Soluble αβ-tubulins reversibly sequester TTC5 to regulate tubulin mRNA decay

. 2024 Nov 17 ; 15 (1) : 9963. [epub] 20241117

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39551769

Grantová podpora
PCEFP3_194312 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
DRG:227916 Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation)
ALTF 116-2020 European Molecular Biology Organization (EMBO)
ALTF 258-2023 European Molecular Biology Organization (EMBO)
101029853 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
MC_UP_A022_1007 RCUK | Medical Research Council (MRC)
PYP Start-up grant National University of Singapore (NUS)

Odkazy

PubMed 39551769
PubMed Central PMC11570694
DOI 10.1038/s41467-024-54036-0
PII: 10.1038/s41467-024-54036-0
Knihovny.cz E-zdroje

Microtubules, built from heterodimers of α- and β-tubulins, control cell shape, mediate intracellular transport, and power cell division. The concentration of αβ-tubulins is tightly controlled through a posttranscriptional mechanism involving selective and regulated degradation of tubulin-encoding mRNAs. Degradation is initiated by TTC5, which recognizes tubulin-synthesizing ribosomes and recruits downstream effectors to trigger mRNA deadenylation. Here, we investigate how cells regulate TTC5 activity. Biochemical and structural proteomic approaches reveal that under normal conditions, soluble αβ-tubulins bind to and sequester TTC5, preventing it from engaging nascent tubulins at translating ribosomes. We identify the flexible C-terminal tail of TTC5 as a molecular switch, toggling between soluble αβ-tubulin-bound and nascent tubulin-bound states. Loss of sequestration by soluble αβ-tubulins constitutively activates TTC5, leading to diminished tubulin mRNA levels and compromised microtubule-dependent chromosome segregation during cell division. Our findings provide a paradigm for how cells regulate the activity of a specificity factor to adapt posttranscriptional regulation of gene expression to cellular needs.

Zobrazit více v PubMed

Wade, R. H. & Hyman, A. A. Microtubule structure and dynamics. Curr. Opin. Cell Biol.9, 12–17 (1997). PubMed

Muroyama, A. & Lechler, T. Microtubule organization, dynamics and functions in differentiated cells. Development144, 3012–3021 (2017). PubMed PMC

Gasic, I. & Mitchison, T. J. Autoregulation and repair in microtubule homeostasis. Curr. Opin. Cell Biol.56, 80–87 (2019). PubMed

Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature312, 237–242 (1984). PubMed

Goodson, H. V. & Jonasson, E. M. Microtubules and microtubule-associated proteins. Cold Spring Harb. Perspect. Biol.10, a022608 (2018). PubMed PMC

Wieczorek, M., Bechstedt, S., Chaaban, S. & Brouhard, G. J. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol.17, 907–916 (2015). PubMed

Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature378, 578–583 (1995). PubMed

Geel, O. V., Cheung, S. & Gadella, T. W. J. Combining optogenetics with sensitive FRET imaging to monitor local microtubule manipulations. Sci. Rep.10, 6034 (2020). PubMed PMC

Cleveland, D. W., Lopata, M. A., Sherline, P. & Kirschner, M. W. Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell25, 537–546 (1981). PubMed

Ben-Ze’ev, A., Farmer, S. R. & Penman, S. Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell17, 319–325 (1979). PubMed

Theodorakis, N. G. & Cleveland, D. W. Physical evidence for cotranslational regulation of beta-tubulin mRNA degradation. Mol. Cell Biol.12, 791–799 (1992). PubMed PMC

Yen, T. J., Machlin, P. S. & Cleveland, D. W. Autoregulated instability of beta-tubulin mRNAs by recognition of the nascent amino terminus of beta-tubulin. Nature334, 580–585 (1988). PubMed

Yen, T. J., Gay, D. A., Pachter, J. S. & Cleveland, D. W. Autoregulated changes in stability of polyribosome-bound beta-tubulin mRNAs are specified by the first 13 translated nucleotides. Mol. Cell Biol.8, 1224–1235 (1988). PubMed PMC

Lin, Z. et al. TTC5 mediates autoregulation of tubulin via mRNA degradation. Science367, 100–104 (2020). PubMed PMC

Höpfler, M. et al. Mechanism of ribosome-associated mRNA degradation during tubulin autoregulation. Mol. Cell83, 2290–2302.e13 (2023). PubMed PMC

