GdVO4:Eu3+ and LaVO4:Eu3+ Nanoparticles Exacerbate Oxidative Stress in L929 Cells: Potential Implications for Cancer Therapy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EHA Ukraine Bridge Funding
the European Hematology Association
2023.04/0006
the National Research Foundation of Ukraine
PubMed
39519237
PubMed Central
PMC11546343
DOI
10.3390/ijms252111687
PII: ijms252111687
Knihovny.cz E-zdroje
- Klíčová slova
- apoptosis, caspase, intrinsic apoptosis, nanoparticles, nanotoxicity, oxidative stress,
- MeSH
- apoptóza * účinky léků MeSH
- buněčné linie MeSH
- gadolinium chemie farmakologie MeSH
- kovové nanočástice chemie MeSH
- myši MeSH
- nádory farmakoterapie metabolismus patologie MeSH
- nanočástice chemie MeSH
- oxidační stres * účinky léků MeSH
- peroxid vodíku farmakologie MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- stres endoplazmatického retikula účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gadolinium MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku * MeSH
The therapeutic potential of redox-active nanoscale materials as antioxidant- or reactive oxygen species (ROS)-inducing agents was intensely studied. Herein, we demonstrate that the synthesized and characterized GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticles, which have been already shown to have redox-active, anti-inflammatory, antibacterial, and wound healing properties, both in vitro and in vivo, worsen oxidative stress of L929 cells triggered by hydrogen peroxide or tert-butyl hydroperoxide (tBuOOH) at the concentrations that are safe for intact L929 cells. This effect was observed upon internalization of the investigated nanosized materials and is associated with the cleavage of caspase-3 and caspase-9 without recruitment of caspase-8. Such changes in the caspase cascade indicate activation of the intrinsic caspase-9-dependent mitochondrial but not the extrinsic death, receptor-mediated, and caspase-8-dependent apoptotic pathway. The GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticle-induced apoptosis of oxidatively compromised L929 cells is mediated by ROS overgeneration, Ca2+ overload, endoplasmic reticulum stress-associated JNK (c-Jun N-terminal kinase), and DNA damage-inducible transcript 3 (DDIT3). Our findings demonstrate that GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticles aggravate the oxidative stress-induced damage to L929 cells, indicating that they might potentially be applied as anti-cancer agents.
BIOCEV 1st Faculty of Medicine Charles University Průmyslová 595 25250 Vestec Czech Republic
Department of Biochemistry 5 N Karazin Kharkiv National 4 Svobody Sq 61022 Kharkiv Ukraine
ISIS Neutron and Muon Source Rutherford Appleton Laboratory Harwell Oxford Didcot OX11 0QX UK
Zobrazit více v PubMed
Debela D.T., Muzazu S.G., Heraro K.D., Ndalama M.T., Mesele B.W., Haile D.C., Kitui S.K., Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021;9:20503121211034366. doi: 10.1177/20503121211034366. PubMed DOI PMC
Dede Z., Tumer K., Kan T., Yucel B. Current Advances and Future Prospects in Cancer Immunotherapeutics. Medeni. Med. J. 2023;38:88–94. doi: 10.4274/MMJ.galenos.2023.29599. PubMed DOI PMC
Gourisankar S., Krokhotin A., Ji W., Liu X., Chang C.Y., Kim S.H., Li Z., Wenderski W., Simanauskaite J.M., Yang H., et al. Rewiring cancer drivers to activate apoptosis. Nature. 2023;620:417–425. doi: 10.1038/s41586-023-06348-2. PubMed DOI PMC
