subacute stroke. J Stroke Cerebrovasc Dis. (2018) 27:2863–8. doi: 10.1016/j.jstrokecerebrovasdis.2018.06.013, PMID: PubMed DOI
Bernhardt J, Hayward KS, Kwakkel G, Ward NS, Wolf SL, Borschmann K, et al. . Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Int J Stroke. (2017) 12:444–50. doi: 10.1177/1747493017711816, PMID: PubMed DOI
Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract. (2020) 2:17. doi: 10.1186/s42466-020-00060-6, PMID: PubMed DOI PMC
Kiær C, Lundquist CB, Brunner I. Knowledge and application of upper limb prediction models and attitude toward prognosis among physiotherapists and occupational therapists in the clinical stroke setting. Top Stroke Rehabil. (2021) 28:135–41. doi: 10.1080/10749357.2020.1783915, PMID: PubMed DOI
Stinear CM. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol. (2017) 16:826–36. doi: 10.1016/S1474-4422(17)30283-1 PubMed DOI
Stinear CM, Byblow WD. Predicting and accelerating motor recovery after stroke. Curr Opin Neurol. (2014) 27:624–30. doi: 10.1097/WCO.0000000000000153, PMID: PubMed DOI
Matthews PM, Johansen-Berg H, Reddy J. Non-invasive mapping of brain functions and brain recovery: applying lessons from cognitive neuroscience to neurorehabilitation. Restor Neurol Neurosci. (2004) 22:245–60. Available at: https://content.iospress.com/articles/restorative-neurology-and-neuroscience/rnn00273 PMID: PubMed
Zhang Z, Fang W, Gu X. Objective assessment of upper-limb mobility for poststroke rehabilitation. IEEE Trans Biomed Eng. (2016) 63:859–68. doi: 10.1109/TBME.2015.2477095, PMID: PubMed DOI
Shimodozono M, Noma T, Nomoto Y, Hisamatsu N, Kamada K, Miyata R, et al. . Benefits of a repetitive facilitative exercise program for the upper paretic extremity after subacute stroke: a randomized controlled trial. Neurorehabil Neural Repair. (2013) 27:296–305. doi: 10.1177/1545968312465896, PMID: PubMed DOI
Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. (2011) 377:1693–702. doi: 10.1016/S0140-6736(11)60325-5 PubMed DOI
Rocha LSO, Gama GCB, Rocha RSB, Rocha LB, Dias CP, Santos LLS, et al. . Constraint induced movement therapy increases functionality and quality of life after stroke. J Stroke Cerebrovasc Dis. (2021) 30:105774. doi: 10.1016/j.jstrokecerebrovasdis.2021.105774, PMID: PubMed DOI
Cauraugh JH, Kim SB. Chronic stroke motor recovery: duration of active neuromuscular stimulation. J Neurol Sci. (2003) 215:13–9. doi: 10.1016/S0022-510X(03)00169-2, PMID: PubMed DOI
Mandon L, Boudarham J, Robertson J, Bensmail D, Roche N, Roby-Brami A. Faster reaching in chronic spastic stroke patients comes at the expense of arm-trunk coordination. Neurorehabil Neural Repair. (2016) 30:209–20. doi: 10.1177/1545968315591704, PMID: PubMed DOI
Shah S, Vanclay F, Cooper B. Efficiency, effectiveness, and duration of stroke rehabilitation. Stroke. (1990) 21:241–6. doi: 10.1161/01.STR.21.2.241 PubMed DOI
Burton CR, Horne M, Woodward-Nutt K, Bowen A, Tyrrell P. What is rehabilitation potential? Development of a theoretical model through the accounts of healthcare professionals working in stroke rehabilitation services. Disabil Rehabil. (2015) 37:1955–60. doi: 10.3109/09638288.2014.991454, PMID: PubMed DOI
Hu MH, Hsu SS, Yip PK, Jeng JS, Wang YH. Early and intensive rehabilitation predicts good functional outcomes in patients admitted to the stroke intensive care unit. Disabil Rehabil. (2010) 32:1251–9. doi: 10.3109/09638280903464448 PubMed DOI
Hopman WM, Verner J. Quality of life during and after inpatient stroke rehabilitation. Stroke. (2003) 34:801–5. doi: 10.1161/01.STR.0000057978.15397.6F PubMed DOI
