Allosteric release of cucurbit[6]uril from a rotaxane using a molecular signal
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39568923
PubMed Central
PMC11575564
DOI
10.1039/d4sc03970j
PII: d4sc03970j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Rotaxanes can be regarded as storage systems for their wheel components, which broadens their application potential as a complement to the supramolecular systems that retain a mechanically interlocked structure. However, utilising rotaxanes in this way requires a method to release the wheel while preserving the integrity of all molecular constituents. Herein, we present simple rotaxanes based on cucurbit[6]uril (CB6), with an axis equipped with an additional binding motif that enables the binding of another macrocycle, cucurbit[7]uril (CB7). We demonstrate that the driving force behind the wheel dethreading originates from the binding of the signalling macrocycle to the allosteric site, leading to an increase in the system's strain. Consequently, the CB6 wheel leaves the rotaxane station overcoming the mechanical barrier. Portal-portal repulsive interactions between the two cucurbituril units play a crucial role in this process. Thus, the repulsive strength and the related rate of slipping off can be finely tuned by the length of the allosteric binding motif. Finally, we show that the CB6 wheel can be utilised within complexes with other guests in the mixture once released from the rotaxane.
Zobrazit více v PubMed
Liu J.-X. Chen K. Redshaw C. Chem. Soc. Rev. 2023;52:1428–1455. doi: 10.1039/D2CS00785A. PubMed DOI
Yu J. Gaedke M. Schaufelberger F. Eur. J. Org Chem. 2023;26:e202201130. doi: 10.1002/ejoc.202201130. DOI
Nandi M. Bej S. Jana T. Ghosh P. Chem. Commun. 2023;59:14776–14790. doi: 10.1039/D3CC03778A. PubMed DOI
Pearce N. Tarnowska M. Andersen N. J. Wahrhafting-Lewis A. Pilgrim B. S. Champness N. R. Chem. Sci. 2022;13:3915–3941. doi: 10.1039/D2SC00568A. PubMed DOI PMC
Heard A. W. Goldup S. M. ACS Cent. Sci. 2020;6:117–128. doi: 10.1021/acscentsci.9b01185. PubMed DOI PMC
Sluysmans D. Stoddart J. F. Trends Chem. 2019;1:185–197. doi: 10.1016/j.trechm.2019.02.013. DOI
Au-Yeung H. Y. Deng Y. Chem. Sci. 2022;13:3315–3334. doi: 10.1039/D1SC05391D. PubMed DOI PMC
Webb J. J. Am. Chem. Soc. 2020;142:18859–18865. doi: 10.1021/jacs.0c03125. PubMed DOI PMC
Danon J. J. Leigh D. A. Pisano S. Valero A. Vitorica-Yrezabal I. J. Angew. Chem., Int. Ed. 2018;57:13833–13837. doi: 10.1002/anie.201807135. PubMed DOI PMC
Ashbridge Z. Fielden S. D. P. Leigh D. A. Pirvu L. Schaufelberger F. Zhang L. Chem. Soc. Rev. 2022;51:7779–7809. doi: 10.1039/D2CS00323F. PubMed DOI PMC
Kim D. H. Singh N. Oh J. Kim E.-H. Juang J. Kim H. Chi K.-W. Angew. Chem., Int. Ed. 2018;57:5669–5673. doi: 10.1002/anie.201800638. PubMed DOI
Leigh D. A. Danon J. J. Fielden S. D. P. Lemonnier J.-F. Whitehead G. F. S. Woltering S. L. Nat. Chem. 2021;13:117–122. doi: 10.1038/s41557-020-00594-x. PubMed DOI
Leigh D. A. Schaufelberger F. Pirvu L. Stenlid J. H. August D. P. Segard J. Nature. 2020;584:562–568. doi: 10.1038/s41586-020-2614-0. PubMed DOI
