Study on the Correlation Between Renal Blood Perfusion and Kidney Injury in Different Weekly-Aged Type 2 Diabetic Mice

. 2024 Nov 12 ; 73 (5) : 717-727.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39530907

UNLABELLED: This study aims to explore the correlation between renal blood perfusion (RBP) and diabetic nephropathy (DN). METHODS: A total of 72 mice included db/db and db/m mice at the ages of 6, 14, and 22 weeks, forming six groups. RBP was assessed using Laser Speckle Contrast Imaging (LSCI). Kidney function markers and the extent of pathological damage were evaluated. Pearson correlation analysis was employed to predict the relationship between RBP and various indicators of kidney damage. RESULTS: Compared to db/m mice of all ages, 6-week-old db/db mice showed no significant difference in kidney function markers and had no apparent pathological damage. However, db/db mice at other ages showed deteriorating kidney functions and evident pathological damage, which worsened with age. The RBP in db/m mice of all ages and 6-week-old db/db mice showed no significant difference; however, RBP in db/db mice demonstrated a significant declining trend with age. The correlation between RBP and kidney damage indicators was as follows: 24 h urinary microalbumin (r=-0.728), urinary transferrin (r=-0.834), urinary beta2-microglobulin (r=-0.755), urinary monocyte chemoattractant protein-1 (r=-0.786), Masson's trichrome staining (r=-0.872), and Periodic Acid-Schiff staining (r=-0.908). CONCLUSION: RBP is strongly correlated with the extent of diabetic kidney damage.

Zobrazit více v PubMed

Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet. 2022;400:1803–1820. doi: 10.1016/S0140-6736(22)01655-5. PubMed DOI

Thipsawat S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab Vasc Dis Res. 2021;18:14791641211058856. doi: 10.1177/14791641211058856. PubMed DOI PMC

Maekawa M, Maekawa T, Sasase T, Takagi K, Takeuchi S, Kitamoto M, Nakagawa T, Toyoda K, Konishi N, Ohta T, Yamada T. Pathophysiological analysis of uninephrectomized db/db mice as a model of severe diabetic kidney disease. Physiol Res. 2022;71:209–217. doi: 10.33549/physiolres.934784. PubMed DOI PMC

Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P, Susztak K. Molecular pathways that drive diabetic kidney disease. J Clin Invest. 2023;133:e165654. doi: 10.1172/JCI165654. PubMed DOI PMC

Pang X, Zhang Y, Peng Z, Shi X, Han J, Xing Y. Hirudin reduces nephropathy microangiopathy in STZ-induced diabetes rats by inhibiting endothelial cell migration and angiogenesis. Life Sci. 2020;255:117779. doi: 10.1016/j.lfs.2020.117779. PubMed DOI

Guan Z, Makled MN, Inscho EW. Purinoceptors, renal microvascular function and hypertension. Physiol Res. 2020;69:353–369. doi: 10.33549/physiolres.934463. PubMed DOI PMC

Futrakul N, Futrakul P. Biomarker for early renal microvascular and diabetic kidney diseases. Ren Fail. 2017;39:505–511. doi: 10.1080/0886022X.2017.1323647. PubMed DOI PMC

Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006;17:17–25. doi: 10.1681/ASN.2005070757. PubMed DOI

Chinese Association of Diabetes and Microcirculation Chinese experts consensus for drug therapy of microcirculatory dysfunction in diabetes mellitus: 2021 updated Chinese J Front Med Sci (Electronic Version) 20211349–57..

Okada H, Tanaka M, Yasuda T, Okada Y, Norikae H, Fujita T, Nishi T, et al. Decreased microcirculatory function measured by perfusion index is a novel indicator of diabetic kidney disease in patients with type 2 diabetes. J Diabetes Investig. 2020;11:681–687. doi: 10.1111/jdi.13193. PubMed DOI PMC

Zhao P, Li N, Lin L, Li Q, Wang Y, Luo Y. Correlation between serum cystatin C level and renal microvascular perfusion assessed by contrast-enhanced ultrasound in patients with diabetic kidney disease. Ren Fail. 2022;44:1732–1740. doi: 10.1080/0886022X.2022.2134026. PubMed DOI PMC

Lee B, Sosnovtseva O, Sørensen CM, Postnov DD. Multi-scale laser speckle contrast imaging of microcirculatory vasoreactivity. Biomed Opt Express. 2022;13:2312–2322. doi: 10.1364/BOE.451014. PubMed DOI PMC