Sinkala M. Mutational landscape of cancer-driver genes across human cancers. Sci. Rep. 2023;13:12742. doi: 10.1038/s41598-023-39608-2. PubMed DOI PMC
Peng F., Liao M., Qin R., Zhu S., Peng C., Fu L., Chen Y., Han B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target. Ther. 2022;7:286. doi: 10.1038/s41392-022-01110-y. PubMed DOI PMC
Wang X., Liu Z., Ma L., Yu H. Ferroptosis and its emerging role in tumor. Biophys. Rep. 2021;7:280–294. doi: 10.52601/bpr.2021.210010. PubMed DOI PMC
Ocansey D.K.W., Qian F., Cai P., Ocansey S., Amoah S., Qian Y., Mao F. Current evidence and therapeutic implication of PANoptosis in cancer. Theranostics. 2024;14:640–661. doi: 10.7150/thno.91814. PubMed DOI PMC
Villalpando-Rodriguez G.E., Gibson S.B. Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat. Oxidative Med. Cell. Longev. 2021;2021:9912436. doi: 10.1155/2021/9912436. PubMed DOI PMC
Nakamura H., Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021;112:3945–3952. doi: 10.1111/cas.15068. PubMed DOI PMC
Perillo B., Di Donato M., Pezone A., Di Zazzo E., Giovannelli P., Galasso G., Castoria G., Migliaccio A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020;52:192–203. doi: 10.1038/s12276-020-0384-2. PubMed DOI PMC
Huang R., Chen H., Liang J., Li Y., Yang J., Luo C., Tang Y., Ding Y., Liu X., Yuan Q., et al. Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy. J. Cancer. 2021;12:5543–5561. doi: 10.7150/jca.54699. PubMed DOI PMC
Stepanić V., Kučerová-Chlupáčová M. Redox Active Molecules in Cancer Treatments. Molecules. 2023;28:1485. doi: 10.3390/molecules28031485. PubMed DOI PMC
Wang J., Sun D., Huang L., Wang S., Jin Y. Targeting Reactive Oxygen Species Capacity of Tumor Cells with Repurposed Drug as an Anticancer Therapy. Oxid. Med. Cell. Longev. 2021:8532940. doi: 10.1155/2021/8532940. PubMed DOI PMC
Li J., Gu Y., Zhang W., Bao C.Y., Li C.R., Zhang J.Y., Liu T., Li S., Huang J.X., Xie G.Z., et al. Molecular Mechanism for Selective Cytotoxicity towards Cancer Cells of Diselenide-Containing Paclitaxel Nanoparticles. Int. J. Biol. Sci. 2019;15:1755–1770. doi: 10.7150/ijbs.34878. PubMed DOI PMC
Sims C.M., Hanna S.K., Heller D.A., Horoszko C.P., Johnson M.E., Montoro Bustos A.R., Reipa V., Riley K.R., Nelson B.C. Redox-active nanomaterials for nanomedicine applications. Nanoscale. 2017;9:15226–15251. doi: 10.1039/C7NR05429G. PubMed DOI PMC
Ciccarese F., Raimondi V., Sharova E., Silic-Benussi M., Ciminale V. Nanoparticles as Tools to Target Redox Homeostasis in Cancer Cells. Antioxidants. 2020;9:211. doi: 10.3390/antiox9030211. PubMed DOI PMC
Liang J., Liu B. ROS-responsive drug delivery systems. Bioeng. Transl. Med. 2016;1:239–251. doi: 10.1002/btm2.10014. PubMed DOI PMC
Saddik M.S., Elsayed M.M.A., Abdel-Rheem A.A., El-Mokhtar M.A., Mosa E.S., Al-Hakkani M.F., Al-Shelkamy S.A., Khames A., Daha M.A., Abdel-Aleem J.A. A Novel C@Fe@Cu Nanocomposite Loaded with Doxorubicin Tailored for the Treatment of Hepatocellular Carcinoma. Pharmaceutics. 2022;14:1845. doi: 10.3390/pharmaceutics14091845. PubMed DOI PMC
Mohanty S., Paul S. Nanotechnology-Based ROS-Triggered Therapeutic Strategies in Multiple Cancer. In: Chakraborti S., editor. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer Nature; Singapore: 2022. pp. 2753–2777.
