Purinoceptors, renal microvascular function and hypertension
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R01 DK044628
NIDDK NIH HHS - United States
R01 DK106500
NIDDK NIH HHS - United States
R29 DK044628
NIDDK NIH HHS - United States
PubMed
32301620
PubMed Central
PMC8006557
DOI
10.33549/physiolres.934463
PII: 934463
Knihovny.cz E-zdroje
- MeSH
- hodnoty glomerulární filtrace MeSH
- homeostáza MeSH
- hypertenze metabolismus patofyziologie MeSH
- ledviny krevní zásobení metabolismus patofyziologie MeSH
- lidé MeSH
- purinergní receptory metabolismus MeSH
- renální oběh fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- purinergní receptory MeSH
Proper renal blood flow (RBF) and glomerular filtration rate (GFR) are critical for maintaining normal blood pressure, kidney function and water and electrolyte homeostasis. The renal microvasculature expresses a multitude of receptors mediating vasodilation and vasoconstriction, which can influence glomerular blood flow and capillary pressure. Despite this, RBF and GFR remain quite stable when arterial pressure fluctuates because of the autoregulatory mechanism. ATP and adenosine participate in autoregulatory control of RBF and GFR via activation of two different purinoceptor families (P1 and P2). Purinoceptors are widely expressed in renal microvasculature and tubules. Emerging data show altered purinoceptor signaling in hypertension-associated kidney injury, diabetic nephropathy, sepsis, ischemia-reperfusion induced acute kidney injury and polycystic kidney disease. In this brief review, we highlight recent studies and new insights on purinoceptors regulating renal microvascular function and renal hemodynamics. We also address the mechanisms underlying renal microvascular injury and impaired renal autoregulation, focusing on purinoceptor signaling and hypertension-induced renal microvascular dysfunction. Interested readers are directed to several excellent and comprehensive reviews that recently covered the topics of renal autoregulation, and nucleotides in kidney function under physiological and pathophysiological conditions (Inscho 2009, Navar et al. 2008, Carlstrom et al. 2015, Vallon et al. 2020).
Zobrazit více v PubMed
BAYLISS WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol. 1902;28:220–231. doi: 10.1113/jphysiol.1902.sp000911. PubMed DOI PMC
BELL PD, LAPOINTE JY, SABIROV R, HAYASHI S, PETI-PETERDI J, MANABE K, KOVACS G, OKADA Y. Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci U S A. 2003;100:4322–4327. doi: 10.1073/pnas.0736323100. PubMed DOI PMC
BELL PD, KOMLOSI P, ZHANG ZR. ATP as a mediator of macula densa cell signalling. Purinergic Signal. 2009;5:461–471. doi: 10.1007/s11302-009-9148-0. PubMed DOI PMC
BENCZE M, BEHULIAK M, ZICHA J. The impact of four different classes of anesthetics on the mechanisms of blood pressure regulation in normotensive and spontaneously hypertensive rats. Physiol Res. 2013;62:471–478. PubMed
BIDANI AK, POLICHNOWSKI AJ, LICEA-VARGAS H, LONG J, KLIETHERMES S, WILLIAMSON GA, GRIFFIN KA. BP Fluctuations and the real-time dynamics of renal blood flow responses in conscious rats. J Am Soc Nephrol. 2020;31:324–336. doi: 10.1681/asn.2019070718. PubMed DOI PMC
BURKE M, PABBIDI M, FAN F, GE Y, LIU R, WILLIAMS JM, SARKIS A, LAZAR J, JACOB HJ, ROMAN RJ. Genetic basis of the impaired renal myogenic response in FHH rats. Am J Physiol Renal Physiol. 2013;304:F565–F577. doi: 10.1152/ajprenal.00404.2012. PubMed DOI PMC
BURNSTOCK G, EVANS LC, BAILEY MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal. 2014;10:71–101. doi: 10.1007/s11302-013-9400-5. PubMed DOI PMC
CARLSTROM M, WILCOX CS, ARENDSHORST WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95:405–511. doi: 10.1152/physrev.00042.2012. PubMed DOI PMC
