Purinoceptors, renal microvascular function and hypertension

. 2020 Jul 16 ; 69 (3) : 353-369. [epub] 20200417

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32301620

Grantová podpora
R01 DK044628 NIDDK NIH HHS - United States
R01 DK106500 NIDDK NIH HHS - United States
R29 DK044628 NIDDK NIH HHS - United States

Proper renal blood flow (RBF) and glomerular filtration rate (GFR) are critical for maintaining normal blood pressure, kidney function and water and electrolyte homeostasis. The renal microvasculature expresses a multitude of receptors mediating vasodilation and vasoconstriction, which can influence glomerular blood flow and capillary pressure. Despite this, RBF and GFR remain quite stable when arterial pressure fluctuates because of the autoregulatory mechanism. ATP and adenosine participate in autoregulatory control of RBF and GFR via activation of two different purinoceptor families (P1 and P2). Purinoceptors are widely expressed in renal microvasculature and tubules. Emerging data show altered purinoceptor signaling in hypertension-associated kidney injury, diabetic nephropathy, sepsis, ischemia-reperfusion induced acute kidney injury and polycystic kidney disease. In this brief review, we highlight recent studies and new insights on purinoceptors regulating renal microvascular function and renal hemodynamics. We also address the mechanisms underlying renal microvascular injury and impaired renal autoregulation, focusing on purinoceptor signaling and hypertension-induced renal microvascular dysfunction. Interested readers are directed to several excellent and comprehensive reviews that recently covered the topics of renal autoregulation, and nucleotides in kidney function under physiological and pathophysiological conditions (Inscho 2009, Navar et al. 2008, Carlstrom et al. 2015, Vallon et al. 2020).

Zobrazit více v PubMed

BAYLISS WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol. 1902;28:220–231. doi: 10.1113/jphysiol.1902.sp000911. PubMed DOI PMC

BELL PD, LAPOINTE JY, SABIROV R, HAYASHI S, PETI-PETERDI J, MANABE K, KOVACS G, OKADA Y. Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci U S A. 2003;100:4322–4327. doi: 10.1073/pnas.0736323100. PubMed DOI PMC

BELL PD, KOMLOSI P, ZHANG ZR. ATP as a mediator of macula densa cell signalling. Purinergic Signal. 2009;5:461–471. doi: 10.1007/s11302-009-9148-0. PubMed DOI PMC

BENCZE M, BEHULIAK M, ZICHA J. The impact of four different classes of anesthetics on the mechanisms of blood pressure regulation in normotensive and spontaneously hypertensive rats. Physiol Res. 2013;62:471–478. PubMed

BIDANI AK, POLICHNOWSKI AJ, LICEA-VARGAS H, LONG J, KLIETHERMES S, WILLIAMSON GA, GRIFFIN KA. BP Fluctuations and the real-time dynamics of renal blood flow responses in conscious rats. J Am Soc Nephrol. 2020;31:324–336. doi: 10.1681/asn.2019070718. PubMed DOI PMC

BURKE M, PABBIDI M, FAN F, GE Y, LIU R, WILLIAMS JM, SARKIS A, LAZAR J, JACOB HJ, ROMAN RJ. Genetic basis of the impaired renal myogenic response in FHH rats. Am J Physiol Renal Physiol. 2013;304:F565–F577. doi: 10.1152/ajprenal.00404.2012. PubMed DOI PMC

BURNSTOCK G, EVANS LC, BAILEY MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal. 2014;10:71–101. doi: 10.1007/s11302-013-9400-5. PubMed DOI PMC

CARLSTROM M, WILCOX CS, ARENDSHORST WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95:405–511. doi: 10.1152/physrev.00042.2012. PubMed DOI PMC

CARMINES PK, MITCHELL KD, NAVAR LG. Effects of calcium antagonists on renal hemodynamics and glomerular function. Kidney Int. 1992;41(Suppl 36):S43–S48. PubMed

CASELLAS D, NAVAR LG. In vitro perfusion of juxtamedullary nephrons in rats. Am J Physiol Renal Physiol. 1984;246:F349–F358. doi: 10.1152/ajprenal.1984.246.3.f349. PubMed DOI

CASELLAS D, CARMINES PK, NAVAR LG. Microvascular reactivity of in vitro blood perfused juxtamedullary nephrons from rats. Kidney Int. 1985;28:752–759. doi: 10.1038/ki.1985.194. PubMed DOI

CASTROP H, HUANG Y, HASHIMOTO S, MIZEL D, HANSEN P, THEILIG F, BACHMANN S, DENG C, BRIGGS J, SCHNERMANN J. Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotidase/CD73-deficient mice. J Clin Invest. 2004;114:634–642. doi: 10.1172/jci21851. PubMed DOI PMC