Tew GA, Klonizakis M, Crank H, Briers JD, Hodges GJ. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function. Microvasc Res. 2011;82:326–332. doi: 10.1016/j.mvr.2011.07.007. PubMed DOI

Heeman W, Maassen H, Calon J, van Goor H, Leuvenink H, van Dam GM, Boerma EC. Real-time visualization of renal microperfusion using laser speckle contrast imaging. J Biomed Opt. 2021;26:056004. doi: 10.1117/1.JBO.26.5.056004. PubMed DOI PMC

Fellmann L, Nascimento AR, Tibiriça E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther. 2013;137:331–340. doi: 10.1016/j.pharmthera.2012.11.004. PubMed DOI

Tesch GH, Lim AK. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2011;300:F301–F310. doi: 10.1152/ajprenal.00607.2010. PubMed DOI

Wu Y, Sun B, Guo X, Wu L, Hu Y, Qin L, Yang T, et al. Zishen Pill alleviates diabetes in Db/db mice via activation of PI3K/AKT pathway in the liver. Chin Med. 2022;17:128. doi: 10.1186/s13020-022-00683-8. PubMed DOI PMC

Thomsen LH, Fog-Tonnesen M, Nielsen Fink L, Norlin J, García de Vinuesa A, Hansen TK, de Heer E, et al. Disparate phospho-Smad2 levels in advanced type 2 diabetes patients with diabetic nephropathy and early experimental db/db mouse model. Ren Fail. 2017;39:629–642. doi: 10.1080/0886022X.2017.1361837. PubMed DOI PMC

Wang F, Fan J, Pei T, He Z, Zhang J, Ju L, Han Z, Wang M, Xiao W. Effects of Shenkang Pills on Early-Stage Diabetic Nephropathy in db/db Mice via Inhibiting AURKB/RacGAP1/RhoA Signaling Pathway. Front Pharmacol. 2022;13:781806. doi: 10.3389/fphar.2022.781806. PubMed DOI PMC

Luo B, Wen S, Chen YC, Cui Y, Gao FB, Yao YY, Ju SH, Teng GJ. LOX-1-Targeted Iron Oxide Nanoparticles Detect Early Diabetic Nephropathy in db/db Mice. Mol Imaging Biol. 2015;17:652–660. doi: 10.1007/s11307-015-0829-5. PubMed DOI

Xu Z, Dai XX, Zhang QY, Su SL, Yan H, Zhu Y, Shang EX, Qian DW, Duan JA. Protective effects and mechanisms of Rehmannia glutinosa leaves total glycoside on early kidney injury in db/db mice. Biomed Pharmacother. 2020;125:109926. doi: 10.1016/j.biopha.2020.109926. PubMed DOI

Wang WX, Luo SB, Jiang P, Xia MM, Hei AL, Mao YH, Li CB, Hu GX, Cai JP. Increased Oxidative Damage of RNA in Early-Stage Nephropathy in db/db Mice. Oxid Med Cell Longev. 2017;2017:2353729. doi: 10.1155/2017/2353729. PubMed DOI PMC

Tamura Y, Murayama T, Minami M, Matsubara T, Yokode M, Arai H. Ezetimibe ameliorates early diabetic nephropathy in db/db mice. J Atheroscler Thromb. 2012;19:608–618. doi: 10.5551/jat.11312. PubMed DOI

Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol. 2003;284:F1138–F1144. doi: 10.1152/ajprenal.00315.2002. PubMed DOI

Loeffler I, Rüster C, Franke S, Liebisch M, Wolf G. Erythropoietin ameliorates podocyte injury in advanced diabetic nephropathy in the db/db mouse. Am J Physiol Renal Physiol. 2013;305:F911–F918. doi: 10.1152/ajprenal.00643.2012. PubMed DOI

Gluhovschi C, Gluhovschi G, Petrica L, Timar R, Velciov S, Ionita I, Kaycsa A, Timar B. Urinary Biomarkers in the Assessment of Early Diabetic Nephropathy. J Diabetes Res. 2016;2016:4626125. doi: 10.1155/2016/4626125. PubMed DOI PMC

Narita T, Sasaki H, Hosoba M, Miura T, Yoshioka N, Morii T, Shimotomai T, Koshimura J, Fujita H, Kakei M, Ito S. Parallel increase in urinary excretion rates of immunoglobulin G, ceruloplasmin, transferrin, and orosomucoid in normoalbuminuric type 2 diabetic patients. Diabetes Care. 2004;27:1176–1181. doi: 10.2337/diacare.27.5.1176. PubMed DOI

