Soluble αβ-tubulins reversibly sequester TTC5 to regulate tubulin mRNA decay
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PCEFP3_194312
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
DRG:227916
Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation)
ALTF 116-2020
European Molecular Biology Organization (EMBO)
ALTF 258-2023
European Molecular Biology Organization (EMBO)
101029853
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
MC_UP_A022_1007
RCUK | Medical Research Council (MRC)
PYP Start-up grant
National University of Singapore (NUS)
PubMed
39551769
PubMed Central
PMC11570694
DOI
10.1038/s41467-024-54036-0
PII: 10.1038/s41467-024-54036-0
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- messenger RNA * metabolismus genetika MeSH
- mikrotubuly * metabolismus MeSH
- proteiny asociované s mikrotubuly metabolismus genetika MeSH
- ribozomy metabolismus MeSH
- segregace chromozomů MeSH
- stabilita RNA * MeSH
- tubulin * metabolismus genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- messenger RNA * MeSH
- proteiny asociované s mikrotubuly MeSH
- tubulin * MeSH
Microtubules, built from heterodimers of α- and β-tubulins, control cell shape, mediate intracellular transport, and power cell division. The concentration of αβ-tubulins is tightly controlled through a posttranscriptional mechanism involving selective and regulated degradation of tubulin-encoding mRNAs. Degradation is initiated by TTC5, which recognizes tubulin-synthesizing ribosomes and recruits downstream effectors to trigger mRNA deadenylation. Here, we investigate how cells regulate TTC5 activity. Biochemical and structural proteomic approaches reveal that under normal conditions, soluble αβ-tubulins bind to and sequester TTC5, preventing it from engaging nascent tubulins at translating ribosomes. We identify the flexible C-terminal tail of TTC5 as a molecular switch, toggling between soluble αβ-tubulin-bound and nascent tubulin-bound states. Loss of sequestration by soluble αβ-tubulins constitutively activates TTC5, leading to diminished tubulin mRNA levels and compromised microtubule-dependent chromosome segregation during cell division. Our findings provide a paradigm for how cells regulate the activity of a specificity factor to adapt posttranscriptional regulation of gene expression to cellular needs.
Department of Biological Sciences National University of Singapore Singapore Singapore
Department of Molecular and Cellular Biology University of Geneva Geneva Switzerland
Medical Research Council Laboratory of Molecular Biology Cambridge UK
Zobrazit více v PubMed
Wade, R. H. & Hyman, A. A. Microtubule structure and dynamics. Curr. Opin. Cell Biol.9, 12–17 (1997). PubMed
Muroyama, A. & Lechler, T. Microtubule organization, dynamics and functions in differentiated cells. Development144, 3012–3021 (2017). PubMed PMC
Gasic, I. & Mitchison, T. J. Autoregulation and repair in microtubule homeostasis. Curr. Opin. Cell Biol.56, 80–87 (2019). PubMed
Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature312, 237–242 (1984). PubMed
Goodson, H. V. & Jonasson, E. M. Microtubules and microtubule-associated proteins. Cold Spring Harb. Perspect. Biol.10, a022608 (2018). PubMed PMC
Wieczorek, M., Bechstedt, S., Chaaban, S. & Brouhard, G. J. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol.17, 907–916 (2015). PubMed
Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature378, 578–583 (1995). PubMed
Geel, O. V., Cheung, S. & Gadella, T. W. J. Combining optogenetics with sensitive FRET imaging to monitor local microtubule manipulations. Sci. Rep.10, 6034 (2020). PubMed PMC
Cleveland, D. W., Lopata, M. A., Sherline, P. & Kirschner, M. W. Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell25, 537–546 (1981). PubMed
Ben-Ze’ev, A., Farmer, S. R. & Penman, S. Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell17, 319–325 (1979). PubMed
Theodorakis, N. G. & Cleveland, D. W. Physical evidence for cotranslational regulation of beta-tubulin mRNA degradation. Mol. Cell Biol.12, 791–799 (1992). PubMed PMC
Yen, T. J., Machlin, P. S. & Cleveland, D. W. Autoregulated instability of beta-tubulin mRNAs by recognition of the nascent amino terminus of beta-tubulin. Nature334, 580–585 (1988). PubMed