CHAN CM, UNWIN RJ, BARDINI M, OGLESBY IB, FORD AP, TOWNSEND-NICHOLSON A, BURNSTOCK G. Localization of P2X1 purinoceptors by autoradiography and immunohistochemistry in rat kidneys. Am J Physiol Renal Physiol. 1998;274:F799–F804. doi: 10.1152/ajprenal.1998.274.4.f799. PubMed DOI

CHRISTENSEN PK, HANSEN HP, PARVING HH. Impaired autoregulation of GFR in hypertensive non-insulin dependent diabetic patients. Kidney Int. 1997;52:1369–1374. doi: 10.1038/ki.1997.463. PubMed DOI

CHRISTENSEN PK, HOMMEL EE, CLAUSEN P, FELDT-RASMUSSEN B, PARVING HH. Impaired autoregulation of the glomerular filtration rate in patients with nondiabetic nephropathies. Kidney Int. 1999;56:1517–1523. doi: 10.1046/j.1523-1755.1999.00676.x. PubMed DOI

CHRISTENSEN PK, AKRAM K, KONIG KB, PARVING HH. Autoregulation of glomerular filtration rate in patients with type 2 diabetes during isradipine therapy. Diabetes Care. 2003;26:156–162. doi: 10.2337/diacare.26.1.156. PubMed DOI

DRUMMOND HA, GEBREMEDHIN D, HARDER DR. Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension. 2004;44:643–648. doi: 10.1161/01.hyp.0000144465.56360.ad. PubMed DOI

DRUMMOND HA, GRIFONI SC, JERNIGAN NL. A new trick for an old dogma ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 2008;23:23–31. doi: 10.1152/physiol.00034.2007. PubMed DOI

DRUMMOND HA, GRIFONI SC, ABU-ZAID A, GOUSSET M, CHIPOSI R, BARNARD JM, MURPHEY B, STEC DE. Renal inflammation and elevated blood pressure in a mouse model of reduced β-ENaC. Am J Physiol Renal Physiol. 2011;301:F443–F449. doi: 10.1152/ajprenal.00694.2010. PubMed DOI PMC

ELMARAKBY AA, QUIGLEY JE, OLEARCZYK JJ, SRIDHAR A, COOK AK, INSCHO EW, POLLOCK DM, IMIG JD. Chemokine receptor 2b inhibition provides renal protection in angiotensin II-salt hypertension. Hypertension. 2007;50:1069–1076. doi: 10.1161/hypertensionaha.107.098806. PubMed DOI PMC

EVANS LC, PETROVA G, KURTH T, YANG C, BUKOWY JD, MATTSON DL, COWLEY AWJ. Increased perfusion pressure drives renal T-cell infiltration in the Dahl salt-sensitive rat. Hypertension. 2017;70:543–551. doi: 10.1161/hypertensionaha.117.09208. PubMed DOI PMC

FELLNER RC, GUAN Z, COOK AK, POLLOCK DM, INSCHO EW. Endothelin contributes to blunted renal autoregulation observed with a high-salt diet. Am J Physiol Renal Physiol. 2015;309:F687–F696. doi: 10.1152/ajprenal.00641.2014. PubMed DOI PMC

FENG W, CHUMLEY P, PRIETO MC, MIYADA K, SETH DM, FATIMA H, HUA P, REZONZEW G, SANDERS PW, JAIMES EA. Transcription factor avian erythroblastosis virus E26 oncogen homolog-1 is a novel mediator of renal injury in salt-sensitive hypertension. Hypertension. 2015;65:813–820. doi: 10.1161/hypertensionaha.114.04533. PubMed DOI PMC

FENG W, GUAN Z, XING D, LI X, YING WZ, REMEDIES CE, INSCHO EW, SANDERS PW. Avian erythroblastosis virus E26 oncogene homolog-1 (ETS-1) plays a role in renal microvascular pathophysiology in the Dahl salt-sensitive rat. Kidney Int. 2020;97:528–537. doi: 10.1016/j.kint.2019.09.025. PubMed DOI PMC

FRANCO M, BAUTISTA R, TAPIA E, SOTO V, SANTAMARIA J, OSORIO H, PACHECO U, SANCHEZ-LOZADA LG, KOBORI H, NAVAR LG. Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats. Am J Physiol Renal Physiol. 2011;300:F1301–F1309. doi: 10.1152/ajprenal.00367.2010. PubMed DOI PMC

