Trimethylamine Induced Chronic Kidney Injury by Activating the ZBP1-NLRP3 Inflammasome Pathway
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39545792
PubMed Central
PMC11629947
DOI
10.33549/physiolres.935378
PII: 935378
Knihovny.cz E-zdroje
- MeSH
- chronická renální insuficience * metabolismus chemicky indukované patologie MeSH
- inflamasomy * metabolismus MeSH
- ledviny metabolismus účinky léků patologie MeSH
- methylaminy * metabolismus MeSH
- myši inbrední C57BL * MeSH
- myši MeSH
- protein NLRP3 * metabolismus MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inflamasomy * MeSH
- methylaminy * MeSH
- Nlrp3 protein, mouse MeSH Prohlížeč
- protein NLRP3 * MeSH
- trimethyloxamine MeSH Prohlížeč
Trimethylamine N-oxide (TMAO), a bioactive metabolite of gut microbes, plays a pivotal role in the pathogenesis of kidney diseases by activating programmed cell death (PCD) pathways. However, whether trimethylamine (TMA) contributes to chronic kidney injury and which kind of PCD is involved in TMA-induced chronic kidney injury has not been previously evaluated. To observe the effect of TMA, male C57BL/6J mice were randomly divided into two groups: the Control group and the TMA group. The mice in the TMA group were intraperitoneally injected with 100 micromol/kg/day TMA for three months, whereas the mice in the Control group were injected with normal saline for the same period. After three months, plasma creatinine and blood urea nitrogen levels, indicators of kidney function, increased significantly in the TMA group as compared with those in the Control group. Furthermore, Masson staining assay showed that TMA treatment led to a larger area of fibrosis than the Control group. TMA treatment did not change the Bax/Bcl-2 ratio, RIP1, RIP3 and MLKL phosphorylation, or iron and malondialdehyde levels in kidney tissues, indicating that apoptosis, ferroptosis and necroptosis were not involved in TMA-induced chronic kidney injury. However, compared with the Control group, TMA treatment significantly upregulated NLRP3, Caspase-1, IL-1beta, cleaved-Caspase 8, Caspase-8, and ZBP1 protein expression in kidney tissues. These results indicated that the ZBP1-NLRP3 inflammasome pathway was involved in TMA-induced chronic kidney injury. In conclusion, our studies revealed that the ZBP1-NLRP3 inflammasome may take part in the progression of TMA induced chronic kidney injury.
Zobrazit více v PubMed
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16:269–288. doi: 10.1038/s41581-019-0248-y. PubMed DOI
Wang H, Ainiwaer A, Song Y, Qin L, Peng A, Bao H, Qin H. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. Microbiome. 2023;11:3. doi: 10.1186/s40168-022-01443-4. PubMed DOI PMC
Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10:1398. doi: 10.3390/nu10101398. PubMed DOI PMC
Zixin Y, Lulu C, Xiangchang Z, Qing F, Binjie Z, Chunyang L, Tai R, Dongsheng O. TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Front Pharmacol. 2022;13:929262. doi: 10.3389/fphar.2022.929262. PubMed DOI PMC
Stubbs JR, House JA, Ocque AJ, Zhang S, Johnson C, Kimber C, Schmidt K, et al. Serum Trimethylamine-N-Oxide is Elevated in CKD and Correlates with Coronary Atherosclerosis Burden. J Am Soc Nephrol. 2016;27:305–313. doi: 10.1681/ASN.2014111063. PubMed DOI PMC
Gupta N, Buffa JA, Roberts AB, Sangwan N, Skye SM, Li L, Ho KJ, et al. Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. Arterioscler Thromb Vasc Biol. 2020;40:1239–1255. doi: 10.1161/ATVBAHA.120.314139. PubMed DOI PMC
Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116:448–455. doi: 10.1161/CIRCRESAHA.116.305360. PubMed DOI PMC
Gawrys-Kopczynska M, Konop M, Maksymiuk K, Kraszewska K, Derzsi L, Sozanski K, Holyst R, et al. TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats. Elife. 2020;9:e57028. doi: 10.7554/eLife.57028. PubMed DOI PMC
Jaworska K, Hering D, Mosieniak G, Bielak-Zmijewska A, Pilz M, Konwerski M, Gasecka A, et al. TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins (Basel) 2019;11:490. doi: 10.3390/toxins11090490. PubMed DOI PMC
Guerrero-Mauvecin J, Villar-Gómez N, Rayego-Mateos S, Ramos AM, Ruiz-Ortega M, Ortiz A, Sanz AB. Regulated necrosis role in inflammation and repair in acute kidney injury. Front Immunol. 2023;14:1324996. doi: 10.3389/fimmu.2023.1324996. PubMed DOI PMC
Deng Y, Zou J, Hong Y, Peng Q, Fu X, Duan R, Chen J, Chen X. Higher Circulating Trimethylamine N-Oxide Aggravates Cognitive Impairment Probably via Downregulating Hippocampal SIRT1 in Vascular Dementia Rats. Cells. 2022;11:3650. doi: 10.3390/cells11223650. PubMed DOI PMC
Luo Y, Zhang Y, Han X, Yuan Y, Zhou Y, Gao Y, Yu H, et al. Akkermansia muciniphila prevents cold-related atrial fibrillation in rats by modulation of TMAO induced cardiac pyroptosis. EBioMedicine. 2022;82:104087. doi: 10.1016/j.ebiom.2022.104087. PubMed DOI PMC
Zhang W, Miikeda A, Zuckerman J, Jia X, Charugundla S, Zhou Z, Kaczor-Urbanowicz KE, et al. Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Sci Rep. 2021;11:518. doi: 10.1038/s41598-020-80063-0. PubMed DOI PMC
Sanz AB, Sanchez-Niño MD, Ramos AM, Ortiz A. Regulated cell death pathways in kidney disease. Nat Rev Nephrol. 2023;19:281–299. doi: 10.1038/s41581-023-00694-0. PubMed DOI PMC
Sanz AB, Santamaría B, Ruiz-Ortega M, Egido J, Ortiz A. Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol. 2008;19:1634–1642. doi: 10.1681/ASN.2007121336. PubMed DOI
Dong F, Jiang S, Tang C, Wang X, Ren X, Wei Q, Tian J, et al. Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy. Free Radic Biol Med. 2022;179:288–300. doi: 10.1016/j.freeradbiomed.2021.11.010. PubMed DOI
Yong C, Huang G, Ge H, Zhu Y, Yang Y, Yu Y, Tian F, et al. Perilla frutescens L. alleviates trimethylamine N-oxide-induced apoptosis in the renal tubule by regulating ASK1-JNK phosphorylation. Phytother Res. 2023;37:1274–1292. doi: 10.1002/ptr.7684. PubMed DOI
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–282. doi: 10.1038/s41580-020-00324-8. PubMed DOI PMC
Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 2023;8:372. doi: 10.1038/s41392-023-01606-1. PubMed DOI PMC
Wang J, Liu Y, Wang Y, Sun L. The Cross-Link between Ferroptosis and Kidney Diseases. Oxid Med Cell Longev. 2021;2021:6654887. doi: 10.1155/2021/6654887. PubMed DOI PMC
Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R, Cui X, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res. 2020;28:231–243. doi: 10.1016/j.jare.2020.07.007. PubMed DOI PMC
Yang L, Guo J, Yu N, Liu Y, Song H, Niu J, Gu Y. Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model. Life Sci. 2020;261:118487. doi: 10.1016/j.lfs.2020.118487. PubMed DOI
Maremonti F, Meyer C, Linkermann A. Mechanisms and Models of Kidney Tubular Necrosis and Nephron Loss. J Am Soc Nephrol. 2022;33:472–486. doi: 10.1681/ASN.2021101293. PubMed DOI PMC
Chen H, Fang Y, Wu J, Chen H, Zou Z, Zhang X, Shao J, Xu Y. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD. Cell Death Dis. 2018;9:878. doi: 10.1038/s41419-018-0936-8. PubMed DOI PMC
