Age-Related Differences in Rejection Rates, Infections, and Tacrolimus Exposure in Pediatric Kidney Transplant Recipients in the CERTAIN Registry
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39534206
PubMed Central
PMC11551099
DOI
10.1016/j.ekir.2024.08.025
PII: S2468-0249(24)01910-7
Knihovny.cz E-zdroje
- Klíčová slova
- allograft rejection, hospitalization, infection, pediatric kidney transplantation, tacrolimus,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Data on age-related differences in rejection rates, infectious episodes, and tacrolimus exposure in pediatric kidney transplant recipients (pKTRs) on a tacrolimus-based immunosuppressive regimen are scarce. METHODS: We performed a large-scale analysis of 802 pKTRs from the Cooperative European Paediatric Renal Transplant Initiative (CERTAIN) registry from 40 centers in 14 countries. The inclusion criteria were a tacrolimus-based immunosuppressive regimen and at least 2 years of follow-up. The patient population was divided into 3 age groups (infants and young children aged <6 years, school-aged children 6-12 years, and adolescents aged >12 years) to assess age-related differences in outcome. RESULTS: Median follow-up was 48 months (interquartile range [IQR], 36-72). Within the first 2 years posttransplant, infants, and young children had a significantly higher incidence of infections (80.6% vs. 55.0% in adolescents, P < 0.001) and a significantly higher number of cumulative hospital days (median 13 days vs. 7 days in adolescents, P < 0.001). Adolescents had a significantly higher rate of biopsy-proven acute rejection episodes in the first-year posttransplant (21.7%) than infants and young children (12.6%, P = 0.007). Infants and young children had significantly lower tacrolimus trough levels, lower tacrolimus concentration-to-dose (C/D) ratios as an approximation for higher tacrolimus clearance, and higher tacrolimus interpatient variability (TacIPV) (all P < 0.01) than adolescents. CONCLUSION: This is the largest study to date in European pKTRs on a tacrolimus-based immunosuppressive regimen, and it shows important age-related differences in rejection rates, infection episodes, as well as tacrolimus exposure and clearance. This data suggests that immunosuppressive therapy in pKTRs should be tailored and personalized according to the age-specific risk profiles of this heterogeneous patient population. The data may serve as a benchmark for future studies with novel immunosuppressive drugs.
Department of General Pediatrics University Children's Hospital Münster Münster Germany
Department of Pediatric Nephrology Nottingham University Hospitals Nottingham UK
Department of Pediatric Nephrology Royal Manchester Children's Hospital Manchester UK
Department of Pediatrics 2 University Hospital of Essen Essen Germany
Division of Pediatric Nephrology Hacettepe University Faculty of Medicine Ankara Türkiye
Division of Pediatric Nephrology University Hamburg Eppendorf Hamburg Germany
Institute of Medical Biometry Heidelberg University Heidelberg Germany
Zobrazit více v PubMed
Astley M.E., Boenink R., Abd ElHafeez S., et al. The ERA Registry Annual Report 2020: a summary. Clin Kidney J. 2023;16:1330–1354. doi: 10.1093/ckj/sfad087. PubMed DOI PMC
Boenink R., Astley M.E., Huijben J.A., et al. The ERA Registry Annual Report 2019: summary and age comparisons. Clin Kidney J. 2022;15:452–472. doi: 10.1093/ckj/sfab273. PubMed DOI PMC
Shen Q., Fang X., Man X., et al. Pediatric kidney transplantation in China: an analysis from the IPNA Global Kidney Replacement Therapy Registry. Pediatr Nephrol. 2021;36:685–692. doi: 10.1007/s00467-020-04745-7. PubMed DOI