Lu Y. Deng Y.-X. Lin Y.-J. Han Y.-F. Weng L.-H. Li Z.-H. Jin G.-X. Chem. 2017;3:110–121. doi: 10.1016/j.chempr.2017.06.006. DOI
Lu Y. Dutsche P. D. Kinas J. Hepp A. Jin G.-X. Hahn F. E. Angew. Chem., Int. Ed. 2023;62:e202217681. doi: 10.1002/anie.202217681. PubMed DOI
Xu H. Lin M.-D. Yuan J. Zhou B. Mu Y. Huo Y. Zhu K. Chem. Commun. 2021;57:3239–3242. doi: 10.1039/D0CC07471C. PubMed DOI
Chen X.-Y. Shen D. Cai K. Jiao Y. Wu H. Song B. Zhang L. Tan Y. Wang Y. Feng Y. Stern C. L. Stoddart J. F. J. Am. Chem. Soc. 2020;142:20152–20160. doi: 10.1021/jacs.0c09896. PubMed DOI
Liu W. Stern C. L. Stoddart J. F. J. Am. Chem. Soc. 2020;142:10273–10278. doi: 10.1021/jacs.0c03408. PubMed DOI
Chiang T.-H. Tsou C.-Y. Chang Y.-H. Lai C.-C. Cheng R. P. Chiu S.-H. Org. Lett. 2021;23:5787–5792. doi: 10.1021/acs.orglett.1c01945. PubMed DOI
Harrison I. T. Harrison S. J. Am. Chem. Soc. 1967;89:5723–5724. doi: 10.1021/ja00998a052. DOI
Wu P. Dharmadhikari B. Patra P. Xiong X. Nanoscale Adv. 2022;4:3418–3461. doi: 10.1039/D2NA00057A. PubMed DOI PMC
Zhang L. Marcos V. Leigh D. A. Proc. Natl. Acad. Sci. U.S.A. 2018;115:9397–9404. doi: 10.1073/pnas.1712788115. PubMed DOI PMC
Binks L. Borsley S. Gingrich T. R. Leigh D. A. Penocchio E. Roberts B. M. W. Chem. 2023;9:2902–2917. doi: 10.1016/j.chempr.2023.05.035. DOI
Moulin E. Faour L. Carmona-Vargas C. C. Giuseppone N. Adv. Mater. 2019;32:1906036. doi: 10.1002/adma.201906036. PubMed DOI
Leigh D. A. Marcos V. Wilson M. R. ACS Catal. 2014;4:4490–4497. doi: 10.1021/cs5013415. DOI
Kwamen C. Niemeyer J. Chem.–Eur. J. 2021;27:175–186. doi: 10.1002/chem.202002876. PubMed DOI PMC
Martinez-Cuezva A. Saura-Sanmartin A. Alajarin M. Berna J. ACS Catal. 2020;10:7719–7733. doi: 10.1021/acscatal.0c02032. DOI
Saura-Sanmartin A. Beilstein J. Org. Chem. 2023;19:873–880. doi: 10.3762/bjoc.19.64. PubMed DOI PMC
d'Orchymont F. Holland J. P. Chem. Sci. 2022;13:12713–12725. doi: 10.1039/D2SC03928A. PubMed DOI PMC
Fernandes A. Viterisi A. Coutrot F. Potok S. Leigh D. A. Aucagne V. Papot S. Angew. Chem., Int. Ed. 2009;48:6443–6447. doi: 10.1002/anie.200903215. PubMed DOI
Barat R. Legigan T. Tranoy-Opalinski I. Renoux B. Péraudeau E. Clarhaut J. Poinot P. Fernandes A. E. Aucagne V. Leigh D. A. Papot S. Chem. Sci. 2015;6:2608–2613. doi: 10.1039/C5SC00648A. PubMed DOI PMC
Green J. E. Choi J. W. Boukai A. Bunimovich Y. Johnston-Halperin E. DeIonno E. Luo Y. Sheriff B. A. Xu K. Shin Y. S. Tseng H.-R. Stoddart J. F. Heath J. R. Nature. 2007;445:414–417. doi: 10.1038/nature05462. PubMed DOI
Xue M. Yang Y. Chi X. Yan X. Huang F. Chem. Rev. 2015;115:7398–7501. doi: 10.1021/cr5005869. PubMed DOI
Ling X. Samuel E. L. Patchell D. L. Masson E. Org. Lett. 2010;12:2730–2733. doi: 10.1021/ol1008119. PubMed DOI
Catalán A. C. Tiburcio J. Chem. Commun. 2016;52:9526–9529. doi: 10.1039/C6CC04619C. PubMed DOI
McConnell A. J. Beer P. D. Chem.–Eur. J. 2011;17:2724–2733. doi: 10.1002/chem.201002528. PubMed DOI
Masai H. Terao J. Fujihara T. Tsuji Y. Chem.–Eur. J. 2016;22:6624–6630. doi: 10.1002/chem.201600429. PubMed DOI
David A. H. G. García-Cerezo P. Campaña A. G. Santoyo-González F. Blanco V. Chem.–Eur. J. 2019;25:6170–6179. doi: 10.1002/chem.201900156. PubMed DOI