Chen Z, Chen C, Lai K, Wu C, Wu F, Chen Z, Ye K, et al. GSDMD and GSDME synergy in the transition of acute kidney injury to chronic kidney disease. Nephrol Dial Transplant. 2024;39:1344–1359. doi: 10.1093/ndt/gfae014. PubMed DOI
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–320. doi: 10.1038/nature14191. PubMed DOI
Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: Mechanisms and Relevance to Disease. Annu Rev Pathol. 2017;12:103–130. doi: 10.1146/annurev-pathol-052016-100247. PubMed DOI PMC
Lin Z, Chen A, Cui H, Shang R, Su T, Li X, Wang K, et al. Renal tubular epithelial cell necroptosis promotes tubulointerstitial fibrosis in patients with chronic kidney disease. FASEB J. 2022;36:e22625. doi: 10.1096/fj.202200706RR. PubMed DOI
Srivastava A, Tomar B, Sharma P, Kumari S, Prakash S, Rath SK, Kulkarni OP, et al. RIPK3-MLKL signaling activates mitochondrial CaMKII and drives intrarenal extracellular matrix production during CKD. Matrix Biol. 2022;112:72–89. doi: 10.1016/j.matbio.2022.08.005. PubMed DOI
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6:128. doi: 10.1038/s41392-021-00507-5. PubMed DOI PMC
Elias EE, Lyons B, Muruve DA. Gasdermins and pyroptosis in the kidney. Nat Rev Nephrol. 2023;19:337–350. doi: 10.1038/s41581-022-00662-0. PubMed DOI
Liu Y, Lei H, Zhang W, Xing Q, Liu R, Wu S, Liu Z, et al. Pyroptosis in renal inflammation and fibrosis: current knowledge and clinical significance. Cell Death Dis. 2023;14:472. doi: 10.1038/s41419-023-06005-6. PubMed DOI PMC
Wu K, Yuan Y, Yu H, Dai X, Wang S, Sun Z, Wang F, et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood. 2020;136:501–515. doi: 10.1182/blood.2019003990. PubMed DOI PMC
Zhang X, Li Y, Yang P, Liu X, Lu L, Chen Y, Zhong X, et al. Trimethylamine-N-Oxide Promotes Vascular Calcification Through Activation of NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) Inflammasome and NF-κB (Nuclear Factor κB) Signals. Arterioscler Thromb Vasc Biol. 2020;40:751–765. doi: 10.1161/ATVBAHA.119.313414. PubMed DOI
Chen CY, Leu HB, Wang SC, Tsai SH, Chou RH, Lu YW, Tsai YL, et al. Inhibition of Trimethylamine N-Oxide Attenuates Neointimal Formation Through Reduction of Inflammasome and Oxidative Stress in a Mouse Model of Carotid Artery Ligation. Antioxid Redox Signal. 2023;38:215–233. doi: 10.1089/ars.2021.0115. PubMed DOI
Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 2021;597:415–419. doi: 10.1038/s41586-021-03875-8. PubMed DOI PMC
Banoth B, Tuladhar S, Karki R, Sharma BR, Briard B, Kesavardhana S, Burton A, Kanneganti TD. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis) J Biol Chem. 2020;295:18276–18283. doi: 10.1074/jbc.RA120.015924. PubMed DOI PMC
Malireddi RKS, Sharma BR, Bynigeri RR, Wang Y, Lu J, Kanneganti TD. ZBP1 Drives IAV-Induced NLRP3 Inflammasome Activation and Lytic Cell Death, PANoptosis, Independent of the Necroptosis Executioner MLKL. Viruses. 2023;15:2141. doi: 10.3390/v15112141. PubMed DOI PMC
Yan S, Yu L, Chen Z, Xie D, Huang Z, Ouyang S. ZBP1 promotes hepatocyte pyroptosis in acute liver injury by regulating the PGAM5/ROS pathway. Ann Hepatol. 2024;29:101475. doi: 10.1016/j.aohep.2024.101475. PubMed DOI
Sun B, Chen Z, Chi Q, Zhang Y, Gao B. Endogenous tRNA-derived small RNA (tRF3-Thr-AGT) inhibits ZBP1/NLRP3 pathway-mediated cell pyroptosis to attenuate acute pancreatitis (AP) J Cell Mol Med. 2021;25:10441–10453. doi: 10.1111/jcmm.16972. PubMed DOI PMC