Gasic, I., Boswell, S. A. & Mitchison, T. J. Tubulin mRNA stability is sensitive to change in microtubule dynamics caused by multiple physiological and toxic cues. PLoS Biol.17, e3000225 (2019). PubMed PMC

Phyo, S. A. et al. Transcriptional, post-transcriptional, and post-translational mechanisms rewrite the tubulin code during cardiac hypertrophy and failure. Front. Cell Dev. Biol.10, 837486 (2022). PubMed PMC

Caron, J. M., Jones, A. L. & Kirschner, M. W. Autoregulation of tubulin synthesis in hepatocytes and fibroblasts. J. Cell Biol.101, 1763–1772 (1985). PubMed PMC

Magiera, M. M. & Janke, C. Post-translational modifications of tubulin. Curr. Biol.24, R351–R354 (2014). PubMed

Bheda, A., Gullapalli, A., Caplow, M., Pagano, J. S. & Shackelford, J. Ubiquitin editing enzyme UCH L1 and microtubule dynamics: implication in mitosis. Cell Cycle9, 980–994 (2010). PubMed PMC

Ren, Y., Zhao, J. & Feng, J. Parkin binds to α/β tubulin and increases their ubiquitination and degradation. J. Neurosci.23, 3326–3324 (2003). PubMed PMC

Musante, L. et al. TTC5 syndrome: clinical and molecular spectrum of a severe and recognizable condition. Am. J. Med. Genet. A.188 1–14 (2022). PubMed PMC

Rasheed, A. et al. Bi-allelic TTC5 variants cause delayed developmental milestones and intellectual disability. J. Med. Genet.58, 237–246 (2021). PubMed PMC

Miyamoto, S. et al. A boy with biallelic frameshift variants in TTC5 and brain malformation resembling tubulinopathies. J. Hum. Genet.66, 1189–1192 (2021). PubMed

Fasham, J. et al. Delineating the expanding phenotype associated with SCAPER gene mutation. Am. J. Med. Genet. A179, 1665–1671 (2019). PubMed PMC

Kahrizi, K. et al. Homozygous variants in the gene SCAPER cause syndromic intellectual disability. Am. J. Med. Genet. A179, 1214–1225 (2019). PubMed

Tatour, Y. et al. Mutations in SCAPER cause autosomal recessive retinitis pigmentosa with intellectual disability. J. Med. Genet.54, 698 (2017). PubMed

Bakhoum, S. F., Genovese, G. & Compton, D. A. Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr. Biol.19, 1937–1942 (2009). PubMed PMC

Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore–microtubule dynamics. Nat. Cell Biol.11, 27–35 (2009). PubMed PMC

Tilney, L. G. & Porter, K. R. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J. Cell Biol.34, 327–343 (1967). PubMed PMC

Weber, K., Pollack, R. & Bibring, T. Antibody against tuberlin: the specific visualization of cytoplasmic microtubules in tissue culture cells. Proc. Natl. Acad. Sci. USA72, 459–463 (1975). PubMed PMC

James, E. I., Murphree, T. A., Vorauer, C., Engen, J. R. & Guttman, M. Advances in hydrogen/deuterium exchange mass spectrometry and the pursuit of challenging biological systems. Chem. Rev.122, 7562–7623 (2022). PubMed PMC

Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature596, 590–596 (2021). PubMed PMC

Nogales, E., Wolf, S. G. & Downing, K. H. Visualizing the secondary structure of tubulin: three-dimensional map at 4 Å. J. Struct. Biol.118, 119–127 (1997). PubMed

Yariv, B. et al. Using evolutionary data to make sense of macromolecules with a “face‐lifted” ConSurf. Protein Sci.32, e4582 (2023). PubMed PMC

Kerppola, T. K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc.1, 1278–1286 (2006). PubMed PMC

Shyu, Y. J., Liu, H., Deng, X. & Hu, C.-D. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques40, 61–66 (2006). PubMed

Tak, H. et al. Bimolecular fluorescence complementation; lighting-up tau-tau interaction in living cells. PLoS One8, e81682 (2013). PubMed PMC

Gay, D. A., Yen, T. J., Lau, J. T. Y. & Cleveland, D. W. Sequences that confer β-tubulin autoregulation through modulated mRNA stability reside within exon 1 of a β-tubulin mRNA. Cell50, 671–679 (1987). PubMed