Yen, T. J., Gay, D. A., Pachter, J. S. & Cleveland, D. W. Autoregulated changes in stability of polyribosome-bound beta-tubulin mRNAs are specified by the first 13 translated nucleotides. Mol. Cell Biol.8, 1224–1235 (1988). PubMed PMC
Lin, Z. et al. TTC5 mediates autoregulation of tubulin via mRNA degradation. Science367, 100–104 (2020). PubMed PMC
Höpfler, M. et al. Mechanism of ribosome-associated mRNA degradation during tubulin autoregulation. Mol. Cell83, 2290–2302.e13 (2023). PubMed PMC
Gasic, I., Boswell, S. A. & Mitchison, T. J. Tubulin mRNA stability is sensitive to change in microtubule dynamics caused by multiple physiological and toxic cues. PLoS Biol.17, e3000225 (2019). PubMed PMC
Phyo, S. A. et al. Transcriptional, post-transcriptional, and post-translational mechanisms rewrite the tubulin code during cardiac hypertrophy and failure. Front. Cell Dev. Biol.10, 837486 (2022). PubMed PMC
Caron, J. M., Jones, A. L. & Kirschner, M. W. Autoregulation of tubulin synthesis in hepatocytes and fibroblasts. J. Cell Biol.101, 1763–1772 (1985). PubMed PMC
Magiera, M. M. & Janke, C. Post-translational modifications of tubulin. Curr. Biol.24, R351–R354 (2014). PubMed
Bheda, A., Gullapalli, A., Caplow, M., Pagano, J. S. & Shackelford, J. Ubiquitin editing enzyme UCH L1 and microtubule dynamics: implication in mitosis. Cell Cycle9, 980–994 (2010). PubMed PMC
Ren, Y., Zhao, J. & Feng, J. Parkin binds to α/β tubulin and increases their ubiquitination and degradation. J. Neurosci.23, 3326–3324 (2003). PubMed PMC
Musante, L. et al. TTC5 syndrome: clinical and molecular spectrum of a severe and recognizable condition. Am. J. Med. Genet. A.188 1–14 (2022). PubMed PMC
Rasheed, A. et al. Bi-allelic TTC5 variants cause delayed developmental milestones and intellectual disability. J. Med. Genet.58, 237–246 (2021). PubMed PMC
Miyamoto, S. et al. A boy with biallelic frameshift variants in TTC5 and brain malformation resembling tubulinopathies. J. Hum. Genet.66, 1189–1192 (2021). PubMed
Fasham, J. et al. Delineating the expanding phenotype associated with SCAPER gene mutation. Am. J. Med. Genet. A179, 1665–1671 (2019). PubMed PMC
Kahrizi, K. et al. Homozygous variants in the gene SCAPER cause syndromic intellectual disability. Am. J. Med. Genet. A179, 1214–1225 (2019). PubMed
Tatour, Y. et al. Mutations in SCAPER cause autosomal recessive retinitis pigmentosa with intellectual disability. J. Med. Genet.54, 698 (2017). PubMed
Bakhoum, S. F., Genovese, G. & Compton, D. A. Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr. Biol.19, 1937–1942 (2009). PubMed PMC
Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore–microtubule dynamics. Nat. Cell Biol.11, 27–35 (2009). PubMed PMC
Tilney, L. G. & Porter, K. R. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J. Cell Biol.34, 327–343 (1967). PubMed PMC
Weber, K., Pollack, R. & Bibring, T. Antibody against tuberlin: the specific visualization of cytoplasmic microtubules in tissue culture cells. Proc. Natl. Acad. Sci. USA72, 459–463 (1975). PubMed PMC
James, E. I., Murphree, T. A., Vorauer, C., Engen, J. R. & Guttman, M. Advances in hydrogen/deuterium exchange mass spectrometry and the pursuit of challenging biological systems. Chem. Rev.122, 7562–7623 (2022). PubMed PMC
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature596, 590–596 (2021). PubMed PMC
Nogales, E., Wolf, S. G. & Downing, K. H. Visualizing the secondary structure of tubulin: three-dimensional map at 4 Å. J. Struct. Biol.118, 119–127 (1997). PubMed
Yariv, B. et al. Using evolutionary data to make sense of macromolecules with a “face‐lifted” ConSurf. Protein Sci.32, e4582 (2023). PubMed PMC
Kerppola, T. K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc.1, 1278–1286 (2006). PubMed PMC
Shyu, Y. J., Liu, H., Deng, X. & Hu, C.-D. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques40, 61–66 (2006). PubMed
Tak, H. et al. Bimolecular fluorescence complementation; lighting-up tau-tau interaction in living cells. PLoS One8, e81682 (2013). PubMed PMC