FRANCO M, BAUTISTA-PEREZ R, CANO-MARTINEZ A, PACHECO U, SANTAMARIA J, Del VALLE MONDRAGON L, PEREZ-MENDEZ O, NAVAR LG. Physiopathological implications of P2X1 and P2X7 receptors in regulation of glomerular hemodynamics in angiotensin II-induced hypertension. Am J Physiol Renal Physiol. 2017;313:F9–F19. doi: 10.1152/ajprenal.00663.2016. PubMed DOI

FREDHOLM BB, ARSLAN G, HALLDNER L, KULL B, SCHULTE G, WASSERMAN W. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:364–374. doi: 10.1007/s002100000313. PubMed DOI

GERWINS P, FREDHOLM BB. Stimulation of adenosine A1 receptors and bradykinin receptors, which act via different G proteins, synergistically raises inositol 1,4,5-trisphosphate and intracellular free calcium in DDT1 MF-2 smooth muscle cells. Proc Natl Acad Sci U S A. 1992;89:7330–7334. doi: 10.1073/pnas.89.16.7330. PubMed DOI PMC

GORDIENKO D, POVSTYAN O, SUKHANOVA K, RAPHAEL M, HARHUN M, DYSKINA Y, LEHEN’KYI V, JAMA A, LU ZL, SKRYMA R, PREVARSKAYA N. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension. Cardiovasc Res. 2015;105:131–142. doi: 10.1093/cvr/cvu249. PubMed DOI

GRACIANO ML, NISHIYAMA A, JACKSON K, SETH DM, ORTIZ RM, PRIETO-CARRASQUERO MC, KOBORI H, NAVAR LG. Purinergic receptors contribute to early mesangial cell transformation and renal vessel hypertrophy during angiotensin II-induced hypertension. Am J Physiol Renal Physiol. 2008;294:F161–F169. doi: 10.1152/ajprenal.00281.2007. PubMed DOI PMC

GRIFFIN KA, PICKEN MM, BIDANI AK. Blood pressure lability and glomerulosclerosis after normotensive 5/6 renal mass reduction in the rat. Kidney Int. 2004;65:209–218. doi: 10.1111/j.1523-1755.2004.00356.x. PubMed DOI

GRIFONI SC, CHIPOSI R, MCKEY SE, RYAN MJ, DRUMMOND HA. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC. Am J Physiol Renal Physiol. 2010;298:F285–F292. doi: 10.1152/ajprenal.00496.2009. PubMed DOI PMC

GUAN Z, POLLOCK JS, COOK AK, HOBBS JL, INSCHO EW. Effect of epithelial sodium channel blockade on the myogenic response of rat juxtamedullary afferent arterioles. Hypertension. 2009;54:1062–1069. doi: 10.1161/hypertensionaha.109.137992. PubMed DOI PMC

GUAN Z, FULLER BS, YAMAMOTO T, COOK AK, POLLOCK JS, INSCHO EW. Pentosan polysulfate treatment preserves renal autoregulation in Ang II-infused hypertensive rats via normalization of P2X1 receptor activation. Am J Physiol Renal Physiol. 2010;298:F1276–F1284. doi: 10.1152/ajprenal.00743.2009. PubMed DOI PMC

GUAN Z, GIDDENS MI, OSMOND DA, COOK AK, HOBBS JL, ZHANG S, YAMAMOTO T, POLLOCK JS, POLLOCK DM, INSCHO EW. Immunosuppression preserves renal autoregulatory function and microvascular P2X1 receptor reactivity in ANG II-hypertensive rats. Am J Physiol Renal Physiol. 2013;304:F801–F807. doi: 10.1152/ajprenal.00286.2012. PubMed DOI PMC

GUAN Z, FELLNER RC, Van BEUSECUM J, INSCHO EW. P2 receptors in renal autoregulation. Curr Vasc Pharmacol. 2014;12:818–828. doi: 10.2174/15701611113116660152. PubMed DOI PMC

GUAN Z, SINGLETARY ST, CHA H, Van BEUSECUM JP, COOK AK, POLLOCK JS, POLLOCK DM, INSCHO EW. Pentosan polysulfate preserves renal microvascular P2X1 receptor reactivity and autoregulatory behavior in DOCA-salt hypertensive rats. Am J Physiol Renal Physiol. 2016;310:F456–F465. doi: 10.1152/ajprenal.00110.2015. PubMed DOI PMC

HALL JE. Guyton and Hall Textbook of Medical Physiology. Elsevier; Philadelphia: 2015. The body fluids and kidneys; pp. 305–440.