Haque M., Shakil M.S., Mahmud K.M. The Promise of Nanoparticles-Based Radiotherapy in Cancer Treatment. Cancers. 2023;15:1892. doi: 10.3390/cancers15061892. PubMed DOI PMC
Yefimova S.L., Maksimchuk P.O., Seminko V.V., Kavok N.S., Klochkov V.K., Hubenko K.A., Sorokin A.V., Kurilchenko I.Y., Malyukin Y.V. Janus-Faced Redox Activity of LnVO4:Eu3+ (Ln = Gd, Y, and La) Nanoparticles. J. Phys. Chem. C. 2019;123:15323–15329. doi: 10.1021/acs.jpcc.9b03040. DOI
Tkachenko A.S., Gubina-Vakulyck G.I., Klochkov V.K., Kavok N.S., Onishchenko A.I., Gorbach T.V., Nakonechna O.A. Experimental Evaluation of the Impact of Gadolinium Orthovanadate GdVO4:Eu3+ Nanoparticles on the Carrageenan-Induced Intestinal Inflammation. Acta Medica. 2020;63:18–24. doi: 10.14712/18059694.2020.11. PubMed DOI
Yefimova S., Onishchenko A., Klochkov V., Myasoedov V., Kot Y., Tryfonyuk L., Knigavko O., Maksimchuk P., Kökbaş U., Kalashnyk-Vakulenko Y., et al. Rare-earth orthovanadate nanoparticles trigger Ca(2+)-dependent eryptosis. Nanotechnology. 2023;34:205101. doi: 10.1088/1361-6528/acbb7f. PubMed DOI
Farasati Far B., Maleki-Baladi R., Fathi-Karkan S., Babaei M., Sargazi S. Biomedical applications of cerium vanadate nanoparticles: A review. J. Mater. Chem. B. 2024;12:609–636. doi: 10.1039/D3TB01786A. PubMed DOI
Gonca S., Özdemir S., Yefimova S., Tkachenko A., Onishchenko A., Klochkov V., Kavok N., Maksimchuk P., Dizge N., Ocakoglu K. Experimental confirmation of antimicrobial effects of GdYVO(4):Eu(3+) nanoparticles. Drug Dev. Ind. Pharm. 2021;47:1966–1974. doi: 10.1080/03639045.2022.2075007. PubMed DOI
Gonca S., Yefimova S., Dizge N., Tkachenko A., Özdemir S., Prokopiuk V., Klochkov V., Kavok N., Onishchenko A., Maksimchuk P., et al. Antimicrobial Effects of Nanostructured Rare-Earth-Based Orthovanadates. Curr. Microbiol. 2022;79:254. doi: 10.1007/s00284-022-02947-w. PubMed DOI
Liu S., Tang C., Jiang K., Zhang L., Ma N., Li Y., Fan M., Huang B. Toxicity of energetic nanomaterials assessed on L929 fibroblasts. Chem. Pap. 2024;78:3507–3514. doi: 10.1007/s11696-024-03324-6. DOI
Garcia-Cohen E.C., Marin J., Diez-Picazo L.D., Baena A.B., Salaices M., Rodriguez-Martinez M.A. Oxidative stress induced by tert-butyl hydroperoxide causes vasoconstriction in the aorta from hypertensive and aged rats: Role of cyclooxygenase-2 isoform. J. Pharmacol. Exp. Ther. 2000;293:75–81. PubMed
Ransy C., Vaz C., Lombès A., Bouillaud F. Use of H(2)O(2) to Cause Oxidative Stress, the Catalase Issue. Int. J. Mol. Sci. 2020;21:9149. doi: 10.3390/ijms21239149. PubMed DOI PMC
Jeffries C.M., Ilavsky J., Martel A., Hinrichs S., Meyer A., Pedersen J.S., Sokolova A.V., Svergun D.I. Small-angle X-ray and neutron scattering. Nat. Rev. Methods Primers. 2021;1:70. doi: 10.1038/s43586-021-00064-9. DOI
Tkachenko A.S., Klochkov V.K., Lesovoy V.N., Myasoedov V.V., Kavok N.S., Onishchenko A.I., Yefimova S.L., Posokhov Y.O. Orally administered gadolinium orthovanadate GdVO(4):Eu(3+) nanoparticles do not affect the hydrophobic region of cell membranes of leukocytes. Wien. Med. Wochenschr. 2020;170:189–195. doi: 10.1007/s10354-020-00735-4. PubMed DOI
Rennick J.J., Johnston A.P.R., Parton R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 2021;16:266–276. doi: 10.1038/s41565-021-00858-8. PubMed DOI
