Microfluidics chips fabrication techniques comparison
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
52150710541
National Natural Science Foundation of China
52150710541
National Natural Science Foundation of China
52150710541
National Natural Science Foundation of China
CZ.02.1.01/0.0/0.0/16_025/0007314
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_025/0007314
European Regional Development Fund
2023-JC-YB-306
Natural Science Foundation of Shaanxi Province
PubMed
39567624
PubMed Central
PMC11579384
DOI
10.1038/s41598-024-80332-2
PII: 10.1038/s41598-024-80332-2
Knihovny.cz E-zdroje
- MeSH
- COVID-19 * virologie MeSH
- design vybavení MeSH
- dimethylpolysiloxany chemie MeSH
- laboratoř na čipu * MeSH
- lidé MeSH
- mikrofluidika metody přístrojové vybavení MeSH
- mikrofluidní analytické techniky přístrojové vybavení metody MeSH
- polymethylmethakrylát chemie MeSH
- SARS-CoV-2 izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- dimethylpolysiloxany MeSH
- polymethylmethakrylát MeSH
This study investigates various microfluidic chip fabrication techniques, highlighting their applicability and limitations in the context of urgent diagnostic needs showcased by the COVID-19 pandemic. Through a detailed examination of methods such as computer numerical control milling of a polymethyl methacrylate, soft lithography for polydimethylsiloxane-based devices, xurography for glass-glass chips, and micromachining-based silicon-glass chips, we analyze each technique's strengths and trade-offs. Hence, we discuss the fabrication complexity and chip thermal properties, such as heating and cooling rates, which are essential features of chip utilization for a polymerase chain reaction. Our comparative analysis reveals critical insights into material challenges, design flexibility, and cost-efficiency, aiming to guide the development of robust and reliable microfluidic devices for healthcare and research. This work underscores the importance of selecting appropriate fabrication methods to optimize device functionality, durability, and production efficiency.
Zobrazit více v PubMed
Whitesides, G. M. The origins and the future of microfluidics. nature 442, 368–373 (2006). PubMed
Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature507, 181–189 (2014). PubMed
Zhang, H. et al. Nanolithography toolbox—Simplifying the design complexity of microfluidic chips. J. Vacuum Sci. Technol. B Nanatechnol. Microelectronics: Mater. Process. Meas. Phenom.38, 063002 (2020).
Scott, S. M. & Ali, Z. Fabrication methods for microfluidic devices: An overview. Micromachines12, 319 (2021). PubMed PMC
Velten, T. et al. Roll-to-roll hot embossing of microstructures. Microsyst. Technol.17, 619–627 (2011).
Weisgrab, G., Ovsianikov, A. & Costa, P. F. Functional 3D printing for microfluidic chips. Adv. Mater. Technol.4, 1900275 (2019).
Suriano, R. et al. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Appl. Surf. Sci.257, 6243–6250 (2011).
Thomas, L. E. et al. A glucose meter accuracy and precision comparison: The freestyle flash versus the accu-chek advantage, accu-chek compact plus, ascensia contour, and the BD logic. Diabetes. Technol. Ther.10, 102–110 (2008). PubMed
Ryan, F., O’SHEA, S. & Byrne, S. The reliability of point-of‐care prothrombin time testing. A comparison of CoaguChek S® and XS® INR measurements with hospital laboratory monitoring. Int. J. Lab. Hematol.32, e26–e33 (2010). PubMed
Carrilho, E., Martinez, A. W. & Whitesides, G. M. Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem.81, 7091–7095 (2009). PubMed
Madhankumar, P., Sujatha, L., Sundar, R. & Viswanadam, G. Fabrication of low-cost MEMS microfluidic devices using metal embossing technique on glass for lab-on-chip applications. J. Micromech. Microeng.33, 084001 (2023).
Metz, S., Holzer, R. & Renaud, P. Polyimide-based microfluidic devices. Lab. Chip. 1, 29–34 (2001). PubMed
Fan, Y., Li, H., Yi, Y. & Foulds, I. G. PMMA to polystyrene bonding for polymer based microfluidic systems. Microsyst. Technol.20, 59–64 (2014).
Lebedev, D. et al. Focused ion beam milling based formation of nanochannels in silicon-glass microfluidic chips for the study of ion transport. Microfluid. Nanofluid.25, 51 (2021).