HANSEN PB, HASHIMOTO S, OPPERMANN M, HUANG Y, BRIGGS JP, SCHNERMANN J. Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther. 2005;315:1150–1157. doi: 10.1124/jpet.105.091017. PubMed DOI

HARHUN MI, POVSTYAN OV, GORDIENKO DV. Purinoreceptor-mediated current in myocytes from renal resistance arteries. Br J Pharmacol. 2010;160:987–997. doi: 10.1111/j.1476-5381.2010.00714.x. PubMed DOI PMC

HASHIMOTO S, HUANG Y, BRIGGS J, SCHNERMANN J. Reduced autoregulatory effectiveness in adenosine 1 receptor-deficient mice. Am J Physiol Renal Physiol. 2006;290:F888–F891. doi: 10.1152/ajprenal.00381.2005. PubMed DOI

HAYASHI K, EPSTEIN M, LOUTZENHISER R. Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Circ Res. 1989;65:1475–1484. doi: 10.1161/01.res.65.6.1475. PubMed DOI

HILL MA, DAVIS MJ, MEININGER GA, POTOCNIK SJ, MURPHY TV. Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin Hemorheol Microcirc. 2006;34:67–79. PubMed

HUANG DY, VALLON V, ZIMMERMANN H, KOSZALKA P, SCHRADER J, OSSWALD H. Ecto-5′-nucleotidase (cd73)-dependent and -independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. Am J Physiol Renal Physiol. 2006;291:F282–F288. doi: 10.1152/ajprenal.00113.2005. PubMed DOI

INSCHO EW. Mysteries of renal autoregulation. Hypertension. 2009;53:299–306. doi: 10.1161/hypertensionaha.108.119982. PubMed DOI PMC

INSCHO EW, CARMINES PK, COOK AK, NAVAR LG. Afferent arteriolar responsiveness to altered perfusion pressure in renal hypertension. Hypertension. 1990;15:748–752. doi: 10.1161/01.hyp.15.6.748. PubMed DOI

INSCHO EW, CARMINES PK, NAVAR LG. Juxtamedullary afferent arteriolar responses to P1 and P2 purinergic stimulation. Hypertension. 1991;17:1033–1037. doi: 10.1161/01.hyp.17.6.1033. PubMed DOI

INSCHO EW, OHISHI K, NAVAR LG. Effects of ATP on pre- and postglomerular juxtamedullary microvasculature. Am J Physiol Renal Physiol. 1992;263:F886–F893. doi: 10.1152/ajprenal.1992.263.5.f886. PubMed DOI

INSCHO EW, COOK AK, NAVAR LG. Pressure-mediated vasoconstriction of juxtamedullary afferent arterioles involves P2-purinoceptor activation. Am J Physiol Renal Physiol. 1996;271:F1077–F1085. doi: 10.1152/ajprenal.1996.271.5.f1077. PubMed DOI

INSCHO EW, COOK AK, IMIG JD, VIAL C, EVANS RJ. Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest. 2003;112:1895–1905. doi: 10.1172/jci18499. PubMed DOI PMC

INSCHO EW, COOK AK, IMIG JD, VIAL C, EVANS RJ. Renal autoregulation in P2X1 knockout mice. Acta Physiol Scand. 2004a;181:445–453. doi: 10.1111/j.1365-201x.2004.01317.x. PubMed DOI

INSCHO EW, COOK AK, MURZYNOWSKI JB, IMIG JD. Elevated arterial pressure impairs autoregulation independently of AT1 receptor activation. J Hypertens. 2004b;22:811–818. doi: 10.1097/00004872-200404000-00025. PubMed DOI

INSCHO EW, COOK AK, ANDREA N, CLARKE, ZHANG S, GUAN Z. P2X1 receptor-mediated vasoconstriction of afferent arterioles in Ang II-infused hypertensive rats fed a high salt diet. Hypertension. 2011;57:780–787. doi: 10.1161/hypertensionaha.110.168955. PubMed DOI PMC

JERNIGAN NL, DRUMMOND HA. Vascular ENaC proteins are required for renal myogenic constriction. Am J Physiol Renal Physiol. 2005;289:F891–F901. doi: 10.1152/ajprenal.00019.2005. PubMed DOI

JERNIGAN NL, DRUMMOND HA. Myogenic vasoconstriction in mouse renal interlobar arteries: role of endogenous beta and gammaENaC. Am J Physiol Renal Physiol. 2006;291:F1184–F1191. doi: 10.1152/ajprenal.00177.2006. PubMed DOI

JI X, NAITO Y, HIROKAWA G, WENG H, HIURA Y, TAKAHASHI R, IWAI N. P2X7 receptor antagonism attenuates the hypertension and renal injury in Dahl salt-sensitive rats. Hypertens Res. 2012a;35:173–179. doi: 10.1038/hr.2011.153. PubMed DOI

JI X, NAITO Y, WENG H, ENDO K, MA X, IWAI N. P2X7 deficiency attenuates hypertension and renal injury in deoxycorticosterone acetate-salt hypertension. Am J Physiol Renal Physiol. 2012b;303:F1207–F1215. doi: 10.1152/ajprenal.00051.2012. PubMed DOI