Bunketorp-Käll L, Lundgren-Nilsson A, Samuelsson H, Pekny T, Blomve K, Pekna M, et al. . Long-term improvements after multimodal rehabilitation in late phase after stroke: a randomized controlled trial. Stroke. (2017) 48:1916–24. doi: 10.1161/STROKEAHA.116.016433, PMID: PubMed DOI
Řasová K, Martinková P, Vařejková M, Miznerová B, Pavlíková M, Hlinovská J, et al. . COMIRESTROKE-A clinical study protocol for monitoring clinical effect and molecular biological readouts of COMprehensive intensive REhabilitation program after STROKE: a four-arm parallel-group randomized double blinded controlled trial with a longitudinal design. Front Neurol. (2022) 13:954712. doi: 10.3389/fneur.2022.954712, PMID: PubMed DOI PMC
Kristensen OH, Stenager E, Dalgas U. Muscle strength and poststroke hemiplegia: a systematic review of muscle strength assessment and muscle strength impairment. Arch Phys Med Rehabil. (2017) 98:368–80. doi: 10.1016/j.apmr.2016.05.023, PMID: PubMed DOI
Kim M, Kothari DH, Lum PS, Patten C. Reliability of dynamic muscle performance in the hemiparetic upper limb. J Neurol Phys Ther. (2005) 29:9–17. doi: 10.1097/01.NPT.0000282257.74325.2b, PMID: PubMed DOI
Boissy P, Bourbonnais D, Carlotti MM, Gravel D, Arsenault BA. Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil. (1999) 13:354–62. doi: 10.1191/026921599676433080, PMID: PubMed DOI
Lacas A, Rockwood K. Frailty in primary care: a review of its conceptualization and implications for practice. BMC Med. (2012) 10:4. doi: 10.1186/1741-7015-10-4, PMID: PubMed DOI PMC
Hlinovský D, Doležalová I, Hlinovská J. Komplexní rehabilitace pacientů po cévní mozkové přhodĕ - projekt iktového centra Thomayerovy nemocnice [Complex rehabilitation of patients after stroke – project of stroke Centre in Thomayer’s Hospital]. Prakt Lék. (2016) 96:267–71. Available at: https://www.prolekare.cz/casopisy/prakticky-lekar/2016-6/komplexni-rehabilitace-pacientu-po-cevni-mozkove-prihode-projekt-iktoveho-centra-thomayerovy-nemocnice-59726
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. (1971) 9:97–113. doi: 10.1016/0028-3932(71)90067-4 PubMed DOI
Bertrand AM, Mercier C, Bourbonnais D, Desrosiers J, Gravel D. Reliability of maximal static strength measurements of the arms in subjects with hemiparesis. Clin Rehabil. (2007) 21:248–57. doi: 10.1177/0269215506070792, PMID: PubMed DOI
Lafayette Instrument Company . Lafayette hydraulic hand dynamometer user instructions (2022). Available at: https://rehabmart.com.sg/pub/media/files/Dynamometer_User_Manual_Lafayette_-_MAN32261-j00105-pdf-rev5.pdf (accessed September 7, 2024).
Chen HF, Lin KC, Wu CY, Chen CL. Rasch validation and predictive validity of the action research arm test in patients receiving stroke rehabilitation. Arch Phys Med Rehabil. (2012) 93:1039–45. doi: 10.1016/j.apmr.2011.11.033, PMID: PubMed DOI
Chen HM, Chen CC, Hsueh IP, Huang SL, Hsieh CL. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. (2009) 23:435–40. doi: 10.1177/1545968308331146, PMID: PubMed DOI
Lyden P, Raman R, Liu L, Emr M, Warren M, Marler J. National Institutes of Health stroke scale certification is reliable across multiple venues. Stroke. (2009) 40:2507–11. doi: 10.1161/STROKEAHA.108.532069, PMID: PubMed DOI PMC
van Swieten J. Modified Rankin scale for neurologic disability (2021). Available at: https://www.mdcalc.com/modified-rankin-scale-neurologic-disability#creator-insights (accessed September 7, 2024).