Chua A., Cramer C., Moudgil A., et al. Kidney transplant practice patterns and outcome benchmarks over 30 years: the 2018 report of the NAPRTCS. Pediatr Transplant. 2019;23 doi: 10.1111/petr.13597. PubMed DOI
Hardin A.P., Hackell J.M. Committee on practice and ambulatory medicine. Age limit of pediatrics. Pediatrics. 2017;140 doi: 10.1542/peds.2017-2151. PubMed DOI
Borra L.C.P., Roodnat J.I., Kal J.A., Mathot R.A.A., Weimar W., van Gelder T. High within-patient variability in the clearance of tacrolimus is a risk factor for poor long-term outcome after kidney transplantation. Nephrol Dial Transplant. 2010;25:2757–2763. doi: 10.1093/ndt/gfq096. PubMed DOI
Kuypers D.R.J. Intrapatient variability of tacrolimus exposure in solid organ transplantation: a novel marker for clinical outcome. Clin Pharmacol Ther. 2020;107:347–358. doi: 10.1002/cpt.1618. PubMed DOI
Whalen H.R., Glen J.A., Harkins V., et al. High interpatient tacrolimus variability is associated with worse outcomes in renal transplantation using a low-dose tacrolimus immunosuppressive regime. Transplantation. 2017;101:430–436. doi: 10.1097/TP.0000000000001129. PubMed DOI
Sablik K.A., Clahsen-van Groningen M.C., Hesselink D.A., van Gelder T., Betjes M.G.H. Tacrolimus intra-patient variability is not associated with chronic active antibody mediated rejection. PLoS One. 2018;13 doi: 10.1371/journal.pone.0196552. PubMed DOI PMC
Offner G., Toenshoff B., Höcker B., et al. Efficacy and safety of basiliximab in pediatric renal transplant patients receiving cyclosporine, mycophenolate mofetil, and steroids. Transplantation. 2008;86:1241–1248. doi: 10.1097/TP.0b013e318188af15. PubMed DOI
Grenda R., Watson A., Vondrak K., et al. A prospective, randomized, multicenter trial of tacrolimus-based therapy with or without basiliximab in pediatric renal transplantation. Am J Transplant. 2006;6:1666–1672. doi: 10.1111/j.1600-6143.2006.01367.x. PubMed DOI
Hsiau M., Fernandez H.E., Gjertson D., Ettenger R.B., Tsai E.W. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. Transplantation. 2011;92:918–922. doi: 10.1097/TP.0b013e31822dc34f. PubMed DOI
Rianthavorn P., Ettenger R.B. Medication non-adherence in the adolescent renal transplant recipient: a clinician’s viewpoint. Pediatr Transplant. 2005;9:398–407. doi: 10.1111/j.1399-3046.2005.00358.x. PubMed DOI
Feddersen N., Pape L., Beneke J., Brand K., Prüfe J. Adherence in pediatric renal recipients and its effect on graft outcome, a single-center, retrospective study. Pediatr Transplant. 2021;25 doi: 10.1111/petr.13922. PubMed DOI
Baghai Arassi M., Gauche L., Schmidt J., et al. Association of intraindividual tacrolimus variability with de novo donor-specific HLA antibody development and allograft rejection in pediatric kidney transplant recipients with low immunological risk. Pediatr Nephrol. 2022;37:2503–2514. doi: 10.1007/s00467-022-05426-3. PubMed DOI PMC
Prytula A.A., Bouts A.H., Mathot R.A.A., et al. Intra-patient variability in tacrolimus trough concentrations and renal function decline in pediatric renal transplant recipients. Pediatr Transplant. 2012;16:613–618. doi: 10.1111/j.1399-3046.2012.01727.x. PubMed DOI
Prytuła A., van Gelder T. Clinical aspects of tacrolimus use in paediatric renal transplant recipients. Pediatr Nephrol. 2019;34:31–43. doi: 10.1007/s00467-018-3892-8. PubMed DOI
Rozen-Zvi B., Schneider S., Lichtenberg S., et al. Association of the combination of time-weighted variability of tacrolimus blood level and exposure to low drug levels with graft survival after kidney transplantation. Nephrol Dial Transplant. 2017;32:gfw394. doi: 10.1093/ndt/gfw394. PubMed DOI