Verkhovskii R.A., Ivanov A.N., Lengert E.V., Tulyakova K.A., Shilyagina N.Y., Ermakov A.V. Current Principles, Challenges, and New Metrics in pH-Responsive Drug Delivery Systems for Systemic Cancer Therapy. Pharmaceutics. 2023;15:1566. doi: 10.3390/pharmaceutics15051566. PubMed DOI PMC
Amaral O., Martins M., Oliveira A.R., Duarte A.J., Mondragão-Rodrigues I., Macedo M.F. The Biology of Lysosomes: From Order to Disorder. Biomedicines. 2023;11:213. doi: 10.3390/biomedicines11010213. PubMed DOI PMC
Evilevitch A., Hohlbauch S.V. Intranuclear HSV-1 DNA ejection induces major mechanical transformations suggesting mechanoprotection of nucleus integrity. Proc. Natl. Acad. Sci. USA. 2022;119:e2114121119. doi: 10.1073/pnas.2114121119. PubMed DOI PMC
Carollo P.S., Barra V. Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging. Biol. Cell. 2023;115:2200023. doi: 10.1111/boc.202200023. PubMed DOI
Stephens A.D., Banigan E.J., Adam S.A., Goldman R.D., Marko J.F. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus. Mol. Biol. Cell. 2017;28:1984–1996. doi: 10.1091/mbc.e16-09-0653. PubMed DOI PMC
Hobson C.M., Kern M., O’Brien E.T., 3rd, Stephens A.D., Falvo M.R., Superfine R. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics. Mol. Biol. Cell. 2020;31:1788–1801. doi: 10.1091/mbc.E20-01-0073. PubMed DOI PMC
Maksimchuk P.O., Yefimova S.L., Hubenko K.O., Omielaieva V.V., Kavok N.S., Klochkov V.K., Sorokin O.V., Malyukin Y.V. Dark Reactive Oxygen Species Generation in ReVO4:Eu3+ (Re = Gd, Y) Nanoparticles in Aqueous Solutions. J. Phys. Chem. C. 2020;124:3843–3850. doi: 10.1021/acs.jpcc.9b10143. DOI
Aboelella N.S., Brandle C., Kim T., Ding Z.C., Zhou G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers. 2021;13:986. doi: 10.3390/cancers13050986. PubMed DOI PMC
Haider T., Pandey V., Sandha K.K., Gupta P.N., Soni V. Implication of Nanomedicine in Therapy of Oxidative Stress-Induced Cancer. In: Chakraborti S., Ray B.K., Roychoudhury S., editors. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer Nature; Singapore: 2022. pp. 1947–1967.
Rehman Y., Qutaish H., Kim J.H., Huang X.F., Alvi S., Konstantinov K. Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. Nanomaterials. 2022;12:2462. doi: 10.3390/nano12142462. PubMed DOI PMC
Kowalczyk P., Sulejczak D., Kleczkowska P., Bukowska-Ośko I., Kucia M., Popiel M., Wietrak E., Kramkowski K., Wrzosek K., Kaczyńska K. Mitochondrial Oxidative Stress-A Causative Factor and Therapeutic Target in Many Diseases. Int. J. Mol. Sci. 2021;22:13384. doi: 10.3390/ijms222413384. PubMed DOI PMC
Zhao R.Z., Jiang S., Zhang L., Yu Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review) Int. J. Mol. Med. 2019;44:3–15. doi: 10.3892/ijmm.2019.4188. PubMed DOI PMC
Li P., Zhou L., Zhao T., Liu X., Zhang P., Liu Y., Zheng X., Li Q. Caspase-9: Structure, mechanisms and clinical application. Oncotarget. 2017;8:23996–24008. doi: 10.18632/oncotarget.15098. PubMed DOI PMC
Onishchenko A., Myasoedov V., Yefimova S., Nakonechna O., Prokopyuk V., Butov D., Kökbaş U., Klochkov V., Maksimchuk P., Kavok N., et al. UV Light-Activated GdYVO(4):Eu(3+) Nanoparticles Induce Reactive Oxygen Species Generation in Leukocytes Without Affecting Erythrocytes In Vitro. Biol. Trace Elem. Res. 2022;200:2777–2792. doi: 10.1007/s12011-021-02867-z. PubMed DOI