Fornell, A., Söderbäck, P., Liu, Z., De Albuquerque Moreira, M. & Tenje, M. Fabrication of silicon microfluidic chips for acoustic particle focusing using direct laser writing. Micromachines11, 113 (2020). PubMed PMC
Borók, A., Laboda, K. & Bonyár, A. PDMS bonding technologies for microfluidic applications: A review. Biosensors11, 292 (2021). PubMed PMC
Nge, P. N., Rogers, C. I. & Woolley, A. T. advances in microfluidic materials, functions, integration, and applications. Chem. Rev.113, 2550–2583 (2013). PubMed PMC
Kurita, R. & Niwa, O. Microfluidic platforms for DNA methylation analysis. Lab. Chip. 16, 3631–3644 (2016). PubMed
Zhuang, J., Yin, J., Lv, S., Wang, B. & Mu, Y. Advanced lab-on-a-chip to detect viruses–current challenges and future perspectives. Biosens. Bioelectron.163, 112291 (2020). PubMed PMC
Zeng, W., Jacobi, I., Beck, D. J., Li, S. & Stone, H. A. Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels. Lab. Chip. 15, 1110–1115 (2015). PubMed
Peng, R. & Li, D. Electrokinetic motion of single nanoparticles in single PDMS nanochannels. Microfluid. Nanofluid.21, 1–10 (2017).
Isiksacan, Z., Guler, M. T., Aydogdu, B., Bilican, I. & Elbuken, C. Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation. J. Micromech. Microeng.26, 035008 (2016).
Chu, M., Nguyen, T., Lee, E., Morival, J. & Khine, M. Plasma free reversible and irreversible microfluidic bonding. Lab. Chip. 17, 267–273 (2017). PubMed PMC
Songjaroen, T., Dungchai, W., Chailapakul, O., Henry, C. S. & Laiwattanapaisal, W. Blood separation on microfluidic paper-based analytical devices. Lab. Chip. 12, 3392–3398 (2012). PubMed
Ramdzan, A. N., Almeida, M. I. G., McCullough, M. J. & Kolev, S. D. Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes. Anal. Chim. Acta. 919, 47–54 (2016). PubMed
Yamada, K., Shibata, H., Suzuki, K. & Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab. Chip. 17, 1206–1249 (2017). PubMed
Torul, H. et al. Paper membrane-based SERS platform for the determination of glucose in blood samples. Anal. Bioanal. Chem.407, 8243–8251 (2015). PubMed
Lin, Y. et al. Detection of heavy metal by paper-based microfluidics. Biosens. Bioelectron.83, 256–266 (2016). PubMed
Neuville, A. et al. Xurography for microfluidics on a reactive solid. Lab. Chip. 17, 293–303 (2017). PubMed
Lei, K. F., Chang, C. H. & Chen, M. J. Paper/PMMA hybrid 3D cell culture microfluidic platform for the study of cellular crosstalk. ACS Appl. Mater. Interfaces. 9, 13092–13101 (2017). PubMed
Fan, Y., Liu, Y., Li, H. & Foulds, I. G. Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics. J. Micromech. Microeng.22, 027001 (2012).
Nayak, N. C., Yue, C., Lam, Y. & Tan, Y. Thermal bonding of PMMA: Effect of polymer molecular weight. Microsyst. Technol.16, 487–491 (2010).
Sun, A. et al. An integrated microfluidic platform for nucleic acid testing. Microsystems Nanoengineering. 10, 66 (2024). PubMed PMC
Liu, X. et al. Smartphone integrated handheld (SPEED) digital polymerase chain reaction device. Biosens. Bioelectron.232, 115319 (2023). PubMed
Zhang, H. et al. SPEED: An integrated, smartphone-operated, handheld digital PCR device for point-of-care testing. Microsystems Nanoengineering. 10, 62 (2024). PubMed PMC
Girdwood, S. et al. The integration of tuberculosis and HIV testing on GeneXpert can substantially improve access and same-day diagnosis and benefit tuberculosis programmes: A diagnostic network optimization analysis in Zambia. PLOS Global Public. Health. 3, e0001179 (2023). PubMed PMC
Li, J. et al. Point-of-care testing of SARS-CoV-2 variants identified by XNA-Based RT-qPCR. Archives Microbiol. Immunol.7, 487–497 (2023).