CARMINES PK, MITCHELL KD, NAVAR LG. Effects of calcium antagonists on renal hemodynamics and glomerular function. Kidney Int. 1992;41(Suppl 36):S43–S48. PubMed
CASELLAS D, NAVAR LG. In vitro perfusion of juxtamedullary nephrons in rats. Am J Physiol Renal Physiol. 1984;246:F349–F358. doi: 10.1152/ajprenal.1984.246.3.f349. PubMed DOI
CASELLAS D, CARMINES PK, NAVAR LG. Microvascular reactivity of in vitro blood perfused juxtamedullary nephrons from rats. Kidney Int. 1985;28:752–759. doi: 10.1038/ki.1985.194. PubMed DOI
CASTROP H, HUANG Y, HASHIMOTO S, MIZEL D, HANSEN P, THEILIG F, BACHMANN S, DENG C, BRIGGS J, SCHNERMANN J. Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotidase/CD73-deficient mice. J Clin Invest. 2004;114:634–642. doi: 10.1172/jci21851. PubMed DOI PMC
CHAN CM, UNWIN RJ, BARDINI M, OGLESBY IB, FORD AP, TOWNSEND-NICHOLSON A, BURNSTOCK G. Localization of P2X1 purinoceptors by autoradiography and immunohistochemistry in rat kidneys. Am J Physiol Renal Physiol. 1998;274:F799–F804. doi: 10.1152/ajprenal.1998.274.4.f799. PubMed DOI
CHRISTENSEN PK, HANSEN HP, PARVING HH. Impaired autoregulation of GFR in hypertensive non-insulin dependent diabetic patients. Kidney Int. 1997;52:1369–1374. doi: 10.1038/ki.1997.463. PubMed DOI
CHRISTENSEN PK, HOMMEL EE, CLAUSEN P, FELDT-RASMUSSEN B, PARVING HH. Impaired autoregulation of the glomerular filtration rate in patients with nondiabetic nephropathies. Kidney Int. 1999;56:1517–1523. doi: 10.1046/j.1523-1755.1999.00676.x. PubMed DOI
CHRISTENSEN PK, AKRAM K, KONIG KB, PARVING HH. Autoregulation of glomerular filtration rate in patients with type 2 diabetes during isradipine therapy. Diabetes Care. 2003;26:156–162. doi: 10.2337/diacare.26.1.156. PubMed DOI
DRUMMOND HA, GEBREMEDHIN D, HARDER DR. Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension. 2004;44:643–648. doi: 10.1161/01.hyp.0000144465.56360.ad. PubMed DOI
DRUMMOND HA, GRIFONI SC, JERNIGAN NL. A new trick for an old dogma ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 2008;23:23–31. doi: 10.1152/physiol.00034.2007. PubMed DOI
DRUMMOND HA, GRIFONI SC, ABU-ZAID A, GOUSSET M, CHIPOSI R, BARNARD JM, MURPHEY B, STEC DE. Renal inflammation and elevated blood pressure in a mouse model of reduced β-ENaC. Am J Physiol Renal Physiol. 2011;301:F443–F449. doi: 10.1152/ajprenal.00694.2010. PubMed DOI PMC
ELMARAKBY AA, QUIGLEY JE, OLEARCZYK JJ, SRIDHAR A, COOK AK, INSCHO EW, POLLOCK DM, IMIG JD. Chemokine receptor 2b inhibition provides renal protection in angiotensin II-salt hypertension. Hypertension. 2007;50:1069–1076. doi: 10.1161/hypertensionaha.107.098806. PubMed DOI PMC
EVANS LC, PETROVA G, KURTH T, YANG C, BUKOWY JD, MATTSON DL, COWLEY AWJ. Increased perfusion pressure drives renal T-cell infiltration in the Dahl salt-sensitive rat. Hypertension. 2017;70:543–551. doi: 10.1161/hypertensionaha.117.09208. PubMed DOI PMC
FELLNER RC, GUAN Z, COOK AK, POLLOCK DM, INSCHO EW. Endothelin contributes to blunted renal autoregulation observed with a high-salt diet. Am J Physiol Renal Physiol. 2015;309:F687–F696. doi: 10.1152/ajprenal.00641.2014. PubMed DOI PMC
FENG W, CHUMLEY P, PRIETO MC, MIYADA K, SETH DM, FATIMA H, HUA P, REZONZEW G, SANDERS PW, JAIMES EA. Transcription factor avian erythroblastosis virus E26 oncogen homolog-1 is a novel mediator of renal injury in salt-sensitive hypertension. Hypertension. 2015;65:813–820. doi: 10.1161/hypertensionaha.114.04533. PubMed DOI PMC
FENG W, GUAN Z, XING D, LI X, YING WZ, REMEDIES CE, INSCHO EW, SANDERS PW. Avian erythroblastosis virus E26 oncogene homolog-1 (ETS-1) plays a role in renal microvascular pathophysiology in the Dahl salt-sensitive rat. Kidney Int. 2020;97:528–537. doi: 10.1016/j.kint.2019.09.025. PubMed DOI PMC
