Trimethylamine Induced Chronic Kidney Injury by Activating the ZBP1-NLRP3 Inflammasome Pathway

. 2024 Nov 15 ; 73 (5) : 779-789.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39545792

Trimethylamine N-oxide (TMAO), a bioactive metabolite of gut microbes, plays a pivotal role in the pathogenesis of kidney diseases by activating programmed cell death (PCD) pathways. However, whether trimethylamine (TMA) contributes to chronic kidney injury and which kind of PCD is involved in TMA-induced chronic kidney injury has not been previously evaluated. To observe the effect of TMA, male C57BL/6J mice were randomly divided into two groups: the Control group and the TMA group. The mice in the TMA group were intraperitoneally injected with 100 micromol/kg/day TMA for three months, whereas the mice in the Control group were injected with normal saline for the same period. After three months, plasma creatinine and blood urea nitrogen levels, indicators of kidney function, increased significantly in the TMA group as compared with those in the Control group. Furthermore, Masson staining assay showed that TMA treatment led to a larger area of fibrosis than the Control group. TMA treatment did not change the Bax/Bcl-2 ratio, RIP1, RIP3 and MLKL phosphorylation, or iron and malondialdehyde levels in kidney tissues, indicating that apoptosis, ferroptosis and necroptosis were not involved in TMA-induced chronic kidney injury. However, compared with the Control group, TMA treatment significantly upregulated NLRP3, Caspase-1, IL-1beta, cleaved-Caspase 8, Caspase-8, and ZBP1 protein expression in kidney tissues. These results indicated that the ZBP1-NLRP3 inflammasome pathway was involved in TMA-induced chronic kidney injury. In conclusion, our studies revealed that the ZBP1-NLRP3 inflammasome may take part in the progression of TMA induced chronic kidney injury.

Zobrazit více v PubMed

Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16:269–288. doi: 10.1038/s41581-019-0248-y. PubMed DOI

Wang H, Ainiwaer A, Song Y, Qin L, Peng A, Bao H, Qin H. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. Microbiome. 2023;11:3. doi: 10.1186/s40168-022-01443-4. PubMed DOI PMC

Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10:1398. doi: 10.3390/nu10101398. PubMed DOI PMC

Zixin Y, Lulu C, Xiangchang Z, Qing F, Binjie Z, Chunyang L, Tai R, Dongsheng O. TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Front Pharmacol. 2022;13:929262. doi: 10.3389/fphar.2022.929262. PubMed DOI PMC

Stubbs JR, House JA, Ocque AJ, Zhang S, Johnson C, Kimber C, Schmidt K, et al. Serum Trimethylamine-N-Oxide is Elevated in CKD and Correlates with Coronary Atherosclerosis Burden. J Am Soc Nephrol. 2016;27:305–313. doi: 10.1681/ASN.2014111063. PubMed DOI PMC

Gupta N, Buffa JA, Roberts AB, Sangwan N, Skye SM, Li L, Ho KJ, et al. Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. Arterioscler Thromb Vasc Biol. 2020;40:1239–1255. doi: 10.1161/ATVBAHA.120.314139. PubMed DOI PMC

Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116:448–455. doi: 10.1161/CIRCRESAHA.116.305360. PubMed DOI PMC

Gawrys-Kopczynska M, Konop M, Maksymiuk K, Kraszewska K, Derzsi L, Sozanski K, Holyst R, et al. TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats. Elife. 2020;9:e57028. doi: 10.7554/eLife.57028. PubMed DOI PMC

Jaworska K, Hering D, Mosieniak G, Bielak-Zmijewska A, Pilz M, Konwerski M, Gasecka A, et al. TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins (Basel) 2019;11:490. doi: 10.3390/toxins11090490. PubMed DOI PMC

Guerrero-Mauvecin J, Villar-Gómez N, Rayego-Mateos S, Ramos AM, Ruiz-Ortega M, Ortiz A, Sanz AB. Regulated necrosis role in inflammation and repair in acute kidney injury. Front Immunol. 2023;14:1324996. doi: 10.3389/fimmu.2023.1324996. PubMed DOI PMC

