Wear and Dynamic Mechanical Analysis (DMA) of Samples Produced via Fused Deposition Modelling (FDM) 3D Printing Method
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
        Grant support
          
              SP2024/031 
          
      Ministry of education, youth and sports of the Czech Republic   
      
      
    PubMed
          
           39518228
           
          
          
    PubMed Central
          
           PMC11548368
           
          
          
    DOI
          
           10.3390/polym16213018
           
          
          
      PII:  polym16213018
  
    Knihovny.cz E-resources
    
  
              
      
- Keywords
 - DMA, FDM, coefficient of friction, glass transition temperature, loss modulus, storage modulus, weight loss,
 - Publication type
 - Journal Article MeSH
 
In recent years, plastic and metal 3D printing has experienced massive development in the professional and hobby spheres, especially for rapid prototyping, reverse engineering, maintenance and quick repairs. However, this technology is limited by a number of factors, with the most common being the cost and availability of the technology but also the lack of information on material properties. This study focuses on investigating the material properties of PLA, PETG, HIPS, PA, ABS and ASA in order to elucidate their behavior in terms of wear and thermal resistance. The research builds on previous studies focusing on the mechanical properties of these materials and includes wear testing and DMA analysis. Weight loss, frictional forces, and frictional work including relative frictional work are recorded as part of this testing. The storage modulus and loss modulus including tan(δ) were then measured using DMA.
See more in PubMed
Aditya T., Srinivas S. Mind the Gap: A Succinct Exploration of Research Gap Types. J. Adv. Parallel Comput. 2023;6:7–18. doi: 10.5281/zenodo.8213522. DOI
Cano-Vicent A., Tambuwala M.M., Hassan S.S., Barh D., Aljabali A.A., Birkett M., Arjunan A., Serrano-Aroca Á. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 2021;47:102378. doi: 10.1016/j.addma.2021.102378. DOI
Roy R., Mukhopadhyay A. Tribological studies of 3D printed ABS and PLA plastic parts. Mater. Today Proc. 2020;41:856–862. doi: 10.1016/j.matpr.2020.09.235. DOI
Prabhu R., Devaraju A. Recent review of tribology, rheology of biodegradable and FDM compatible polymers. Mater. Today Proc. 2020;39:781–788. doi: 10.1016/j.matpr.2020.09.509. DOI
Srinivasan R., Babu B.S., Rani V.U., Suganthi M., Dheenasagar R. Comparision of tribological behaviour for parts fabricated through fused deposition modelling (FDM) process on abs and 20% carbon fibre PLA. Mater. Today Proc. 2020;27:1780–1786. doi: 10.1016/j.matpr.2020.03.689. DOI
Equbal A., Sood A.K., Toppo V., Ohdar R.K., Mahapatra S.S. Prediction and analysis of sliding wear performance of fused deposition modelling-processed ABS plastic parts. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2010;224:1261–1271. doi: 10.1243/13506501JET835. DOI
Keshavamurthy R., Tambrallimath V., Rajhi A.A., R. M S.A., Patil A.Y., Yunus Khan T.M., Makannavar R. Influence of solid lubricant addition on friction and wear response of 3D printed polymer composites. Polymers. 2021;13:2905. doi: 10.3390/polym13172905. PubMed DOI PMC
Raichur S., Ravishankar R., Kumar R.R. Tribological Studies of Nanoclay-Reinforced PLA Composites Developed by 3D Printing Technology. J. Inst. Eng. Ser. D. 2024;105:517–525. doi: 10.1007/s40033-023-00500-y. DOI