FRANCO M, BAUTISTA R, TAPIA E, SOTO V, SANTAMARIA J, OSORIO H, PACHECO U, SANCHEZ-LOZADA LG, KOBORI H, NAVAR LG. Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats. Am J Physiol Renal Physiol. 2011;300:F1301–F1309. doi: 10.1152/ajprenal.00367.2010. PubMed DOI PMC
FRANCO M, BAUTISTA-PEREZ R, CANO-MARTINEZ A, PACHECO U, SANTAMARIA J, Del VALLE MONDRAGON L, PEREZ-MENDEZ O, NAVAR LG. Physiopathological implications of P2X1 and P2X7 receptors in regulation of glomerular hemodynamics in angiotensin II-induced hypertension. Am J Physiol Renal Physiol. 2017;313:F9–F19. doi: 10.1152/ajprenal.00663.2016. PubMed DOI
FREDHOLM BB, ARSLAN G, HALLDNER L, KULL B, SCHULTE G, WASSERMAN W. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:364–374. doi: 10.1007/s002100000313. PubMed DOI
GERWINS P, FREDHOLM BB. Stimulation of adenosine A1 receptors and bradykinin receptors, which act via different G proteins, synergistically raises inositol 1,4,5-trisphosphate and intracellular free calcium in DDT1 MF-2 smooth muscle cells. Proc Natl Acad Sci U S A. 1992;89:7330–7334. doi: 10.1073/pnas.89.16.7330. PubMed DOI PMC
GORDIENKO D, POVSTYAN O, SUKHANOVA K, RAPHAEL M, HARHUN M, DYSKINA Y, LEHEN’KYI V, JAMA A, LU ZL, SKRYMA R, PREVARSKAYA N. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension. Cardiovasc Res. 2015;105:131–142. doi: 10.1093/cvr/cvu249. PubMed DOI
GRACIANO ML, NISHIYAMA A, JACKSON K, SETH DM, ORTIZ RM, PRIETO-CARRASQUERO MC, KOBORI H, NAVAR LG. Purinergic receptors contribute to early mesangial cell transformation and renal vessel hypertrophy during angiotensin II-induced hypertension. Am J Physiol Renal Physiol. 2008;294:F161–F169. doi: 10.1152/ajprenal.00281.2007. PubMed DOI PMC
GRIFFIN KA, PICKEN MM, BIDANI AK. Blood pressure lability and glomerulosclerosis after normotensive 5/6 renal mass reduction in the rat. Kidney Int. 2004;65:209–218. doi: 10.1111/j.1523-1755.2004.00356.x. PubMed DOI
GRIFONI SC, CHIPOSI R, MCKEY SE, RYAN MJ, DRUMMOND HA. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC. Am J Physiol Renal Physiol. 2010;298:F285–F292. doi: 10.1152/ajprenal.00496.2009. PubMed DOI PMC
GUAN Z, POLLOCK JS, COOK AK, HOBBS JL, INSCHO EW. Effect of epithelial sodium channel blockade on the myogenic response of rat juxtamedullary afferent arterioles. Hypertension. 2009;54:1062–1069. doi: 10.1161/hypertensionaha.109.137992. PubMed DOI PMC
GUAN Z, FULLER BS, YAMAMOTO T, COOK AK, POLLOCK JS, INSCHO EW. Pentosan polysulfate treatment preserves renal autoregulation in Ang II-infused hypertensive rats via normalization of P2X1 receptor activation. Am J Physiol Renal Physiol. 2010;298:F1276–F1284. doi: 10.1152/ajprenal.00743.2009. PubMed DOI PMC
GUAN Z, GIDDENS MI, OSMOND DA, COOK AK, HOBBS JL, ZHANG S, YAMAMOTO T, POLLOCK JS, POLLOCK DM, INSCHO EW. Immunosuppression preserves renal autoregulatory function and microvascular P2X1 receptor reactivity in ANG II-hypertensive rats. Am J Physiol Renal Physiol. 2013;304:F801–F807. doi: 10.1152/ajprenal.00286.2012. PubMed DOI PMC
GUAN Z, FELLNER RC, Van BEUSECUM J, INSCHO EW. P2 receptors in renal autoregulation. Curr Vasc Pharmacol. 2014;12:818–828. doi: 10.2174/15701611113116660152. PubMed DOI PMC
GUAN Z, SINGLETARY ST, CHA H, Van BEUSECUM JP, COOK AK, POLLOCK JS, POLLOCK DM, INSCHO EW. Pentosan polysulfate preserves renal microvascular P2X1 receptor reactivity and autoregulatory behavior in DOCA-salt hypertensive rats. Am J Physiol Renal Physiol. 2016;310:F456–F465. doi: 10.1152/ajprenal.00110.2015. PubMed DOI PMC
HALL JE. Guyton and Hall Textbook of Medical Physiology. Elsevier; Philadelphia: 2015. The body fluids and kidneys; pp. 305–440.