Deng Y, Zou J, Hong Y, Peng Q, Fu X, Duan R, Chen J, Chen X. Higher Circulating Trimethylamine N-Oxide Aggravates Cognitive Impairment Probably via Downregulating Hippocampal SIRT1 in Vascular Dementia Rats. Cells. 2022;11:3650. doi: 10.3390/cells11223650. PubMed DOI PMC

Luo Y, Zhang Y, Han X, Yuan Y, Zhou Y, Gao Y, Yu H, et al. Akkermansia muciniphila prevents cold-related atrial fibrillation in rats by modulation of TMAO induced cardiac pyroptosis. EBioMedicine. 2022;82:104087. doi: 10.1016/j.ebiom.2022.104087. PubMed DOI PMC

Zhang W, Miikeda A, Zuckerman J, Jia X, Charugundla S, Zhou Z, Kaczor-Urbanowicz KE, et al. Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Sci Rep. 2021;11:518. doi: 10.1038/s41598-020-80063-0. PubMed DOI PMC

Sanz AB, Sanchez-Niño MD, Ramos AM, Ortiz A. Regulated cell death pathways in kidney disease. Nat Rev Nephrol. 2023;19:281–299. doi: 10.1038/s41581-023-00694-0. PubMed DOI PMC

Sanz AB, Santamaría B, Ruiz-Ortega M, Egido J, Ortiz A. Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol. 2008;19:1634–1642. doi: 10.1681/ASN.2007121336. PubMed DOI

Dong F, Jiang S, Tang C, Wang X, Ren X, Wei Q, Tian J, et al. Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy. Free Radic Biol Med. 2022;179:288–300. doi: 10.1016/j.freeradbiomed.2021.11.010. PubMed DOI

Yong C, Huang G, Ge H, Zhu Y, Yang Y, Yu Y, Tian F, et al. Perilla frutescens L. alleviates trimethylamine N-oxide-induced apoptosis in the renal tubule by regulating ASK1-JNK phosphorylation. Phytother Res. 2023;37:1274–1292. doi: 10.1002/ptr.7684. PubMed DOI

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–282. doi: 10.1038/s41580-020-00324-8. PubMed DOI PMC

Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 2023;8:372. doi: 10.1038/s41392-023-01606-1. PubMed DOI PMC

Wang J, Liu Y, Wang Y, Sun L. The Cross-Link between Ferroptosis and Kidney Diseases. Oxid Med Cell Longev. 2021;2021:6654887. doi: 10.1155/2021/6654887. PubMed DOI PMC

Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R, Cui X, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res. 2020;28:231–243. doi: 10.1016/j.jare.2020.07.007. PubMed DOI PMC

Yang L, Guo J, Yu N, Liu Y, Song H, Niu J, Gu Y. Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model. Life Sci. 2020;261:118487. doi: 10.1016/j.lfs.2020.118487. PubMed DOI

Maremonti F, Meyer C, Linkermann A. Mechanisms and Models of Kidney Tubular Necrosis and Nephron Loss. J Am Soc Nephrol. 2022;33:472–486. doi: 10.1681/ASN.2021101293. PubMed DOI PMC

Chen H, Fang Y, Wu J, Chen H, Zou Z, Zhang X, Shao J, Xu Y. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD. Cell Death Dis. 2018;9:878. doi: 10.1038/s41419-018-0936-8. PubMed DOI PMC

Chen Z, Chen C, Lai K, Wu C, Wu F, Chen Z, Ye K, et al. GSDMD and GSDME synergy in the transition of acute kidney injury to chronic kidney disease. Nephrol Dial Transplant. 2024;39:1344–1359. doi: 10.1093/ndt/gfae014. PubMed DOI

Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–320. doi: 10.1038/nature14191. PubMed DOI

Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: Mechanisms and Relevance to Disease. Annu Rev Pathol. 2017;12:103–130. doi: 10.1146/annurev-pathol-052016-100247. PubMed DOI PMC

Lin Z, Chen A, Cui H, Shang R, Su T, Li X, Wang K, et al. Renal tubular epithelial cell necroptosis promotes tubulointerstitial fibrosis in patients with chronic kidney disease. FASEB J. 2022;36:e22625. doi: 10.1096/fj.202200706RR. PubMed DOI

Srivastava A, Tomar B, Sharma P, Kumari S, Prakash S, Rath SK, Kulkarni OP, et al. RIPK3-MLKL signaling activates mitochondrial CaMKII and drives intrarenal extracellular matrix production during CKD. Matrix Biol. 2022;112:72–89. doi: 10.1016/j.matbio.2022.08.005. PubMed DOI

Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6:128. doi: 10.1038/s41392-021-00507-5. PubMed DOI PMC

Elias EE, Lyons B, Muruve DA. Gasdermins and pyroptosis in the kidney. Nat Rev Nephrol. 2023;19:337–350. doi: 10.1038/s41581-022-00662-0. PubMed DOI

Liu Y, Lei H, Zhang W, Xing Q, Liu R, Wu S, Liu Z, et al. Pyroptosis in renal inflammation and fibrosis: current knowledge and clinical significance. Cell Death Dis. 2023;14:472. doi: 10.1038/s41419-023-06005-6. PubMed DOI PMC

Wu K, Yuan Y, Yu H, Dai X, Wang S, Sun Z, Wang F, et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood. 2020;136:501–515. doi: 10.1182/blood.2019003990. PubMed DOI PMC

Zhang X, Li Y, Yang P, Liu X, Lu L, Chen Y, Zhong X, et al. Trimethylamine-N-Oxide Promotes Vascular Calcification Through Activation of NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) Inflammasome and NF-κB (Nuclear Factor κB) Signals. Arterioscler Thromb Vasc Biol. 2020;40:751–765. doi: 10.1161/ATVBAHA.119.313414. PubMed DOI

Chen CY, Leu HB, Wang SC, Tsai SH, Chou RH, Lu YW, Tsai YL, et al. Inhibition of Trimethylamine N-Oxide Attenuates Neointimal Formation Through Reduction of Inflammasome and Oxidative Stress in a Mouse Model of Carotid Artery Ligation. Antioxid Redox Signal. 2023;38:215–233. doi: 10.1089/ars.2021.0115. PubMed DOI

Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 2021;597:415–419. doi: 10.1038/s41586-021-03875-8. PubMed DOI PMC

Banoth B, Tuladhar S, Karki R, Sharma BR, Briard B, Kesavardhana S, Burton A, Kanneganti TD. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis) J Biol Chem. 2020;295:18276–18283. doi: 10.1074/jbc.RA120.015924. PubMed DOI PMC

Malireddi RKS, Sharma BR, Bynigeri RR, Wang Y, Lu J, Kanneganti TD. ZBP1 Drives IAV-Induced NLRP3 Inflammasome Activation and Lytic Cell Death, PANoptosis, Independent of the Necroptosis Executioner MLKL. Viruses. 2023;15:2141. doi: 10.3390/v15112141. PubMed DOI PMC

Yan S, Yu L, Chen Z, Xie D, Huang Z, Ouyang S. ZBP1 promotes hepatocyte pyroptosis in acute liver injury by regulating the PGAM5/ROS pathway. Ann Hepatol. 2024;29:101475. doi: 10.1016/j.aohep.2024.101475. PubMed DOI

Sun B, Chen Z, Chi Q, Zhang Y, Gao B. Endogenous tRNA-derived small RNA (tRF3-Thr-AGT) inhibits ZBP1/NLRP3 pathway-mediated cell pyroptosis to attenuate acute pancreatitis (AP) J Cell Mol Med. 2021;25:10441–10453. doi: 10.1111/jcmm.16972. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...