Gay, D. A., Yen, T. J., Lau, J. T. Y. & Cleveland, D. W. Sequences that confer β-tubulin autoregulation through modulated mRNA stability reside within exon 1 of a β-tubulin mRNA. Cell50, 671–679 (1987). PubMed
Bachurski, C. J., Theodorakis, N. G., Coulson, R. M. & Cleveland, D. W. An amino-terminal tetrapeptide specifies cotranslational degradation of beta-tubulin but not alpha-tubulin mRNAs. Mol. Cell Biol.14, 4076–4086 (1994). PubMed PMC
Gasic, I. Regulation of tubulin gene expression: from isotype identity to functional specialization. Front. Cell Dev. Biol.10, 898076 (2022). PubMed PMC
Gadadhar, S., Bodakuntla, S., Natarajan, K. & Janke, C. The tubulin code at a glance. J. Cell Sci.130, 1347–1353 (2017). PubMed
Kline-Smith, S. L. & Walczak, C. E. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol. Cell15, 317–327 (2004). PubMed
Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. P. L. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science333, 1895–1898 (2011). PubMed
Bakhoum, S. F. et al. The mitotic origin of chromosomal instability. Curr. Biol.24, R148–R149 (2014). PubMed PMC
Cimini, D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim. Biophys. Acta1786, 32–40 (2008). PubMed
Replogle, J. M. et al. Aneuploidy increases resistance to chemotherapeutics by antagonizing cell division. PNAS117, 30566–30576 (2020). PubMed PMC
Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature432, 338–341 (2004). PubMed
Weaver, B. A. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell11, 25–36 (2007). PubMed
Levine, M. S. & Holland, A. J. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev.32, 620–638 (2018). PubMed PMC
Fellous, A., Ginzburg, I. & Littauer, U. Z. Modulation of tubulin mRNA levels by interferon in human lymphoblastoid cells. EMBO J.1, 835–839 (1982). PubMed PMC
Pittenger, M. F. & Cleveland, D. W. Retention of autoregulatory control of tubulin synthesis in cytoplasts: demonstration of a cytoplasmic mechanism that regulates the level of tubulin expression. J. Cell Biol.101, 1941–1952 (1985). PubMed PMC
Lau, J. T. Y., Pittenger, M. F., Havercroft, J. C. & Cleveland, D. W. Reconstruction of tubulin gene regulation in cultured mammalian cells. Ann. NY Acad. Sci.466, 75–88 (1986). PubMed
Tsang, W. Y., Wang, L., Chen, Z., Sánchez, I. & Dynlacht, B. D. SCAPER, a novel cyclin A-interacting protein that regulates cell cycle progression. JCB178, 621–633 (2007). PubMed PMC
Williams, R. SCAPER speeds and slows the cell cycle. J. Cell Biol.178, 543–543 (2007).
Tsang, W. Y. & Dynlacht, B. D. Double identity of SCAPER: a substrate and regulator of cyclin A/Cdk2. Cell Cycle Georget. Tex.7, 702–705 (2008). PubMed
Chin, J. W. et al. An expanded eukaryotic genetic code. Science301, 964–967 (2003). PubMed
Sakamoto, K. et al. Site‐specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res.30, 4692–4699 (2002). PubMed PMC
Szczesny, R. J. et al. Versatile approach for functional analysis of human proteins and efficient stable cell line generation using FLP-mediated recombination system. PLoS One13, e0194887 (2018). PubMed PMC
Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. Protein secretion, methods and protocols. Methods Mol. Biol.619, 339–363 (2010). PubMed PMC
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408 (2001). PubMed
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res,50, D543–D552 (2021). PubMed PMC
Banerjee, A., Bovenzi, F. A. & Bane, S. L. High-resolution separation of tubulin monomers on polyacrylamide minigels. Anal. Biochem.402, 194–196 (2010). PubMed PMC
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol.26, 1367–1372 (2008). PubMed
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods13, 731–740 (2016). PubMed
Wang, H. et al. Autoregulation of class II alpha PI3K activity by its lipid-binding PX-C2 domain module. Mol. Cell71, 343–351.e4 (2018). PubMed
Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res.33, W299–W302 (2005). PubMed PMC
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods19, 679–682 (2022). PubMed PMC
Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics35, 2856–2858 (2019). PubMed PMC
Evans, R. et al. Protein complex prediction with Alphafold-multimer. bioRxiv 2021.10.04.463034 (2022).