HANSEN PB, HASHIMOTO S, OPPERMANN M, HUANG Y, BRIGGS JP, SCHNERMANN J. Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther. 2005;315:1150–1157. doi: 10.1124/jpet.105.091017. PubMed DOI
HARHUN MI, POVSTYAN OV, GORDIENKO DV. Purinoreceptor-mediated current in myocytes from renal resistance arteries. Br J Pharmacol. 2010;160:987–997. doi: 10.1111/j.1476-5381.2010.00714.x. PubMed DOI PMC
HASHIMOTO S, HUANG Y, BRIGGS J, SCHNERMANN J. Reduced autoregulatory effectiveness in adenosine 1 receptor-deficient mice. Am J Physiol Renal Physiol. 2006;290:F888–F891. doi: 10.1152/ajprenal.00381.2005. PubMed DOI
HAYASHI K, EPSTEIN M, LOUTZENHISER R. Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Circ Res. 1989;65:1475–1484. doi: 10.1161/01.res.65.6.1475. PubMed DOI
HILL MA, DAVIS MJ, MEININGER GA, POTOCNIK SJ, MURPHY TV. Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin Hemorheol Microcirc. 2006;34:67–79. PubMed
HUANG DY, VALLON V, ZIMMERMANN H, KOSZALKA P, SCHRADER J, OSSWALD H. Ecto-5′-nucleotidase (cd73)-dependent and -independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. Am J Physiol Renal Physiol. 2006;291:F282–F288. doi: 10.1152/ajprenal.00113.2005. PubMed DOI
INSCHO EW. Mysteries of renal autoregulation. Hypertension. 2009;53:299–306. doi: 10.1161/hypertensionaha.108.119982. PubMed DOI PMC
INSCHO EW, CARMINES PK, COOK AK, NAVAR LG. Afferent arteriolar responsiveness to altered perfusion pressure in renal hypertension. Hypertension. 1990;15:748–752. doi: 10.1161/01.hyp.15.6.748. PubMed DOI
INSCHO EW, CARMINES PK, NAVAR LG. Juxtamedullary afferent arteriolar responses to P1 and P2 purinergic stimulation. Hypertension. 1991;17:1033–1037. doi: 10.1161/01.hyp.17.6.1033. PubMed DOI
INSCHO EW, OHISHI K, NAVAR LG. Effects of ATP on pre- and postglomerular juxtamedullary microvasculature. Am J Physiol Renal Physiol. 1992;263:F886–F893. doi: 10.1152/ajprenal.1992.263.5.f886. PubMed DOI
INSCHO EW, COOK AK, NAVAR LG. Pressure-mediated vasoconstriction of juxtamedullary afferent arterioles involves P2-purinoceptor activation. Am J Physiol Renal Physiol. 1996;271:F1077–F1085. doi: 10.1152/ajprenal.1996.271.5.f1077. PubMed DOI
INSCHO EW, COOK AK, IMIG JD, VIAL C, EVANS RJ. Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest. 2003;112:1895–1905. doi: 10.1172/jci18499. PubMed DOI PMC
INSCHO EW, COOK AK, IMIG JD, VIAL C, EVANS RJ. Renal autoregulation in P2X1 knockout mice. Acta Physiol Scand. 2004a;181:445–453. doi: 10.1111/j.1365-201x.2004.01317.x. PubMed DOI
INSCHO EW, COOK AK, MURZYNOWSKI JB, IMIG JD. Elevated arterial pressure impairs autoregulation independently of AT1 receptor activation. J Hypertens. 2004b;22:811–818. doi: 10.1097/00004872-200404000-00025. PubMed DOI
INSCHO EW, COOK AK, ANDREA N, CLARKE, ZHANG S, GUAN Z. P2X1 receptor-mediated vasoconstriction of afferent arterioles in Ang II-infused hypertensive rats fed a high salt diet. Hypertension. 2011;57:780–787. doi: 10.1161/hypertensionaha.110.168955. PubMed DOI PMC
JERNIGAN NL, DRUMMOND HA. Vascular ENaC proteins are required for renal myogenic constriction. Am J Physiol Renal Physiol. 2005;289:F891–F901. doi: 10.1152/ajprenal.00019.2005. PubMed DOI
JERNIGAN NL, DRUMMOND HA. Myogenic vasoconstriction in mouse renal interlobar arteries: role of endogenous beta and gammaENaC. Am J Physiol Renal Physiol. 2006;291:F1184–F1191. doi: 10.1152/ajprenal.00177.2006. PubMed DOI
JI X, NAITO Y, HIROKAWA G, WENG H, HIURA Y, TAKAHASHI R, IWAI N. P2X7 receptor antagonism attenuates the hypertension and renal injury in Dahl salt-sensitive rats. Hypertens Res. 2012a;35:173–179. doi: 10.1038/hr.2011.153. PubMed DOI
