Effect of Moringa oleifera seeds on the removal of pathogens and pharmaceutical residues in a domestic wastewater treatment plant by an interdisciplinary approach
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39567450
PubMed Central
PMC11624239
DOI
10.1007/s11356-024-35362-8
PII: 10.1007/s11356-024-35362-8
Knihovny.cz E-zdroje
- Klíčová slova
- Moringa oleifera seeds, Antibiotic resistant, Genomic, Natural coagulant, Pharmaceutic residues, Pollutants, Prototype, Resistant genes, Wastewater,
- MeSH
- antibakteriální látky farmakologie MeSH
- čištění vody metody MeSH
- Escherichia coli * MeSH
- Moringa oleifera * MeSH
- odpad tekutý - odstraňování metody MeSH
- odpadní voda * chemie MeSH
- semena rostlinná * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- odpadní voda * MeSH
In this transdisciplinary study, we investigated, using genomic tools and physico-chemical parameters, the effect of Moringa oleifera seed (MOS) on the removal of microorganisms and pharmaceutic residues (antibiotics), and also the development of antibiotic-resistant genes (ARGs) in water samples from a domestic wastewater treatment plant (WWTP) prototype. Water samples were analyzed with and without the addition of powder of MOS. The results showed that MOS addition reduced the total bacterial load from 1.73 × 1010 ± 3.21 × 109 to 6.67 × 106 ± 5.77 × 106 CFU/L, while fecal coliforms and Escherichia coli were removed with efficiencies of 99% and 57%, respectively. Furthermore, MOS treatment resulted in a reduction in fecal coliforms and E. coli resistant to ampicillin by about 100% and 96%, respectively. The results indicated that ciprofloxacin removal efficiencies at 29 °C were over 93% (fecal coliforms) and 68% (E. coli) with doxycycline. Adding MOS significantly reduced the copy number of the 16S rRNA gene and the genes conferring resistance to β-lactam (blaCTX-M, blaSHV, and blaTEM). However, MOS does not reveal real effectiveness on removal of pollutants (phosphorus and nitrates) contrary to what was expected. Additional studies are needed for confirmation from our observations. The findings of this study, whatever the functioning conditions (not optimal) of the prototype followed over 4 years, confirmed that MOS is potentially an effective natural and environmentally friendly coagulant that could be applied to wastewater treatment in low-income countries to remove or minimize multiple pollutants and control ARG spread. To promote sustainable development, this small-scale study provides guidance for designing infrastructure in resource-limited locations to take advantage of MOS effects in wastewater treatments.
Zobrazit více v PubMed
Adeniran KA, Akpenpuun TD, Akinyemi BA, Wasiu RA (2017) Effectiveness of Moringa oleifera seed as a coagulant in domestic wastewater treatment. Afr J Sci Technol Innov Dev 9(3):323–328. 10.1080/20421338.2017.1327475
AFFINISEP (2023) Passive sampling for the analysis of 12 endocrine disruptors in river water using AttractSPE® POCIS – EDC+, Retrieved 6 April 2023. https://www.affinisep.fr/wp-content/uploads/2022/11/an-0018-01-passive-sampling-for-the-analysis-of-12-endocrine-disruptors-in-river-water-using-attractspe-pocis--edc_compressed.pdf
AFNOR (2021) Lignes directrices pour l’utilisation des eaux usées traitées dans les projets d’irrigation - Partie 1 : les bases d’un projet de réutilisation pour l’irrigation. Afnor EDITIONS. Retrieved 6 April 2023. https://www.boutique.afnor.org/fr-fr/norme/nf-iso-160751/lignes-directrices-pour-lutilisation-des-eaux-usees-traitees-dans-les-proje/fa198212/238186
Anda De, José A-L, Villegas-García E, Valdivia-Aviña K (2018) High-strength domestic wastewater treatment and reuse with onsite passive methods. Water 10(2):99. 10.3390/w10020099
Andrade PV, Palanca CF, de Oliveira MAC, Ito CYK, dos Reis AG (2021) Use of Moringa oleifera seed as a natural coagulant in domestic wastewater tertiary treatment: physicochemical, cytotoxicity and bacterial load evaluation. J Water Process Eng 40:101859. 10.1016/j.jwpe.2020.101859
Baptista AT, Alves MO, Silva RG, Gomes RB, Vieira MF, Vieira AMS (2017) Protein fractionation of seeds of Moringa oleifera Lam and its application in superficial water treatment. Sep Purif Technol 180:114–124. 10.1016/j.seppur.2017.02.040