Mourya V., Bhore S.P., Wandale P.G. Multiobjective optimization of tribological characteristics of 3D printed texture surfaces for ABS and PLA Polymers. J. Thermoplast. Compos. Mater. 2023;37:772–799. doi: 10.1177/08927057231185710. DOI
Ol’Khovik E. Study of abrasive resistance of foundries models obtained with use of additive technology. IOP Conf. Ser. Earth Environ. Sci. 2017;87:092019. doi: 10.1088/1755-1315/87/9/092019. DOI
Shaharuddin S., Fadzli M., Abdollah B., Amiruddin H., Kamis S.L., Ramli F.R. Applied normal load and printing layer thickness relationship on the tribological properties of novel 3D-printed PLA-PCU polymer blend. J. Tribol. 2023;39:1–16.
Wang C., He Y., Lin Z., Zhao X., Sun C., Guo R., Wang X., Zhou F. Mechanical and tribological properties of FDM-printed polyamide. Tribol. Int. 2024;191:109198. doi: 10.1016/j.triboint.2023.109198. DOI
Hanon M.M., Marczis R., Zsidai L. Impact of 3D-printing structure on the tribological properties of polymers. Ind. Lubr. Tribol. 2020;72:811–818. doi: 10.1108/ILT-05-2019-0189. DOI
Aslan E., Akincioğlu G. Springer Proceedings in Materials. Volume 32. Springer Nature; Berlin/Heidelberg, Germany: 2023. Tribological Characterization of Two Different Elastic Polymers Produced via FDM; pp. 189–200. DOI
Sukri I.A.A., Fukuda K., Kamis S.L., Tahir N.A.M. Tribological Properties Improvement of 3D-Printed Parts by In-Process Addition of Graphite Particles into the Top Layer. [(accessed on 26 August 2024)];J. Tribol. 2023 39:134–142. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181215911&partnerID=40&md5=6ac6925456e21e1536bffbb12d8ae658.
Lv X., Yang S., Pei X., Zhang Y., Wang Q., Wang T. Tribological anisotropy of PEEK composites filled with highly oriented carbon fibers manufactured by fused deposition modeling. Polym. Compos. 2024;45:2656–2669. doi: 10.1002/pc.27946. DOI
Balamurugan K., Pavan M.V., Balamurugan P. Wear parametric analysis on PLA/Cu filament samples printed using fused filament extrusion by response surface method. Prog. Addit. Manuf. 2022;7:957–969. doi: 10.1007/s40964-022-00270-1. DOI
Prusinowski A., Kaczynski R. Tribological behaviour of additively manufactured fiber-reinforced thermoplastic composites in various environments. Polymers. 2020;12:1551. doi: 10.3390/polym12071551. PubMed DOI PMC
Farimani F.S., de Rooij M., Hekman E., Misra S. Frictional characteristics of Fusion Deposition Modeling (FDM) manufactured surfaces. Rapid Prototyp. J. 2020;26:1095–1102. doi: 10.1108/RPJ-06-2019-0171. DOI
Braileanu P.I., Calin A., Dobrescu T.G., Pascu N. Comparative Examination of Friction between Additive Manufactured Plastics and Steel Surface. Mater. Plast. 2023;60:48–57. doi: 10.37358/MP.23.3.5675. DOI
Hanon M.M., Zsidai L. Tribological Behaviour Comparison of ABS Polymer Manufactured Using Turning and 3D Printing. Artic. Int. J. Eng. Manag. Sci. 2019;4:46–57. doi: 10.21791/IJEMS.2019.1.7.. DOI
Menczel J.D., Prime R.B. Thermal Analysis of Polymers—Fundamentals and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2009. [(accessed on 2 October 2024)]. Available online: https://www.researchgate.net/profile/Abdelkader-Bouaziz/post/Can_you_recommend_a_textbook_for_DSC_technique/attachment/5eb672d9c005cf000189469f/AS%3A889208587694080%401589015256404/download/5-Thermal+analysis+of+polymers_+fundamentals+and+applications.pdf.