JI X, NAITO Y, WENG H, ENDO K, MA X, IWAI N. P2X7 deficiency attenuates hypertension and renal injury in deoxycorticosterone acetate-salt hypertension. Am J Physiol Renal Physiol. 2012b;303:F1207–F1215. doi: 10.1152/ajprenal.00051.2012. PubMed DOI
JUNCOS LA, REN Y, ARIMA S, GARVIN J, CARRETERO OA, ITO S. Angiotensin II action in isolated microperfused rabbit afferent arterioles is modulated by flow. Kidney Int. 1996;49:374–381. doi: 10.1038/ki.1996.55. PubMed DOI
JUST A, ARENDSHORST WJ. Dynamics and contribution of mechanisms mediating renal blood flow autoregulation. Am J Physiol Regul Integr Comp Physiol. 2003;285:R619–R631. doi: 10.1152/ajpregu.00766.2002. PubMed DOI
JUST A, ARENDSHORST WJ. A novel mechanism of renal blood flow autoregulation and the autoregulatory role of A1 adenosine receptors in mice. Am J Physiol Renal Physiol. 2007;293:F1489–F1500. doi: 10.1152/ajprenal.00256.2007. PubMed DOI
KARLSEN FM, ANDERSEN CB, LEYSSAC PP, HOLSTEIN-RATHLOU NH. Dynamic autoregulation and renal injury in Dahl rats. Hypertension. 1997;30:975–983. doi: 10.1161/01.hyp.30.4.975. PubMed DOI
KIM SM, MIZEL D, QIN Y, HUANG Y, SCHNERMANN J. Blood pressure, heart rate and tubuloglomerular feedback in A1AR-deficient mice with different genetic backgrounds. Acta Physiol (Oxf) 2015;213:259–267. doi: 10.1111/apha.12377. PubMed DOI PMC
KLOTZ KN. Adenosine receptors and their ligands. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:382–391. doi: 10.1007/s002100000315. PubMed DOI
KOTCHEN TA, PIERING AW, COWLEY AW, GRIM CE, GAUDET D, HAMET P, KALDUNSKI ML, KOTCHEN JM, ROMAN RJ. Glomerular hyperfiltration in hypertensive African Americans. Hypertension. 2000;35:822–826. doi: 10.1161/01.hyp.35.3.822. PubMed DOI
KREISBERG MS, SILLDORFF EP, PALLONE TL. Localization of adenosine-receptor subtype mRNA in rat outer medullary descending vasa recta by RT-PCR. Am J Physiol. 1997;272:H1231–H1238. doi: 10.1152/ajpheart.1997.272.3.h1231. PubMed DOI
LAI EY, PATZAK A, STEEGE A, MROWKA R, BROWN R, SPIELMANN N, PERSSON PB, FREDHOLM BB, PERSSON AE. Contribution of adenosine receptors in the control of arteriolar tone and adenosine-angiotensin II interaction. Kidney Int. 2006;70:690–698. doi: 10.1038/sj.ki.5001650. PubMed DOI
LAI EY, ONOZATO ML, SOLIS G, ASLAM S, WELCH WJ, WILCOX CS. Myogenic responses of mouse isolated perfused renal afferent arterioles: effects of salt intake and reduced renal mass. Hypertension. 2010;55:983–989. doi: 10.1161/hypertensionaha.109.149120. PubMed DOI PMC
LAI EY, WELLSTEIN A, WELCH WJ, WILCOX CS. Superoxide modulates myogenic contractions of mouse afferent arterioles. Hypertension. 2011;58:650–656. doi: 10.1161/hypertensionaha.111.170472. PubMed DOI PMC
LAI EY, SOLIS G, LUO Z, CARLSTROM M, SANDBERG K, HOLLAND S, WELLSTEIN A, WELCH WJ, WILCOX CS. p47(phox) is required for afferent arteriolar contractile responses to angiotensin II and perfusion pressure in mice. Hypertension. 2012;59:415–420. doi: 10.1161/hypertensionaha.111.184291. PubMed DOI PMC
LEE HT, EMALA CW. Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors. Am J Physiol Renal Physiol. 2000;278:F380–F387. doi: 10.1152/ajprenal.2000.278.3.f380. PubMed DOI
LEE J, HWANG I, LEE JH, LEE HW, JEONG LS, HA H. The selective A3AR antagonist LJ-1888 ameliorates UUO-induced tubulointerstitial fibrosis. Am J Pathol. 2013;183:1488–1497. doi: 10.1016/j.ajpath.2013.07.010. PubMed DOI
LEWIS CJ, EVANS RJ. P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations. J Vasc Res. 2001;38:332–340. doi: 10.1159/000051064. PubMed DOI