Bouazza L (2011) Effet de la coagulationf-loculation sur la qualité des eaux épurées de la STEP de Ain El Houtz. Mémoire pour l’obtention du diplôme de magister, Université Abou Bekr Belkaid – TLEMCEN, Algérie
Breurec S, Bouchiat C, Sire J-M, Moquet O, Bercion R, Cisse MF, Glaser P, Ndiaye O, Ka S, Salord H, Seck A, Sy HS, Michel R, Garin B (2016) High third-generation cephalosporin resistant Enterobacteriaceae prevalence rate among neonatal infections in Dakar, Senegal. BMC Infect Dis 16(1):587. 10.1186/s12879-016-1935-y PubMed PMC
Camara ML (2015) Evaluation de la prescription médicamenteuse en consultation externe au service pédiatrique de l'hôpital Aristide Le Dantec. Thèse pour Obtenir le grade de Docteur en Médecine, Université Cheikh Anta Diop de Dakar, Dakar
Chamor I (2021) Profil de résistance aux antibiotiques des bactéries isolées au CHNU de FANN. Mémoire pour l’obtention du diplôme d’études spécialisées en biologie clinique, Université Cheikh Anta Diop de Dakar, Dakar
Chereau F, Herindrainy P, Garin B, Huynh B-T, Randrianirina F, Padget M, Piola P, Guillemot D, Delarocque-Astagneau E (2015) Colonization of extended-spectrum-β-lactamase- and NDM-1-producing Enterobacteriaceae among pregnant women in the community in a low-income country: a potential reservoir for transmission of multiresistant Enterobacteriaceae to neonates. Antimicrob Agents Chemother 59(6):3652–3655. 10.1128/AAC.00029-15 PubMed PMC
Clinical and Laboratory Standards Institute (2017) Performance standards for antimicrobial susceptibility testing. USA
Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R (2018) Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet Health 2(9):e398-405. 10.1016/S2542-5196(18)30186-4 PubMed
Desta WM, Bote ME (2021) Wastewater treatment using a natural coagulant (Moringa oleifera seeds): optimization through response surface methodology. Heliyon 7(11):e08451. 10.1016/j.heliyon.2021.e08451 PubMed PMC
Eholié S-P, Bissagnéné E, Crémieux A-C, Girard P-M (2014) Momento du bon usage des antibiotiques en Afrique sub-saharienne
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124(4):509–25. 10.1007/s10265-011-0412-3 PubMed
Gueye AK (2007) Contrôle de qualité des antibiotiques vendus au Sénégal. Thèse pour obtenir le grade de Docteur en pharmacie, Université Cheikh Anta Diop de Dakar, Dakar
Guissé S (2017) Analyse de la prescription des antibiotiques : enquête dans dix officines de Dakar. Thèse pour obtenir le grade de Docteur en pharmacie, Université Cheikh Anta Diop de Dakar, Dakar
Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ (2022) Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. Environ Pollut 306:119326. 10.1016/j.envpol.2022.119326 PubMed
Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJV (2016) Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet 387(10014):176–187. 10.1016/S0140-6736(15)00473-0 PubMed
ISN (2001) EAUX USEES: NORMES DE REJET. Retrieved 13 July 2023. https://www.fao.org/faolex/results/details/fr/c/LEX-FAOC054265/
Kahn LH (2017) Antimicrobial resistance: a one health perspective. Trans R Soc Trop Med Hyg 111(6):255–260. 10.1093/trstmh/trx050 PubMed
Kelly KR, Brooks BW (2018) Chapter Three - Global aquatic hazard assessment of ciprofloxacin: exceedances of antibiotic resistance development and ecotoxicological thresholds. In: Teplow DB (ed) Progress in molecular biology and translational science, vol 159. Academic Press, pp 59–77 PubMed
Laffite A, Dhafer MM, Salah Al, Slaveykova VI, Otamonga J-P, Poté J (2020) Impact of anthropogenic activities on the occurrence and distribution of toxic metals, extending-spectra β-lactamases and carbapenem resistance in sub-Saharan African urban rivers. Sci Total Environ 727:138129. 10.1016/j.scitotenv.2020.138129 PubMed
Larsson DG, Flach C-F (2022) Antibiotic resistance in the environment. Nat Rev Microbiol 20(5):257–69. 10.1038/s41579-021-00649-x PubMed PMC
Li D, Xingjie Li Yu, Tao ZY, Ao Y (2022) Deciphering the bacterial microbiome in response to long-term mercury contaminated soil. Ecotoxicol Environ Saf 229:113062. 10.1016/j.ecoenv.2021.113062 PubMed