Soto M. A. MacLachlan M. J. Org. Lett. 2019;21:1744–1748. doi: 10.1021/acs.orglett.9b00310. PubMed DOI
Cornelissen M. D. Pilon S. Steemers L. Wanner M. J. Frölke S. Zuidinga E. Jørgensen S. I. van der Vlugt J. I. van Maarseveen J. H. J. Org. Chem. 2020;85:3146–3159. doi: 10.1021/acs.joc.9b03030. PubMed DOI PMC
Branná P. Rouchal M. Prucková Z. Dastychová L. Lenobel R. Pospíšil T. Maláč K. Vícha R. Chem.–Eur. J. 2015;21:11712–11718. doi: 10.1002/chem.201501353. PubMed DOI
Sun H.-L. Zhang H.-Y. Dai Z. Han X. Liu Y. Chem.–Asian J. 2017;12:265–270. doi: 10.1002/asia.201601545. PubMed DOI
Horn M. Ihringer J. Glink P. T. Stoddart J. F. Chem.–Eur. J. 2003;9:4046–4054. doi: 10.1002/chem.200204479. PubMed DOI
Yin J. Dasgupta S. Wu J. Org. Lett. 2010;12:1712–1715. doi: 10.1021/ol100256w. PubMed DOI
Yoon I. Narita M. Shimizu T. Asakawa M. J. Am. Chem. Soc. 2004;126:16740–16741. doi: 10.1021/ja0464490. PubMed DOI
Hsueh S.-Y. Ko J.-L. Lai C.-C. Liu Y.-H. Peng S.-M. Chiu S.-H. Angew. Chem., Int. Ed. 2011;48:6643–6646. doi: 10.1002/anie.201101524. PubMed DOI
Chiu C.-W. Lai C.-C. Chiu S.-H. J. Am. Chem. Soc. 2007;129:3500–3501. doi: 10.1021/ja069362i. PubMed DOI
Fujimura K. Ueda Y. Yamaoka Y. Takasu K. Kawabata T. Angew. Chem., Int. Ed. 2023;62:e202303078. doi: 10.1002/anie.202303078. PubMed DOI
Denis M. Goldup S. M. Nat. Rev. Chem. 2017;1:0061. doi: 10.1038/s41570-017-0061. DOI
Jamagne R. Power M. J. Zhang Z.-H. Zango G. Gibber B. Leigh D. A. Chem. Soc. Rev. 2024;53:10216–10252. doi: 10.1039/D4CS00430B. PubMed DOI PMC
Bruns C. J. and Stoddart J. F., The Nature of the Mechanical Bond: From Molecules to Machines, John Wiley & Sons, Hoboken, NJ, 2016
Tomas D. Tetlow D. J. Ren Y. Kassem S. Karaca U. Leigh D. A. Nat. Nanotechnol. 2022;17:701–707. doi: 10.1038/s41565-022-01097-1. PubMed DOI
Feng L. Qiu Y. Guo Q.-H. Chen Z. Seale J. S. W. He K. Wu H. Feng Y. Farha O. Astumian R. D. Stoddart J. F. Science. 2021;374:1215–1221. doi: 10.1126/science.abk1391. PubMed DOI
Ren Y. Jamagne R. Tetlow D. J. Leigh D. A. Nature. 2022;612:78–82. doi: 10.1038/s41586-022-05305-9. PubMed DOI
Guo Q.-H. Qiu Y. Kuang X. Liang J. Feng Y. Zhang L. Jiao Y. Shen D. Astumian R. D. Stoddart J. F. J. Am. Chem. Soc. 2020;142:14443–14449. doi: 10.1021/jacs.0c06663. PubMed DOI
Kench T. Summers P. A. Kuimova M. K. Lewis J. E. M. Vilar R. Angew. Chem., Int. Ed. 2021;60:10928–10934. doi: 10.1002/anie.202100151. PubMed DOI
Slack C. C. Finbloom J. A. Jeong K. Bruns C. J. Wemmer D. E. Pines A. Francis M. B. Chem. Commun. 2017;53:1076–1079. doi: 10.1039/C6CC09302G. PubMed DOI
Tamura A. Yui N. Polym. J. 2017;49:527–534. doi: 10.1038/pj.2017.17. DOI
David A. H. G. García-Cerezo P. Campaña A. G. Santoyo-González F. Blanco V. Org. Chem. Front. 2022;9:633–642. doi: 10.1039/D1QO01491A. DOI
Rajappan S. C. McCarthy D. R. Campbell J. P. Ferrell J. B. Sharafi M. Ambrozaite O. Li J. Schneebeli S. T. Angew. Chem., Int. Ed. 2020;59:16668–16674. doi: 10.1002/anie.202006305. PubMed DOI PMC
Zhang M. De Bo G. J. Am. Chem. Soc. 2019;141:15879–15883. doi: 10.1021/jacs.9b06960. PubMed DOI
Muramatsu T. Okado Y. Traeger H. Schrettl S. Tamaoki N. Weder C. Sagara Y. J. Am. Chem. Soc. 2021;143:9884–9892. doi: 10.1021/jacs.1c03790. PubMed DOI