LI L, LAI EY, HUANG Y, EISNER C, MIZEL D, WILCOX CS, SCHNERMANN J. Renal afferent arteriolar and tubuloglomerular feedback reactivity in mice with conditional deletions of adenosine 1 receptors. Am J Physiol Renal Physiol. 2012;303:F1166–F1175. doi: 10.1152/ajprenal.00222.2012. PubMed DOI PMC
LU Y, ZHANG R, GE Y, CARLSTROM M, WANG S, FU Y, CHENG L, WEI J, ROMAN RJ, WANG L, GAO X, LIU R. Identification and function of adenosine A3 receptor in afferent arterioles. Am J Physiol Renal Physiol. 2015;308:F1020–F1025. doi: 10.1152/ajprenal.00422.2014. PubMed DOI PMC
MAJID DS, INSCHO EW, NAVAR LG. P2 purinoceptor saturation by adenosine triphosphate impairs renal autoregulation in dogs. J Am Soc Nephrol. 1999;10:492–498. PubMed
MENZIES RI, UNWIN RJ, DASH RK, BEARD DA, COWLEY AW, JR, CARLSON BE, MULLINS JJ, BAILEY MA. Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats. Front Physiol. 2013;4:305. doi: 10.3389/fphys.2013.00305. PubMed DOI PMC
MENZIES RI, HOWARTH AR, UNWIN RJ, TAM FW, MULLINS JJ, BAILEY MA. Inhibition of the purinergic P2X7 receptor improves renal perfusion in angiotensin-II-infused rats. Kidney Int. 2015a;88:1079–1087. doi: 10.1038/ki.2015.182. PubMed DOI PMC
MENZIES RI, UNWIN RJ, BAILEY MA. Renal P2 receptors and hypertension. Acta Physiol (Oxf) 2015b;213:232–241. doi: 10.1111/apha.12412. PubMed DOI
MOORE LC, CASELLAS D. Tubuloglomerular feedback dependence of autoregulation in rat juxtamedullary afferent arterioles. Kidney Int. 1990;37:1402–1408. doi: 10.1038/ki.1990.129. PubMed DOI
MORI T, COWLEY AW., JR Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats. Hypertension. 2004;43:752–759. doi: 10.1161/01.hyp.0000120971.49659.6a. PubMed DOI
NAGASAWA T, IMIG JD. Afferent arteriolar responses to beta, gamma-methylene ATP and 20-HETE are not blocked by ENaC inhibition. Physiol Rep. 2013;1:e00082. doi: 10.1002/phy2.82. PubMed DOI PMC
NAVAR LG. Renal autoregulation: perspectives from whole kidney and single nephron studies. Am J Physiol. 1978;234:F357–F370. doi: 10.1152/ajprenal.1978.234.5.f357. PubMed DOI
NAVAR LG, ARENDSHORST WJ, PALLONE TL, INSCHO EW, IMIG JD, BELL PD. The renal microcirculation. In: TUMA RF, DURAN WN, LEY K, editors. Comprehensive Physiology. Elsevier; San Diego: 2008. pp. 550–683. DOI
NISHIYAMA A, MAJID DS, TAHER KA, MIYATAKE A, NAVAR LG. Relation between renal interstitial ATP concentrations and autoregulation-mediated changes in renal vascular resistance. Circ Res. 2000;86:656–662. doi: 10.1161/01.res.86.6.656. PubMed DOI
NISHIYAMA A, INSCHO EW, NAVAR LG. Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol Renal Physiol. 2001a;280:F406–F414. doi: 10.1152/ajprenal.2001.280.3.f406. PubMed DOI
NISHIYAMA A, MAJID DS, WALKER M, 3RD, MIYATAKE A, NAVAR LG. Renal interstitial ATP responses to changes in arterial pressure during alterations in tubuloglomerular feedback activity. Hypertension. 2001b;37:753–759. doi: 10.1161/01.hyp.37.2.753. PubMed DOI
NISHIYAMA A, JACKSON KE, MAJID DS, RAHMAN M, NAVAR LG. Renal interstitial fluid ATP responses to arterial pressure and tubuloglomerular feedback activation during calcium channel blockade. Am J Physiol Heart Circ Physiol. 2006;290:H772–H777. doi: 10.1152/ajpheart.00242.2005. PubMed DOI
NORTH RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150427. doi: 10.1098/rstb.2015.0427. PubMed DOI PMC
OLAH ME. Identification of A2a adenosine receptor domains involved in selective coupling to Gs. Analysis of chimeric A1/A2a adenosine receptors. J Biol Chem. 1997;272:337–344. doi: 10.1074/jbc.272.1.337. PubMed DOI
OSMOND DA, INSCHO EW. P2X1 receptor blockade inhibits whole kidney autoregulation of renal blood flow in vivo. Am J Physiol Renal Physiol. 2010;298:F1360–1368. doi: 10.1152/ajprenal.00016.2010. PubMed DOI PMC