Lavrik I.N. Systems biology of death receptor networks: Live and let die. Cell Death Dis. 2014;5:e1259. doi: 10.1038/cddis.2014.160. PubMed DOI PMC
Sarkar A., Das J., Manna P., Sil P.C. Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology. 2011;290:208–217. doi: 10.1016/j.tox.2011.09.086. PubMed DOI
Jawaid P., Rehman M.U., Zhao Q.-L., Misawa M., Ishikawa K., Hori M., Shimizu T., Saitoh J.-I., Noguchi K., Kondo T. Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress. Cell Death Discov. 2020;6:83. doi: 10.1038/s41420-020-00314-x. PubMed DOI PMC
Danese A., Leo S., Rimessi A., Wieckowski M.R., Fiorica F., Giorgi C., Pinton P. Cell death as a result of calcium signaling modulation: A cancer-centric prospective. Biochim. Et Biophys. Acta (BBA)–Mol. Cell Res. 2021;1868:119061. doi: 10.1016/j.bbamcr.2021.119061. PubMed DOI
Sukumaran P., Nascimento Da Conceicao V., Sun Y., Ahamad N., Saraiva L.R., Selvaraj S., Singh B.B. Calcium Signaling Regulates Autophagy and Apoptosis. Cells. 2021;10:2125. doi: 10.3390/cells10082125. PubMed DOI PMC
Tkachenko A. Apoptosis and eryptosis: Similarities and differences. Apoptosis. 2024;29:482–502. doi: 10.1007/s10495-023-01915-4. PubMed DOI
Huang C.C., Aronstam R.S., Chen D.R., Huang Y.W. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol. Vitr. 2010;24:45–55. doi: 10.1016/j.tiv.2009.09.007. PubMed DOI
Freitas M., Lucas M., Sousa A., Soares T., Ribeiro D., Carvalho F., Fernandes E. Small-size silver nanoparticles stimulate neutrophil oxidative burst through an increase of intracellular calcium levels. World Acad. Sci. J. 2020;2:5. doi: 10.3892/wasj.2020.46. DOI
Szegezdi E., Logue S.E., Gorman A.M., Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7:880–885. doi: 10.1038/sj.embor.7400779. PubMed DOI PMC
Yuan S., She D., Jiang S., Deng N., Peng J., Ma L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Mol. Med. 2024;30:40. doi: 10.1186/s10020-024-00808-9. PubMed DOI PMC
Peña-Blanco A., García-Sáez A.J. Bax, Bak and beyond–mitochondrial performance in apoptosis. FEBS J. 2018;285:416–431. doi: 10.1111/febs.14186. PubMed DOI
Sato A., Kraynak J., Marciscano A.E., Galluzzi L. Radiation therapy: An old dog learning new tricks. Methods Cell Biol. 2022;172:xiii–xxiii. PubMed PMC
Kim J.H., Jenrow K.A., Brown S.L. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat. Oncol. J. 2014;32:103–115. doi: 10.3857/roj.2014.32.3.103. PubMed DOI PMC
Nepon H., Safran T., Reece E.M., Murphy A.M., Vorstenbosch J., Davison P.G. Radiation-Induced Tissue Damage: Clinical Consequences and Current Treatment Options. Semin. Plast. Surg. 2021;35:181–188. doi: 10.1055/s-0041-1731464. PubMed DOI PMC
Wu Y.H., Chen R.J., Chiu H.W., Yang L.X., Wang Y.L., Chen Y.Y., Yeh Y.L., Liao M.Y., Wang Y.J. Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: Pivotal role of autophagy. Theranostics. 2023;13:40–58. doi: 10.7150/thno.77233. PubMed DOI PMC
Maksimchuk P.O., Hubenko K.O., Grygorova G.V., Seminko V.V., Bespalova I.I., Sorokin A.V., Yefimova S.L. Photobleaching of LnVO4:Eu3+ nanoparticles under UV-light irradiation: Effect of nanoparticle size. J. Lumin. 2022;242:118593. doi: 10.1016/j.jlumin.2021.118593. DOI