Li S, Ondon BS, Ho S-H, Jiang J, Li F (2022) Antibiotic resistant bacteria and genes in wastewater treatment plants: from occurrence to treatment strategies. Sci Total Environ 838:156544. 10.1016/j.scitotenv.2022.156544 PubMed
LY A (2016) Etude de la biodépollution des eaux usées avec un consortium bactérien et caractérisation bactériologique lors du traitement avec les graines de Moringa oleifera. Mémoire d’ingénieur, Université Cheikh Anta Diop de Dakar, Dakar
MacDougall C, Patrick Powell J, Johnson CK, Edmond MB, Polk RE (2005) Hospital and community fluoroquinolone use and resistance in Staphylococcus aureus and Escherichia coli in 17 US hospitals. Clin Infect Dis 41(4):435–440. 10.1086/432056 PubMed
Madsen M, Schlundt J, Omer EFE (1987) Effect of water coagulation by seeds of Moringa oleifera on bacterial concentrations. J Trop Med Hyg 90:101–109. 10.1016/0378-8741(88)90285-1 PubMed
Manaia CM (2017) Assessing the risk of antibiotic resistance transmission from the environment to humans: non-direct proportionality between abundance and risk. Trends Microbiol 25(3):173–181. 10.1016/j.tim.2016.11.014 PubMed
Marti E, Jofre J, Balcazar JL (2013) Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS ONE 8(10):e78906. 10.1371/journal.pone.0078906 PubMed PMC
Ndour M, Ghaddou Y, Seydi M, Sarr A, Diédhiou D, Sow D, Touré M, Ka-Cissé M, Diop SN (2014) Evaluation de la qualité de prescription des antibiotiques au centre hospitalier Abass Ndao. Dakar-Med
Nouhi S, Kwaambwa HM, Gutfreund P, Rennie AR (2019) Comparative study of flocculation and adsorption behaviour of water treatment proteins from Moringa peregrina and Moringa oleifera seeds. Sci Rep 9(1):17945. 10.1038/s41598-019-54069-2 PubMed PMC
Ovreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63(9):3367–73. 10.1128/aem.63.9.3367-3373.1997 PubMed PMC
Proia L, von Schiller D, Sànchez-Melsió A, Sabater S, Borrego CM, Rodríguez-Mozaz S, Balcázar JL (2016) Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. Environ Pollut 210:121–128. 10.1016/j.envpol.2015.11.035 PubMed
Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environ Sci Technol 40(23):7445–7450. 10.1021/es060413l PubMed
Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360. 10.1016/j.scitotenv.2013.01.032 PubMed
Rodier J, Legube B, Merlet N (2009) L’analyse de l’eau. Vol. 9e édition. DUNOD Paris. Paris: DUNOD
Sánchez-Martín J, Ghebremichael K, Beltrán-Heredia J (2010) Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal. Biores Technol 101(15):6259–6261. 10.1016/j.biortech.2010.02.072 PubMed
Sané N, Mbengue M, Laffite A, Stoll S, Poté J, Le Coustumer P (2022) Development of a process for domestic wastewater treatment using Moringa oleifera for pathogens and antibiotic-resistant bacteria inhibition under tropical conditions. Water 14(15):2379. 10.3390/w14152379
Shan TC, Matar MA, Makky EA, Ali EN (2017) The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal. Appl Water Sci 7(3):1369–1376. 10.1007/s13201-016-0499-8
Shebek K, Schantz AB, Sines I, Lauser K, Velegol S, Kumar M (2015) The flocculating cationic polypetide from Moringa oleifera seeds damages bacterial cell membranes by causing membrane fusion. Langmuir 31(15):4496–4502. 10.1021/acs.langmuir.5b00015 PubMed
Sidrach-Cardona R, Hijosa-Valsero M, Martí E, Balcazar J, Becares E (2014) Prevalence of antibiotic-resistant fecal bacteria in a river impacted by both an antibiotic production plant and urban treated discharges. Sci Total Environ 488–489:220–227. 10.1016/j.scitotenv2014.04.100 PubMed
Sylla A (2014) L’automédication par les antibiotiques : étude menée dans la commune de Guédiawaye. Thèse pour obtenir le grade de Docteur en pharmacie, Université Cheikh Anta Diop de Dakar, Dakar
UN-Water (2021) Summary progress update 2021: SDG 6 — water and sanitation for all. UN-Water. Retrieved 1 June 2021. https://www.unwater.org/publications/summary-progress-update-2021-sdg-6-water-and-sanitation-for-all/
Xi C, Zhang Y, Marrs CF, Ye W, Simon C, Foxman B et al (2009) Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl Environ Microbiol 75:5714–5718. 10.1128/AEM.00382-09 PubMed PMC