Arunprasath K., Vijayakumar M., Ramarao M., Arul T., Pauldoss S.P., Selwin M., Radhakrishnan B., Manikandan V. Dynamic mechanical analysis performance of pure 3D printed polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) Mater. Today Proc. 2022;50:1559–1562. doi: 10.1016/j.matpr.2021.09.113. DOI
Kohutiar M., Janík R., Krbata M., Bartosova L., Jus M., Timárová Ľ. Study of the Effect of Pretreatment of 3D Printed PLA Filament Modified by Plasma Discharge and Changes in its Dynamic-mechanical Properties. Manuf. Technol. 2023;23:461–467. doi: 10.21062/mft.2023.050. DOI
Subbarao C.V., Reddy Y.S., Inturi V., Reddy M.I. Dynamic Mechanical Analysis of 3D Printed PETG Material. IOP Conf. Ser. Mater. Sci. Eng. 2021;1057:012031. doi: 10.1088/1757-899X/1057/1/012031. DOI
Freeland B., McCarthy E., Balakrishnan R., Fahy S., Boland A., Rochfort K.D., Dabros M., Marti R., Kelleher S.M., Gaughran J. A Review of Polylactic Acid as a Replacement Material for Single-Use Laboratory Components. Materials. 2022;15:2989. doi: 10.3390/ma15092989. PubMed DOI PMC
Pricop B., Sava Ș.D., Lohan N.M., Bujoreanu L.G. DMA Investigation of the Factors Influencing the Glass Transition in 3D Printed Specimens of Shape Memory Recycled PET. Polymers. 2022;14:2248. doi: 10.3390/polym14112248. PubMed DOI PMC
Doddamani M. Dynamic mechanical analysis of 3D printed eco-friendly lightweight composite. Compos. Commun. 2020;19:177–181. doi: 10.1016/j.coco.2020.04.002. DOI
Koci J. Advanced Filament Guide. [(accessed on 1 October 2024)]. Available online: https://blog.prusa3d.com/advanced-filament-guide_39718/
SimplifyFilament Properties Table. [(accessed on 1 October 2024)]. Available online: https://www.simplify3d.com/resources/materials-guide/properties-table/
de Naoum K. Types of 3D Printer Filaments. [(accessed on 1 October 2024)]. Available online: https://www.xometry.com/resources/3d-printing/types-of-3d-printer-filaments/
Zurowski W., Zepchło J., Krzyzak A., Gevorkyan E., Rucki M., Siek E., Białkowska A. Wear resistance of the glass-fiber reinforced polymer composite with the addition of quartz filler. Materials. 2021;14:3825. doi: 10.3390/ma14143825. PubMed DOI PMC
Ma Y., Liu Y., Tong J. Chapter 10—Tribology of thermosetting composites. In: Rangappa S.M., Siengchin S., Parameswaranpillai J., Friedrich K., editors. Tribology of Polymer Composites. Elsevier; Amsterdam, The Netherlands: 2021. pp. 189–211. DOI
McKeen L. Fatigue and Tribological Properties of Plastics and Elastomers. In: McKeen L.W., editor. Fatigue and Tribological Properties of Plastics and Elastomers. 3rd ed. William Andrew Publishing; Oxford, UK: 2016. pp. 27–44. DOI
Mettler Toledo . Thermal Analysis Application No. UC 325. Analysis of a Fiber-Reinforced Composite by TOPEM® and DMA. Mettler Toledo AG; Schwerzenbach, Switzerland: 2011.
Mettler-Toledo GmbH . Mettler Toledo Stare System DMA/SDTA861. Mettler Toledo AG; Schwerzenbach, Switzerland: 2012. User manual.
O’Connell J. Glass Transition Temperatures of PLA, PETG & ABS. [(accessed on 31 July 2024)]. Available online: https://all3dp.com/2/pla-petg-glass-transition-temperature-3d-printing/
Protolabs N. 3D Printing with PLA vs. ABS: What’s the Difference? [(accessed on 30 July 2024)]. Available online: https://www.hubs.com/knowledge-base/pla-vs-abs-whats-difference/
BAMBULAB. BambuLab Wiki. Online. BABULAB. Filament & Plate Compatibility and Parameter Settings. 2024. [(accessed on 27 October 2024)]. Available online: https://wiki.bambulab.com/en/home.