Bachurski, C. J., Theodorakis, N. G., Coulson, R. M. & Cleveland, D. W. An amino-terminal tetrapeptide specifies cotranslational degradation of beta-tubulin but not alpha-tubulin mRNAs. Mol. Cell Biol.14, 4076–4086 (1994). PubMed PMC

Gasic, I. Regulation of tubulin gene expression: from isotype identity to functional specialization. Front. Cell Dev. Biol.10, 898076 (2022). PubMed PMC

Gadadhar, S., Bodakuntla, S., Natarajan, K. & Janke, C. The tubulin code at a glance. J. Cell Sci.130, 1347–1353 (2017). PubMed

Kline-Smith, S. L. & Walczak, C. E. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol. Cell15, 317–327 (2004). PubMed

Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. P. L. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science333, 1895–1898 (2011). PubMed

Bakhoum, S. F. et al. The mitotic origin of chromosomal instability. Curr. Biol.24, R148–R149 (2014). PubMed PMC

Cimini, D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim. Biophys. Acta1786, 32–40 (2008). PubMed

Replogle, J. M. et al. Aneuploidy increases resistance to chemotherapeutics by antagonizing cell division. PNAS117, 30566–30576 (2020). PubMed PMC

Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature432, 338–341 (2004). PubMed

Weaver, B. A. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell11, 25–36 (2007). PubMed

Levine, M. S. & Holland, A. J. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev.32, 620–638 (2018). PubMed PMC

Fellous, A., Ginzburg, I. & Littauer, U. Z. Modulation of tubulin mRNA levels by interferon in human lymphoblastoid cells. EMBO J.1, 835–839 (1982). PubMed PMC

Pittenger, M. F. & Cleveland, D. W. Retention of autoregulatory control of tubulin synthesis in cytoplasts: demonstration of a cytoplasmic mechanism that regulates the level of tubulin expression. J. Cell Biol.101, 1941–1952 (1985). PubMed PMC

Lau, J. T. Y., Pittenger, M. F., Havercroft, J. C. & Cleveland, D. W. Reconstruction of tubulin gene regulation in cultured mammalian cells. Ann. NY Acad. Sci.466, 75–88 (1986). PubMed

Tsang, W. Y., Wang, L., Chen, Z., Sánchez, I. & Dynlacht, B. D. SCAPER, a novel cyclin A-interacting protein that regulates cell cycle progression. JCB178, 621–633 (2007). PubMed PMC

Williams, R. SCAPER speeds and slows the cell cycle. J. Cell Biol.178, 543–543 (2007).

Tsang, W. Y. & Dynlacht, B. D. Double identity of SCAPER: a substrate and regulator of cyclin A/Cdk2. Cell Cycle Georget. Tex.7, 702–705 (2008). PubMed

Chin, J. W. et al. An expanded eukaryotic genetic code. Science301, 964–967 (2003). PubMed

Sakamoto, K. et al. Site‐specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res.30, 4692–4699 (2002). PubMed PMC

Szczesny, R. J. et al. Versatile approach for functional analysis of human proteins and efficient stable cell line generation using FLP-mediated recombination system. PLoS One13, e0194887 (2018). PubMed PMC

Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. Protein secretion, methods and protocols. Methods Mol. Biol.619, 339–363 (2010). PubMed PMC

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408 (2001). PubMed

Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res,50, D543–D552 (2021). PubMed PMC

Banerjee, A., Bovenzi, F. A. & Bane, S. L. High-resolution separation of tubulin monomers on polyacrylamide minigels. Anal. Biochem.402, 194–196 (2010). PubMed PMC

Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol.26, 1367–1372 (2008). PubMed

Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods13, 731–740 (2016). PubMed

Wang, H. et al. Autoregulation of class II alpha PI3K activity by its lipid-binding PX-C2 domain module. Mol. Cell71, 343–351.e4 (2018). PubMed

Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res.33, W299–W302 (2005). PubMed PMC

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods19, 679–682 (2022). PubMed PMC

Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics35, 2856–2858 (2019). PubMed PMC

Evans, R. et al. Protein complex prediction with Alphafold-multimer. bioRxiv 2021.10.04.463034 (2022).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...