Zhang, W. et al. PMMA/PDMS valves and pumps for disposable microfluidics. Lab. Chip. 9, 3088–3094 (2009). PubMed
Fan, Y. Low-cost microfluidics: Materials and methods. Micro Nano Lett.13, 1367–1372 (2018).
TESA. tesa® 61395, https://www.tesa.com/en/industry/tesa-61395.html
Chen, C. S., Chen, S. C., Liao, W. H., Chien, R. D. & Lin, S. H. Micro injection molding of a micro-fluidic platform. Int. Commun. Heat Mass Transfer. 37, 1290–1294 (2010).
Li, J. et al. Hot embossing/bonding of a poly (ethylene terephthalate)(PET) microfluidic chip. J. Micromech. Microeng.18, 015008 (2007).
Xia, Y. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Ed.37, 550–575 (1998). PubMed
Iliescu, C., Poenar, D. P., Carp, M. & Loe, F. C. A microfluidic device for impedance spectroscopy analysis of biological samples. Sens. Actuators B. 123, 168–176 (2007).
Liu, X., Zhu, H., Sabó, J., Lánský, Z. & Neužil, P. Improvement of the signal to noise ratio for fluorescent imaging in microfluidic chips. Sci. Rep.12, 18911 (2022). PubMed PMC
Gao, D., Liu, H., Jiang, Y. & Lin, J. M. Recent advances in microfluidics combined with mass spectrometry: Technologies and applications. Lab. Chip. 13, 3309–3322 (2013). PubMed
Hu, X. et al. Fabrication of polyimide microfluidic devices by laser ablation based additive manufacturing. Microsyst. Technol.26, 1573–1583 (2020).
Riester, O., Laufer, S. & Deigner, H. P. Direct 3D printed biocompatible microfluidics: Assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system. J. Nanobiotechnol.20, 540 (2022). PubMed PMC
Balram, K. C. et al. The nanolithography toolbox. J. Res. Natl. Inst. Stand. Technol.121, 464 (2016). PubMed PMC
Al-Adhami, M., Andar, A., Tan, E., Rao, G. & Kostov, Y. A solvent-based method to fabricate PMMA microfluidic devices. Lab. Chip (2017).
Swaggard, T. et al. The name is bond – heat bond: Using a heated lamination press for thermoplastic thin film bonding. Lab Chip (2022).
Zhu, H. et al. Heat transfer time determination based on DNA melting curve analysis. Microfluid. Nanofluid.24, 1–8 (2020).
Neuzil, P., Cheng, F., Soon, J. B. W., Qian, L. L. & Reboud, J. Non-contact fluorescent bleaching-independent method for temperature measurement in microfluidic systems based on DNA melting curves. Lab. chip. 10, 2818–2821 (2010). PubMed
Neužil, P., Sun, W., Karásek, T. & Manz, A. Nanoliter-sized overheated reactor. Appl. Phys. Lett.106 (2015).
Prasad, A. et al. Thermal conductivity measurement of Soda–Lime–silica glass by transient 3 ω method with au Thin Film-based Micro-heater/Temperature Sensor fabricated by an innovative Approach. Int. J. Thermophys.41, 100 (2020).
Yamasue, E., Susa, M., Fukuyama, H. & Nagata, K. Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe. J. Cryst. Growth.234, 121–131 (2002).
Assael, M., Botsios, S., Gialou, K. & Metaxa, I. Thermal conductivity of polymethyl methacrylate (PMMA) and borosilicate crown glass BK7. Int. J. Thermophys.26, 1595–1605 (2005).
Wei, J. et al. Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber. Compos. Commun.17, 141–146 (2020).
Zhang, H. et al. Revealing the secrets of PCR. Sens. Actuators B. 298, 126924 (2019).
Piruska, A. et al. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab. Chip. 5, 1348–1354 (2005). PubMed
Sasaki, H., Onoe, H., Osaki, T., Kawano, R. & Takeuchi, S. Parylene-coating in PDMS microfluidic channels prevents the absorption of fluorescent dyes. Sens. Actuators B. 150, 478–482 (2010).