JUNCOS LA, REN Y, ARIMA S, GARVIN J, CARRETERO OA, ITO S. Angiotensin II action in isolated microperfused rabbit afferent arterioles is modulated by flow. Kidney Int. 1996;49:374–381. doi: 10.1038/ki.1996.55. PubMed DOI

JUST A, ARENDSHORST WJ. Dynamics and contribution of mechanisms mediating renal blood flow autoregulation. Am J Physiol Regul Integr Comp Physiol. 2003;285:R619–R631. doi: 10.1152/ajpregu.00766.2002. PubMed DOI

JUST A, ARENDSHORST WJ. A novel mechanism of renal blood flow autoregulation and the autoregulatory role of A1 adenosine receptors in mice. Am J Physiol Renal Physiol. 2007;293:F1489–F1500. doi: 10.1152/ajprenal.00256.2007. PubMed DOI

KARLSEN FM, ANDERSEN CB, LEYSSAC PP, HOLSTEIN-RATHLOU NH. Dynamic autoregulation and renal injury in Dahl rats. Hypertension. 1997;30:975–983. doi: 10.1161/01.hyp.30.4.975. PubMed DOI

KIM SM, MIZEL D, QIN Y, HUANG Y, SCHNERMANN J. Blood pressure, heart rate and tubuloglomerular feedback in A1AR-deficient mice with different genetic backgrounds. Acta Physiol (Oxf) 2015;213:259–267. doi: 10.1111/apha.12377. PubMed DOI PMC

KLOTZ KN. Adenosine receptors and their ligands. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:382–391. doi: 10.1007/s002100000315. PubMed DOI

KOTCHEN TA, PIERING AW, COWLEY AW, GRIM CE, GAUDET D, HAMET P, KALDUNSKI ML, KOTCHEN JM, ROMAN RJ. Glomerular hyperfiltration in hypertensive African Americans. Hypertension. 2000;35:822–826. doi: 10.1161/01.hyp.35.3.822. PubMed DOI

KREISBERG MS, SILLDORFF EP, PALLONE TL. Localization of adenosine-receptor subtype mRNA in rat outer medullary descending vasa recta by RT-PCR. Am J Physiol. 1997;272:H1231–H1238. doi: 10.1152/ajpheart.1997.272.3.h1231. PubMed DOI

LAI EY, PATZAK A, STEEGE A, MROWKA R, BROWN R, SPIELMANN N, PERSSON PB, FREDHOLM BB, PERSSON AE. Contribution of adenosine receptors in the control of arteriolar tone and adenosine-angiotensin II interaction. Kidney Int. 2006;70:690–698. doi: 10.1038/sj.ki.5001650. PubMed DOI

LAI EY, ONOZATO ML, SOLIS G, ASLAM S, WELCH WJ, WILCOX CS. Myogenic responses of mouse isolated perfused renal afferent arterioles: effects of salt intake and reduced renal mass. Hypertension. 2010;55:983–989. doi: 10.1161/hypertensionaha.109.149120. PubMed DOI PMC

LAI EY, WELLSTEIN A, WELCH WJ, WILCOX CS. Superoxide modulates myogenic contractions of mouse afferent arterioles. Hypertension. 2011;58:650–656. doi: 10.1161/hypertensionaha.111.170472. PubMed DOI PMC

LAI EY, SOLIS G, LUO Z, CARLSTROM M, SANDBERG K, HOLLAND S, WELLSTEIN A, WELCH WJ, WILCOX CS. p47(phox) is required for afferent arteriolar contractile responses to angiotensin II and perfusion pressure in mice. Hypertension. 2012;59:415–420. doi: 10.1161/hypertensionaha.111.184291. PubMed DOI PMC

LEE HT, EMALA CW. Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors. Am J Physiol Renal Physiol. 2000;278:F380–F387. doi: 10.1152/ajprenal.2000.278.3.f380. PubMed DOI

LEE J, HWANG I, LEE JH, LEE HW, JEONG LS, HA H. The selective A3AR antagonist LJ-1888 ameliorates UUO-induced tubulointerstitial fibrosis. Am J Pathol. 2013;183:1488–1497. doi: 10.1016/j.ajpath.2013.07.010. PubMed DOI

LEWIS CJ, EVANS RJ. P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations. J Vasc Res. 2001;38:332–340. doi: 10.1159/000051064. PubMed DOI

LI L, LAI EY, HUANG Y, EISNER C, MIZEL D, WILCOX CS, SCHNERMANN J. Renal afferent arteriolar and tubuloglomerular feedback reactivity in mice with conditional deletions of adenosine 1 receptors. Am J Physiol Renal Physiol. 2012;303:F1166–F1175. doi: 10.1152/ajprenal.00222.2012. PubMed DOI PMC