Leigh D. A. Pirvu L. Schaufelberger F. Tetlow D. J. Zhang L. Angew. Chem., Int. Ed. 2018;57:10484–10488. doi: 10.1002/anie.201803871. PubMed DOI PMC
Zhang K.-D. Zhao X. Wang G.-T. Liu Y. Zhang Y. Lu H.-J. Jiang X.-K. Li Z.-T. Angew. Chem., Int. Ed. 2011;50:9866–9870. doi: 10.1002/anie.201104099. PubMed DOI
Sakata Y. Nakamura R. Hibi T. Akine S. Angew. Chem., Int. Ed. 2023;62:e202217048. doi: 10.1002/anie.202217048. PubMed DOI
Djemili R. Adrouche S. Durot S. Heitz V. J. Org. Chem. 2023;88:14760–14766. doi: 10.1021/acs.joc.3c01381. PubMed DOI
Kermagoret A. Bardelang D. Chem.–Eur. J. 2023;29:e202302114. doi: 10.1002/chem.202302114. PubMed DOI
Assaf K. A. Nau W. M. Chem. Soc. Rev. 2015;44:394–418. doi: 10.1039/C4CS00273C. PubMed DOI
Barrow S. J. Kasera S. Rowland M. J. del Barrio J. Scherman O. A. Chem. Rev. 2015;115:12320–12406. doi: 10.1021/acs.chemrev.5b00341. PubMed DOI
Mock W. L. Shih N. Y. J. Org. Chem. 1983;48:3618–3619. doi: 10.1021/jo00168a069. DOI
Rekharsky M. V. Ko Y. H. Selvapalam N. Kim K. Inoue Y. Supramol. Chem. 2007;19:39–46. doi: 10.1080/10610270600915292. DOI
Branná P. Černochová J. Rouchal M. Kulhánek P. Babinský M. Marek R. Nečas M. Kuřitka I. Vícha R. J. Org. Chem. 2016;81:9595–9604. doi: 10.1021/acs.joc.6b01564. PubMed DOI
Sinha M. K. Reany O. Yefet M. Botoshansky M. Keinan E. Chem.–Eur. J. 2012;18:5589–5605. doi: 10.1002/chem.201103434. PubMed DOI
Liu Y.-C. Nau W. M. Hennig A. Chem. Commun. 2019;55:14123–14126. doi: 10.1039/C9CC07165B. PubMed DOI
Tomeček J. Čablová A. Hromádková A. Novotný J. Marek R. Durník I. Kulhánek P. Prucková Z. Rouchal M. Dastychová L. Vícha R. J. Org. Chem. 2021;86:4483–4496. doi: 10.1021/acs.joc.0c02917. PubMed DOI
Bannwarth C. Caldeweyher E. Ehlert S. Hansen A. Pracht P. Seibert J. Spicher S. Grimme S. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021;11:e01493.
Bannwarth C. Ehlert S. Grimme S. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI
Yuan L. Wang R. Macartney D. H. J. Org. Chem. 2007;72:4539–4542. doi: 10.1021/jo070358e. PubMed DOI
Wyman I. W. Macartney D. H. J. Org. Chem. 2009;74:8031–8038. doi: 10.1021/jo901861e. PubMed DOI
Rekharsky M. V. Mori T. Yang C. Ko Y. H. Selvapalam N. Kim H. Sobransingh D. Kaifer A. E. Liu S. Isaacs L. Chen W. Moghaddam S. Gilson M. K. Kim K. Inoue Y. Proc. Natl. Acad. Sci. U.S.A. 2007;104:20737–20742. doi: 10.1073/pnas.0706407105. PubMed DOI PMC
Neira I. García M. D. Peinador C. Kaifer A. E. J. Org. Chem. 2019;84:2325–2329. doi: 10.1021/acs.joc.8b02993. PubMed DOI
Senler S. Cheng B. Kaifer A. E. Org. Lett. 2014;16:5834–5837. doi: 10.1021/ol502479k. PubMed DOI
Tootoonchi M. H. Yi S. Kaifer A. E. J. Am. Chem. Soc. 2013;135:10804–10809. doi: 10.1021/ja404797y. PubMed DOI
Ling X. Masson E. Org. Lett. 2012;14:4866–4869. doi: 10.1021/ol3021989. PubMed DOI
Masson E. Lu X. Ling X. Patchell D. L. Org. Lett. 2009;11:3798–3801. doi: 10.1021/ol901237p. PubMed DOI
Celtek G. Artar M. Scherman O. A. Tuncel D. Chem.–Eur. J. 2009;15:10360–10363. doi: 10.1002/chem.200901504. PubMed DOI
Mukhopadhyay P. Zavalij P. Y. Isaacs L. J. Am. Chem. Soc. 2006;128:14093–14102. doi: 10.1021/ja063390j. PubMed DOI PMC