Bonneville E., Gautier-Veyret E., Ihl C., et al. Unexpected overdose blood concentration of tacrolimus: keep in mind the role of inflammation. Br J Clin Pharmacol. 2020;86:1888–1891. doi: 10.1111/bcp.14292. PubMed DOI PMC
Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R., Goodman A.L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570:462–467. doi: 10.1038/s41586-019-1291-3. PubMed DOI PMC
Baghai Arassi M., Zeller G., Karcher N., Zimmermann M., Toenshoff B. The gut microbiome in solid organ transplantation. Pediatr Transplant. 2020;24 doi: 10.1111/petr.13866. PubMed DOI
Matalová P., Urbánek K., Anzenbacher P. Specific features of pharmacokinetics in children. Drug Metab Rev. 2016;48:70–79. doi: 10.3109/03602532.2015.1135941. PubMed DOI
Jouve T., Fonrose X., Noble J., et al. The TOMATO study (tacrolimus metabolization in kidney transplantation): impact of the concentration-dose ratio on death-censored graft survival. Transplantation. 2020;104:1263–1271. doi: 10.1097/TP.0000000000002920. PubMed DOI
Thölking G., Siats L., Fortmann C., et al. Tacrolimus concentration/dose ratio is associated with renal function after liver transplantation. Ann Transplant. 2016;21:167–179. doi: 10.12659/AOT.895898. PubMed DOI
Naesens M., Salvatierra O., Li L., Kambham N., Concepcion W., Sarwal M. Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. Transplantation. 2008;85:1139–1145. doi: 10.1097/TP.0b013e31816b431a. PubMed DOI
Anglicheau D., Flamant M., Schlageter M.H., et al. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant. 2003;18:2409–2414. doi: 10.1093/ndt/gfg381. PubMed DOI
Shuker N., van Gelder T., Hesselink D.A. Intra-patient variability in tacrolimus exposure: causes, consequences for clinical management. Transplant Rev (Orlando) 2015;29:78–84. doi: 10.1016/j.trre.2015.01.002. PubMed DOI
Piburn K.H., Sigurjonsdottir V.K., Indridason O.S., et al. Patterns in tacrolimus variability and association with de novo donor-specific antibody formation in pediatric kidney transplant recipients. Clin J Am Soc Nephrol. 2022;17:1194–1203. doi: 10.2215/CJN.16421221. PubMed DOI PMC
Thölking G., Fortmann C., Koch R., et al. The tacrolimus metabolism rate influences renal function after kidney transplantation. PLoS One Bueno V. 2014;9 doi: 10.1371/journal.pone.0111128. PubMed DOI PMC
Fichtner A., Gauché L., Süsal C., et al. Incidence, risk factors, management strategies and outcomes of antibody-mediated rejection in pediatric kidney transplant recipients-a multicenter analysis of the Cooperative European Paediatric Renal Transplant Initiative (CERTAIN). Research Square (Research Square) https://dooi,org/10.21203/rs.3.rs-4016549/v1 PubMed DOI PMC
Höcker B., Schneble L., Murer L., et al. Epidemiology of and risk factors for BK polyomavirus replication and nephropathy in pediatric renal transplant recipients: an international CERTAIN registry study. Transplantation. 2019;103(6):1224–1233. doi: 10.1097/TP.0000000000002414. PubMed DOI
Höcker B., Zencke S., Pape L., et al. Impact of everolimus and low-dose cyclosporin on cytomegalovirus replication and disease in pediatric renal transplantation. Am J Transplant. 2016;16:921–929. doi: 10.1111/ajt.13649. PubMed DOI
Höcker B., Zencke S., Krupka K., et al. Cytomegalovirus infection in pediatric renal transplantation and the impact of chemoprophylaxis with (Val-)Ganciclovir. Transplantation. 2016;100:862–870. doi: 10.1097/TP.0000000000000888. PubMed DOI