LU Y, ZHANG R, GE Y, CARLSTROM M, WANG S, FU Y, CHENG L, WEI J, ROMAN RJ, WANG L, GAO X, LIU R. Identification and function of adenosine A3 receptor in afferent arterioles. Am J Physiol Renal Physiol. 2015;308:F1020–F1025. doi: 10.1152/ajprenal.00422.2014. PubMed DOI PMC

MAJID DS, INSCHO EW, NAVAR LG. P2 purinoceptor saturation by adenosine triphosphate impairs renal autoregulation in dogs. J Am Soc Nephrol. 1999;10:492–498. PubMed

MENZIES RI, UNWIN RJ, DASH RK, BEARD DA, COWLEY AW, JR, CARLSON BE, MULLINS JJ, BAILEY MA. Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats. Front Physiol. 2013;4:305. doi: 10.3389/fphys.2013.00305. PubMed DOI PMC

MENZIES RI, HOWARTH AR, UNWIN RJ, TAM FW, MULLINS JJ, BAILEY MA. Inhibition of the purinergic P2X7 receptor improves renal perfusion in angiotensin-II-infused rats. Kidney Int. 2015a;88:1079–1087. doi: 10.1038/ki.2015.182. PubMed DOI PMC

MENZIES RI, UNWIN RJ, BAILEY MA. Renal P2 receptors and hypertension. Acta Physiol (Oxf) 2015b;213:232–241. doi: 10.1111/apha.12412. PubMed DOI

MOORE LC, CASELLAS D. Tubuloglomerular feedback dependence of autoregulation in rat juxtamedullary afferent arterioles. Kidney Int. 1990;37:1402–1408. doi: 10.1038/ki.1990.129. PubMed DOI

MORI T, COWLEY AW., JR Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats. Hypertension. 2004;43:752–759. doi: 10.1161/01.hyp.0000120971.49659.6a. PubMed DOI

NAGASAWA T, IMIG JD. Afferent arteriolar responses to beta, gamma-methylene ATP and 20-HETE are not blocked by ENaC inhibition. Physiol Rep. 2013;1:e00082. doi: 10.1002/phy2.82. PubMed DOI PMC

NAVAR LG. Renal autoregulation: perspectives from whole kidney and single nephron studies. Am J Physiol. 1978;234:F357–F370. doi: 10.1152/ajprenal.1978.234.5.f357. PubMed DOI

NAVAR LG, ARENDSHORST WJ, PALLONE TL, INSCHO EW, IMIG JD, BELL PD. The renal microcirculation. In: TUMA RF, DURAN WN, LEY K, editors. Comprehensive Physiology. Elsevier; San Diego: 2008. pp. 550–683. DOI

NISHIYAMA A, MAJID DS, TAHER KA, MIYATAKE A, NAVAR LG. Relation between renal interstitial ATP concentrations and autoregulation-mediated changes in renal vascular resistance. Circ Res. 2000;86:656–662. doi: 10.1161/01.res.86.6.656. PubMed DOI

NISHIYAMA A, INSCHO EW, NAVAR LG. Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol Renal Physiol. 2001a;280:F406–F414. doi: 10.1152/ajprenal.2001.280.3.f406. PubMed DOI

NISHIYAMA A, MAJID DS, WALKER M, 3RD, MIYATAKE A, NAVAR LG. Renal interstitial ATP responses to changes in arterial pressure during alterations in tubuloglomerular feedback activity. Hypertension. 2001b;37:753–759. doi: 10.1161/01.hyp.37.2.753. PubMed DOI

NISHIYAMA A, JACKSON KE, MAJID DS, RAHMAN M, NAVAR LG. Renal interstitial fluid ATP responses to arterial pressure and tubuloglomerular feedback activation during calcium channel blockade. Am J Physiol Heart Circ Physiol. 2006;290:H772–H777. doi: 10.1152/ajpheart.00242.2005. PubMed DOI

NORTH RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150427. doi: 10.1098/rstb.2015.0427. PubMed DOI PMC

OLAH ME. Identification of A2a adenosine receptor domains involved in selective coupling to Gs. Analysis of chimeric A1/A2a adenosine receptors. J Biol Chem. 1997;272:337–344. doi: 10.1074/jbc.272.1.337. PubMed DOI

OSMOND DA, INSCHO EW. P2X1 receptor blockade inhibits whole kidney autoregulation of renal blood flow in vivo. Am J Physiol Renal Physiol. 2010;298:F1360–1368. doi: 10.1152/ajprenal.00016.2010. PubMed DOI PMC