OSMOND DA, ZHANG S, POLLOCK JS, YAMAMOTO T, De MIGUEL C, INSCHO EW. Clopidogrel preserves whole kidney autoregulatory behavior in ANG II-induced hypertension. Am J Physiol Renal Physiol. 2014;306:F619–F628. doi: 10.1152/ajprenal.00444.2013. PubMed DOI PMC
OSSWALD H, MUHLBAUER B, VALLON V. Adenosine and tubuloglomerular feedback. Blood Purif. 1997;15:243–252. doi: 10.1159/000170342. PubMed DOI
PALMER BF. Disturbances in renal autoregulation and the susceptibility to hypertension-induced chronic kidney disease. Am J Med Sci. 2004;328:330–343. doi: 10.1016/s0002-9629(15)33943-4. PubMed DOI
PALYGIN O, LEVCHENKO V, EVANS LC, BLASS G, COWLEY AW, JR, STARUSCHENKO A. Use of enzymatic biosensors to quantify endogenous ATP or H2O2 in the kidney. J Vis Exp. 2015;104:e53059. doi: 10.3791/53059. PubMed DOI PMC
PALYGIN O, EVANS LC, COWLEY AW, JR, STARUSCHENKO A. Acute in vivo analysis of ATP release in rat kidneys in response to changes of renal perfusion pressure. J Am Heart Assoc. 2017;6 doi: 10.1161/jaha.117.006658. pii: e006658. PubMed DOI PMC
PETI-PETERDI J. Calcium wave of tubuloglomerular feedback. Am J Physiol Renal Physiol. 2006;291:F473–F480. doi: 10.1152/ajprenal.00425.2005. PubMed DOI
PLOTH DW, ROY RN, HUANG WC, NAVAR LG. Impaired renal blood flow and cortical pressure autoregulation in contralateral kidneys of Goldblatt hypertensive rats. Hypertension. 1981;3:67–74. doi: 10.1161/01.hyp.3.1.67. PubMed DOI
REN Y, ARIMA S, CARRETERO OA, ITO S. Possible role of adenosine in macula densa control of glomerular hemodynamics. Kidney Int. 2002;61:169–176. doi: 10.1046/j.1523-1755.2002.00093.x. PubMed DOI
REN Y, GARVIN JL, LIU R, CARRETERO OA. Crosstalk between the connecting tubule and the afferent arteriole regulates renal microcirculation. Kidney Int. 2007;71:1116–1121. doi: 10.1038/sj.ki.5002190. PubMed DOI
ROMAN RJ. Abnormal renal hemodynamics and pressure-natriuresis relationship in Dahl salt-sensitive rats. Am J Physiol. 1986;251:F57–F65. doi: 10.1152/ajprenal.1986.251.1.f57. PubMed DOI
ROMAN RJ, SMITS C. Laser-Doppler determination of papillary blood flow in young and adult rats. Am J Physiol. 1986;251:F115–F124. doi: 10.1152/ajprenal.1986.251.1.f115. PubMed DOI
SCHJOEDT KJ, CHRISTENSEN PK, JORSAL A, BOOMSMA F, ROSSING P, PARVING HH. Autoregulation of glomerular filtration rate during spironolactone treatment in hypertensive patients with type 1 diabetes: a randomized crossover trial. Nephrol Dial Transplant. 2009;24:3343–3349. doi: 10.1093/ndt/gfp311. PubMed DOI
SCHNACKENBERG CG. Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Regul Integr Comp Physiol. 2002;282:R335–R342. doi: 10.1152/ajpregu.00605.2001. PubMed DOI
SCHNERMANN J. Concurrent activation of multiple vasoactive signaling pathways in vasoconstriction caused by tubuloglomerular feedback: a quantitative assessment. Annu Rev Physiol. 2015;77:301–322. doi: 10.1146/annurev-physiol-021014-071829. PubMed DOI
SCHNERMANN J, WRIGHT FS, DAVIS JM, Von STACKELBERG W, GRILL G. Regulation of superficial nephron filtration rate by tubulo-glomerular feedback. Pflugers Arch. 1970;318:147–175. doi: 10.1007/bf00586493. PubMed DOI
SCHNERMANN J, WEIHPRECHT H, BRIGGS JP. Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am J Physiol. 1990;258:F553–F561. doi: 10.1152/ajprenal.1990.258.3.f553. PubMed DOI
SCHWIEBERT EM. ATP release mechanisms, ATP receptors and purinergic signalling along the nephron. Clin Exp Pharmacol Physiol. 2001;28:340–350. doi: 10.1046/j.1440-1681.2001.03451.x. PubMed DOI