Ekrikpo UE, Effa EE, Akpan EE, Obot AS, Kadiri S. Clinical Utility of Urinary β2-Microglobulin in Detection of Early Nephropathy in African Diabetes Mellitus Patients. Int J Nephrol. 2017;2017:4093171. doi: 10.1155/2017/4093171. PubMed DOI PMC

Haller H, Bertram A, Nadrowitz F, Menne J. Monocyte chemoattractant protein-1 and the kidney. Curr Opin Nephrol Hypertens. 2016;25:42–49. doi: 10.1097/MNH.0000000000000186. PubMed DOI

Scurt FG, Menne J, Brandt S, Bernhardt A, Mertens PR, Haller H, Chatzikyrkou C. Monocyte chemoattractant protein-1 predicts the development of diabetic nephropathy. Diabetes Metab Res Rev. 2022;38:e3497. doi: 10.1002/dmrr.3497. PubMed DOI

Dong Y, Wang WP, Lin P, Fan P, Mao F. Assessment of renal perfusion with contrast-enhanced ultrasound: Preliminary results in early diabetic nephropathies. Clin Hemorheol Microcirc. 2016;62:229–238. doi: 10.3233/CH-151967. PubMed DOI

Mora-Gutiérrez JM, Garcia-Fernandez N, Slon Roblero MF, Páramo JA, Escalada FJ, Wang DJ, Benito A, Fernández-Seara MA. Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging. 2017;46:1810–1817. doi: 10.1002/jmri.25717. PubMed DOI

Lubas A, Zegadło A, Frankowska E, Klimkiewicz J, Jędrych E, Niemczyk S. Ultrasound Doppler Flow Parameters Are Independently Associated with Renal Cortex Contrast-Enhanced Multidetector Computed Tomography Perfusion and Kidney Function. J Clin Med. 2023;12:2111. doi: 10.3390/jcm12062111. PubMed DOI PMC

Cracowski JL, Minson CT, Salvat-Melis M, Halliwill JR. Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci. 2006;27:503–508. doi: 10.1016/j.tips.2006.07.008. PubMed DOI

Legrand M, Bezemer R, Kandil A, Demirci C, Payen D, Ince C. The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med. 2011;37:1534–1542. doi: 10.1007/s00134-011-2267-4. PubMed DOI PMC

Konovalov A, Gadzhiagaev V, Grebenev F, Stavtsev D, Piavchenko G, Gerasimenko A, Telyshev D, Meglinski I, Eliava S. Laser Speckle Contrast Imaging in Neurosurgery: A Systematic Review. World Neurosurg. 2023;171:35–40. doi: 10.1016/j.wneu.2022.12.048. PubMed DOI

Dunn AK. Laser speckle contrast imaging of cerebral blood flow. Ann Biomed Eng. 2012;40:367–377. doi: 10.1007/s10439-011-0469-0. PubMed DOI PMC

Zhai L, Fu Y, Du Y.Advances in Laser Speckle Contrast Imaging: Key Techniques and Applications Chin J Lasers 20235052–79..

Ambinathan JPN, Sridhar VS, Lytvyn Y, Lovblom LE, Liu H, Bjornstad P, Perkins BA, et al. Relationships between inflammation, hemodynamic function and RAAS in longstanding type 1 diabetes and diabetic kidney disease. J Diabetes Complications. 2021;35:107880. doi: 10.1016/j.jdiacomp.2021.107880. PubMed DOI

Samsu N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Biomed Res Int. 2021;2021:1497449. doi: 10.1155/2021/1497449. PubMed DOI PMC

Hou B, Ma P, Yang X, Zhao X, Zhang L, Zhao Y, He P, Zhang L, Du G, Qiang G. In silico prediction and experimental validation to reveal the protective mechanism of Puerarin against excessive extracellular matrix accumulation through inhibiting ferroptosis in diabetic nephropathy. J Ethnopharmacol. 2024;319:117281. doi: 10.1016/j.jep.2023.117281. PubMed DOI

Futrakul N, Kulaputana O, Futrakul P, Chavanakul A, Deekajorndech T. Enhanced peritubular capillary flow and renal function can be accomplished in normoalbuminuric type 2 diabetic nephropathy. Ren Fail. 2011;33:312–315. doi: 10.3109/0886022X.2011.560405. PubMed DOI

Futrakul N, Butthep P, Futrakul P, Sitprija V. Improvement of renal function in type 2 diabetic nephropathy. Ren Fail. 2007;29:155–158. doi: 10.1080/08860220601095835. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...