OSMOND DA, ZHANG S, POLLOCK JS, YAMAMOTO T, De MIGUEL C, INSCHO EW. Clopidogrel preserves whole kidney autoregulatory behavior in ANG II-induced hypertension. Am J Physiol Renal Physiol. 2014;306:F619–F628. doi: 10.1152/ajprenal.00444.2013. PubMed DOI PMC

OSSWALD H, MUHLBAUER B, VALLON V. Adenosine and tubuloglomerular feedback. Blood Purif. 1997;15:243–252. doi: 10.1159/000170342. PubMed DOI

PALMER BF. Disturbances in renal autoregulation and the susceptibility to hypertension-induced chronic kidney disease. Am J Med Sci. 2004;328:330–343. doi: 10.1016/s0002-9629(15)33943-4. PubMed DOI

PALYGIN O, LEVCHENKO V, EVANS LC, BLASS G, COWLEY AW, JR, STARUSCHENKO A. Use of enzymatic biosensors to quantify endogenous ATP or H2O2 in the kidney. J Vis Exp. 2015;104:e53059. doi: 10.3791/53059. PubMed DOI PMC

PALYGIN O, EVANS LC, COWLEY AW, JR, STARUSCHENKO A. Acute in vivo analysis of ATP release in rat kidneys in response to changes of renal perfusion pressure. J Am Heart Assoc. 2017;6 doi: 10.1161/jaha.117.006658. pii: e006658. PubMed DOI PMC

PETI-PETERDI J. Calcium wave of tubuloglomerular feedback. Am J Physiol Renal Physiol. 2006;291:F473–F480. doi: 10.1152/ajprenal.00425.2005. PubMed DOI

PLOTH DW, ROY RN, HUANG WC, NAVAR LG. Impaired renal blood flow and cortical pressure autoregulation in contralateral kidneys of Goldblatt hypertensive rats. Hypertension. 1981;3:67–74. doi: 10.1161/01.hyp.3.1.67. PubMed DOI

REN Y, ARIMA S, CARRETERO OA, ITO S. Possible role of adenosine in macula densa control of glomerular hemodynamics. Kidney Int. 2002;61:169–176. doi: 10.1046/j.1523-1755.2002.00093.x. PubMed DOI

REN Y, GARVIN JL, LIU R, CARRETERO OA. Crosstalk between the connecting tubule and the afferent arteriole regulates renal microcirculation. Kidney Int. 2007;71:1116–1121. doi: 10.1038/sj.ki.5002190. PubMed DOI

ROMAN RJ. Abnormal renal hemodynamics and pressure-natriuresis relationship in Dahl salt-sensitive rats. Am J Physiol. 1986;251:F57–F65. doi: 10.1152/ajprenal.1986.251.1.f57. PubMed DOI

ROMAN RJ, SMITS C. Laser-Doppler determination of papillary blood flow in young and adult rats. Am J Physiol. 1986;251:F115–F124. doi: 10.1152/ajprenal.1986.251.1.f115. PubMed DOI

SCHJOEDT KJ, CHRISTENSEN PK, JORSAL A, BOOMSMA F, ROSSING P, PARVING HH. Autoregulation of glomerular filtration rate during spironolactone treatment in hypertensive patients with type 1 diabetes: a randomized crossover trial. Nephrol Dial Transplant. 2009;24:3343–3349. doi: 10.1093/ndt/gfp311. PubMed DOI

SCHNACKENBERG CG. Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Regul Integr Comp Physiol. 2002;282:R335–R342. doi: 10.1152/ajpregu.00605.2001. PubMed DOI

SCHNERMANN J. Concurrent activation of multiple vasoactive signaling pathways in vasoconstriction caused by tubuloglomerular feedback: a quantitative assessment. Annu Rev Physiol. 2015;77:301–322. doi: 10.1146/annurev-physiol-021014-071829. PubMed DOI

SCHNERMANN J, WRIGHT FS, DAVIS JM, Von STACKELBERG W, GRILL G. Regulation of superficial nephron filtration rate by tubulo-glomerular feedback. Pflugers Arch. 1970;318:147–175. doi: 10.1007/bf00586493. PubMed DOI

SCHNERMANN J, WEIHPRECHT H, BRIGGS JP. Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am J Physiol. 1990;258:F553–F561. doi: 10.1152/ajprenal.1990.258.3.f553. PubMed DOI

SCHWIEBERT EM. ATP release mechanisms, ATP receptors and purinergic signalling along the nephron. Clin Exp Pharmacol Physiol. 2001;28:340–350. doi: 10.1046/j.1440-1681.2001.03451.x. PubMed DOI