Ring H, Feder M, Schwartz J, Samuels G. Functional measures of first-stroke rehabilitation inpatients: usefulness of the functional Independence measure total score with a clinical rationale. Arch Phys Med Rehabil. (1997) 78:630–5. doi: 10.1016/S0003-9993(97)90429-9, PMID: PubMed DOI
Ustün TB, Chatterji S, Kostanjsek N, Rehm J, Kennedy C, Epping-Jordan J, et al. . Developing the World Health Organization disability assessment schedule 2.0. Bull World Health Organ. (2010) 88:815–23. doi: 10.2471/BLT.09.067231, PMID: PubMed DOI PMC
Dromerick AW, Lang CE, Birkenmeier RL, Wagner JM, Miller JP, Videen TO, et al. . Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology. (2009) 73:195–201. doi: 10.1212/WNL.0b013e3181ab2b27, PMID: PubMed DOI PMC
Lang CE, Edwards DF, Birkenmeier RL, Dromerick AW. Estimating minimal clinically important differences of upper-extremity measures early after stroke. Arch Phys Med Rehabil. (2008) 89:1693–700. doi: 10.1016/j.apmr.2008.02.022, PMID: PubMed DOI PMC
Langan J, van Donkelaar P. The influence of hand dominance on the response to a constraint-induced therapy program following stroke. Neurorehabil Neural Repair. (2008) 22:298–304. doi: 10.1177/1545968307307123, PMID: PubMed DOI
Hmaied Assadi S, Feige Gross-Nevo R, Dudkiewicz I, Barel H, Rand D. Improvement of the upper extremity at the subacute stage poststroke: does hand dominance play a role? Neurorehabil Neural Repair. (2020) 34:1030–7. doi: 10.1177/1545968320962502, PMID: PubMed DOI
Gilbertson L, Barber-Lomax S. Power and pinch grip strength recorded using the hand-held Jamar® dynamometer and B+L hydraulic pinch gauge: British normative data for adults. Br J Occup Ther. (1994) 57:483–8. doi: 10.1177/030802269405701209 DOI
Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil. (1985) 66:69–74. PMID: PubMed
Beebe JA, Lang CE. Relationships and responsiveness of six upper extremity function tests during the first six months of recovery after stroke. J Neurol Phys Ther. (2009) 33:96–103. doi: 10.1097/NPT.0b013e3181a33638 PubMed DOI PMC
Rabadi MH, Rabadi FM. Comparison of the action research arm test and the Fugl-Meyer assessment as measures of upper-extremity motor weakness after stroke. Arch Phys Med Rehabil. (2006) 87:962–6. doi: 10.1016/j.apmr.2006.02.036, PMID: PubMed DOI
Franck JA, Smeets RJEM, Seelen HAM. Changes in arm-hand function and arm-hand skill performance in patients after stroke during and after rehabilitation. PLoS One. (2017) 12:e0179453. doi: 10.1371/journal.pone.0179453, PMID: PubMed DOI PMC
van Delden AL, Peper CL, Beek PJ, Kwakkel G. Match and mismatch between objective and subjective improvements in upper limb function after stroke. Disabil Rehabil. (2013) 35:1961–7. doi: 10.3109/09638288.2013.768303, PMID: PubMed DOI
Beninato M, Gill-Body KM, Salles S, Stark PC, Black-Schaffer RM, Stein J. Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch Phys Med Rehabil. (2006) 87:32–9. doi: 10.1016/j.apmr.2005.08.130 PubMed DOI
ClinicalTrials.gov
NCT05323916