SEBELIUS K, FRIEDEN TR, SONDIK EJ. National Center for Health Statistics Health, United States, 2011: Table 70 Hypertension among persons 20 years of age and over. 2011
SHARMA K, COOK A, SMITH M, VALANCIUS C, INSCHO EW. TGF-beta impairs renal autoregulation via generation of ROS. Am J Physiol Renal Physiol. 2005;288:F1069–F1077. doi: 10.1152/ajprenal.00345.2004. PubMed DOI
SOMMERS SC, RELMAN AS, SMITHWICK RH. Histologic studies of kidney biopsy specimens from patients with hypertension. Am J Pathol. 1958;34:685–715. PubMed PMC
SORENSEN CM, GIESE I, BRAUNSTEIN TH, BRASEN JC, SALOMONSSON M, HOLSTEIN-RATHLOU NH. Role of connexin40 in the autoregulatory response of the afferent arteriole. Am J Physiol Renal Physiol. 2012;303:F855–F863. doi: 10.1152/ajprenal.00026.2012. PubMed DOI
SUN D, SAMUELSON LC, YANG T, HUANG Y, PALIEGE A, SAUNDERS T, BRIGGS J, SCHNERMANN J. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A. 2001;98:9983–9988. doi: 10.1073/pnas.171317998. PubMed DOI PMC
TAKENAKA T, FORSTER H, De MICHELI A, EPSTEIN M. Impaired myogenic responsiveness of renal microvessels in Dahl salt-sensitive rats. Circ Res. 1992;71:471–480. doi: 10.1161/01.res.71.2.471. PubMed DOI
TAKENAKA T, HARRISON-BERNARD LM, INSCHO EW, CARMINES PK, NAVAR LG. Autoregulation of afferent arteriolar blood flow in juxtamedullary nephrons. Am J Physiol Renal Physiol. 1994;267:F879–F887. doi: 10.1152/ajprenal.1994.267.5.f879. PubMed DOI
THOMSON S, BAO D, DENG A, VALLON V. Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. J Clin Invest. 2000;106:289–298. doi: 10.1172/jci8761. PubMed DOI PMC
TUCKER AL, LINDEN J. Cloned receptors and cardiovascular responses to adenosine. Cardiovasc Res. 1993;27:62–67. doi: 10.1093/cvr/27.1.62. PubMed DOI
TURNER CM, VONEND O, CHAN C, BURNSTOCK G, UNWIN RJ. The pattern of distribution of selected ATP-sensitive P2 receptor subtypes in normal rat kidney: an immunohistological study. Cells Tissues Organs. 2003;175:105–117. doi: 10.1159/000073754. PubMed DOI
VALLON V, UNWIN RJ, INSCHO EW, LEIPZIGER J, KISHORE BK. Extracellular nucleotides and P2 receptors in renal function. Physiol Rev. 2020;100:211–269. doi: 10.1152/physrev.00038.2018. PubMed DOI PMC
Von KUGELGEN I. Pharmacology of P2Y receptors. Brain Res Bull. 2019;151:12–24. doi: 10.1016/j.brainresbull.2019.03.010. PubMed DOI
VONEND O, TURNER CM, CHAN CM, LOESCH A, DELL’ANNA GC, SRAI KS, BURNSTOCK G, UNWIN RJ. Glomerular expression of the ATP-sensitive P2X receptor in diabetic and hypertensive rat models. Kidney Int. 2004;66:157–166. doi: 10.1111/j.1523-1755.2004.00717.x. PubMed DOI
WANG X, LOUTZENHISER RD, CUPPLES WA. Frequency modulation of renal myogenic autoregulation by perfusion pressure. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1199–R1204. doi: 10.1152/ajpregu.00281.2007. PubMed DOI
WANG X, TAKEYA K, AARONSON PI, LOUTZENHISER K, LOUTZENHISER R. Effects of amiloride, benzamil, and alterations in extracellular Na+ on the rat afferent arteriole and its myogenic response. Am J Physiol Renal Physiol. 2008;295:F272–F282. doi: 10.1152/ajprenal.00200.2007. PubMed DOI PMC
WILCOX CS. Redox regulation of the afferent arteriole and tubuloglomerular feedback. Acta Physiol Scand. 2003;179:217–223. doi: 10.1046/j.0001-6772.2003.01205.x. PubMed DOI
ZHAN Y, BROWN C, MAYNARD E, ANSHELEVICH A, NI W, HO IC, OETTGEN P. Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. J Clin Invest. 2005;115:2508–2516. doi: 10.1172/jci24403. PubMed DOI PMC
ZOU AP, LI N, COWLEY AW., JR Production and actions of superoxide in the renal medulla. Hypertension. 2001;37:547–553. doi: 10.1161/01.hyp.37.2.547. PubMed DOI