Romani A., Mantelli A., Tralli P., Turri S., Levi M., Suriano R. Metallization of Thermoplastic Polymers and Composites 3D Printed by Fused Filament Fabrication. Technologies. 2021;9:49. doi: 10.3390/technologies9030049. DOI
Suder J., Bobovsky Z., Safar M., Mlotek J., Vocetka M., Zeman Z. Experimental analysis of temperature resistance of 3D printed PLA components. MM Sci. J. 2021;2021:4322–4327. doi: 10.17973/MMSJ.2021_03_2021004. DOI
Koci J. How to Improve Your 3D Prints with Annealing. [(accessed on 30 July 2024)]. Available online: https://blog.prusa3d.com/how-to-improve-your-3d-prints-with-annealing_31088/
Chaudhary B., Li H., Matos H. Long-term mechanical performance of 3D printed thermoplastics in seawater environments. Results Mater. 2023;17:100381. doi: 10.1016/j.rinma.2023.100381. DOI
Arráez F.J., Arnal M.L., Müller A.J. Thermal degradation of high-impact polystyrene with pro-oxidant additives. Polym. Bull. 2019;76:1489–1515. doi: 10.1007/s00289-018-2453-4. DOI
Xometry T. All About Nylon 3D Printing Filament: Materials, Properties, Definition. [(accessed on 30 July 2024)]. Available online: https://www.xometry.com/resources/3d-printing/nylon-3d-printing-filament/
Chuensangjun C., Pechyen C., Sirisansaneeyakul S. Degradation behaviors of different blends of polylactic acid buried in soil. Energy Procedia. 2013;34:73–82. doi: 10.1016/j.egypro.2013.06.735. DOI
Gülsoy Ö.H., Tasdemir M. The effect of bronze particles on the physical and mechanical properties of Acrylonitrile- Butadiene-Styrene copolymer. Polym. Technol. Eng. 2007;46:789–793. doi: 10.1080/03602550701274185. DOI
Anjos E.G.R.D., Marini J., Montagna L.S., Montanheiro T.L.D.A., Passador F.R. Reactive processing of maleic anhydride-grafted ABS and its compatibilizing effect on PC/ABS blends. Polim. E Tecnol. 2020;30:e2020039. doi: 10.1590/0104-1428.09220. DOI
Jones J. What Is ASA Filament? [(accessed on 30 July 2024)]. Available online: https://www.sunlu.com/en-cz/blogs/products-knowledge/what-is-asa-filament?srsltid=AfmBOoruE1ETofJUealfGRoaYrmt98MYtbOxROMSx_aVBGE0oUBHyA7e.
Stoimenov N., Kandeva M., Zagorski M., Panev P. Static and Kinetic Friction of 3D Printed Polymers and Composites. Tribol. Ind. 2024;46:97–106. doi: 10.24874/ti.1546.08.23.10. DOI
YİLMAZ S. Comparative Investigation of Mechanical, Tribological and Thermo-Mechanical Properties of Commonly Used 3D Printing Materials. Eur. J. Sci. Technol. 2022;32:827–831. doi: 10.31590/ejosat.1040085. DOI
Zhang J., Wang S., Qiao Y., Li Q. Effect of morphology designing on the structure and properties of PLA/PEG/ABS blends. Colloid Polym. Sci. 2016;294:1779–1787. doi: 10.1007/s00396-016-3940-5. DOI
Vattathurvalappil S.H., Hassan S.F., Haq M. Mechanics of ABS Polymer under Low & Intermediate Strain Rates. Recent Prog. Mater. 2023;5:1–15. doi: 10.21926/rpm.2301012. DOI
Xu S., Sun L., He J., Han H., Wang H., Fang Y., Wang Q. Effects of LiCl on crystallization, thermal, and mechanical properties of polyamide 6/wood fiber composites. Polym. Compos. 2018;39:E1574–E1580. doi: 10.1002/pc.24507. DOI
Hirsch P., Theumer T. Comparative Study on Polyamide 11 and Polyamide 10.10 as Matrix Polymers for Biogenic Wood-Plastic Composites. Macromol. Symp. 2022;403:2100492. doi: 10.1002/masy.202100492. DOI
Bachtiar D., Sapuan S.M., Khalina A., Zainudin E.S., Dahlan K.Z.M. The Flexural, Impact and Thermal Properties of Untreated Short Sugar Palm Fibre Reinforced High Impact Polystyrene (HIPS) Composites. Polym. Polym. Compos. 2012;20:493–502. doi: 10.1177/096739111202000510. DOI