SEBELIUS K, FRIEDEN TR, SONDIK EJ. National Center for Health Statistics Health, United States, 2011: Table 70 Hypertension among persons 20 years of age and over. 2011

SHARMA K, COOK A, SMITH M, VALANCIUS C, INSCHO EW. TGF-beta impairs renal autoregulation via generation of ROS. Am J Physiol Renal Physiol. 2005;288:F1069–F1077. doi: 10.1152/ajprenal.00345.2004. PubMed DOI

SOMMERS SC, RELMAN AS, SMITHWICK RH. Histologic studies of kidney biopsy specimens from patients with hypertension. Am J Pathol. 1958;34:685–715. PubMed PMC

SORENSEN CM, GIESE I, BRAUNSTEIN TH, BRASEN JC, SALOMONSSON M, HOLSTEIN-RATHLOU NH. Role of connexin40 in the autoregulatory response of the afferent arteriole. Am J Physiol Renal Physiol. 2012;303:F855–F863. doi: 10.1152/ajprenal.00026.2012. PubMed DOI

SUN D, SAMUELSON LC, YANG T, HUANG Y, PALIEGE A, SAUNDERS T, BRIGGS J, SCHNERMANN J. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A. 2001;98:9983–9988. doi: 10.1073/pnas.171317998. PubMed DOI PMC

TAKENAKA T, FORSTER H, De MICHELI A, EPSTEIN M. Impaired myogenic responsiveness of renal microvessels in Dahl salt-sensitive rats. Circ Res. 1992;71:471–480. doi: 10.1161/01.res.71.2.471. PubMed DOI

TAKENAKA T, HARRISON-BERNARD LM, INSCHO EW, CARMINES PK, NAVAR LG. Autoregulation of afferent arteriolar blood flow in juxtamedullary nephrons. Am J Physiol Renal Physiol. 1994;267:F879–F887. doi: 10.1152/ajprenal.1994.267.5.f879. PubMed DOI

THOMSON S, BAO D, DENG A, VALLON V. Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. J Clin Invest. 2000;106:289–298. doi: 10.1172/jci8761. PubMed DOI PMC

TUCKER AL, LINDEN J. Cloned receptors and cardiovascular responses to adenosine. Cardiovasc Res. 1993;27:62–67. doi: 10.1093/cvr/27.1.62. PubMed DOI

TURNER CM, VONEND O, CHAN C, BURNSTOCK G, UNWIN RJ. The pattern of distribution of selected ATP-sensitive P2 receptor subtypes in normal rat kidney: an immunohistological study. Cells Tissues Organs. 2003;175:105–117. doi: 10.1159/000073754. PubMed DOI

VALLON V, UNWIN RJ, INSCHO EW, LEIPZIGER J, KISHORE BK. Extracellular nucleotides and P2 receptors in renal function. Physiol Rev. 2020;100:211–269. doi: 10.1152/physrev.00038.2018. PubMed DOI PMC

Von KUGELGEN I. Pharmacology of P2Y receptors. Brain Res Bull. 2019;151:12–24. doi: 10.1016/j.brainresbull.2019.03.010. PubMed DOI

VONEND O, TURNER CM, CHAN CM, LOESCH A, DELL’ANNA GC, SRAI KS, BURNSTOCK G, UNWIN RJ. Glomerular expression of the ATP-sensitive P2X receptor in diabetic and hypertensive rat models. Kidney Int. 2004;66:157–166. doi: 10.1111/j.1523-1755.2004.00717.x. PubMed DOI

WANG X, LOUTZENHISER RD, CUPPLES WA. Frequency modulation of renal myogenic autoregulation by perfusion pressure. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1199–R1204. doi: 10.1152/ajpregu.00281.2007. PubMed DOI

WANG X, TAKEYA K, AARONSON PI, LOUTZENHISER K, LOUTZENHISER R. Effects of amiloride, benzamil, and alterations in extracellular Na+ on the rat afferent arteriole and its myogenic response. Am J Physiol Renal Physiol. 2008;295:F272–F282. doi: 10.1152/ajprenal.00200.2007. PubMed DOI PMC

WILCOX CS. Redox regulation of the afferent arteriole and tubuloglomerular feedback. Acta Physiol Scand. 2003;179:217–223. doi: 10.1046/j.0001-6772.2003.01205.x. PubMed DOI

ZHAN Y, BROWN C, MAYNARD E, ANSHELEVICH A, NI W, HO IC, OETTGEN P. Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. J Clin Invest. 2005;115:2508–2516. doi: 10.1172/jci24403. PubMed DOI PMC

ZOU AP, LI N, COWLEY AW., JR Production and actions of superoxide in the renal medulla. Hypertension. 2001;37:547–553. doi: 10.1161/01.hyp.37.2.547. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...