Allosteric release of cucurbit[6]uril from a rotaxane using a molecular signal

. 2024 Dec 18 ; 16 (1) : 83-89. [epub] 20241105

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39568923

Rotaxanes can be regarded as storage systems for their wheel components, which broadens their application potential as a complement to the supramolecular systems that retain a mechanically interlocked structure. However, utilising rotaxanes in this way requires a method to release the wheel while preserving the integrity of all molecular constituents. Herein, we present simple rotaxanes based on cucurbit[6]uril (CB6), with an axis equipped with an additional binding motif that enables the binding of another macrocycle, cucurbit[7]uril (CB7). We demonstrate that the driving force behind the wheel dethreading originates from the binding of the signalling macrocycle to the allosteric site, leading to an increase in the system's strain. Consequently, the CB6 wheel leaves the rotaxane station overcoming the mechanical barrier. Portal-portal repulsive interactions between the two cucurbituril units play a crucial role in this process. Thus, the repulsive strength and the related rate of slipping off can be finely tuned by the length of the allosteric binding motif. Finally, we show that the CB6 wheel can be utilised within complexes with other guests in the mixture once released from the rotaxane.

Zobrazit více v PubMed

Liu J.-X. Chen K. Redshaw C. Chem. Soc. Rev. 2023;52:1428–1455. doi: 10.1039/D2CS00785A. PubMed DOI

Yu J. Gaedke M. Schaufelberger F. Eur. J. Org Chem. 2023;26:e202201130. doi: 10.1002/ejoc.202201130. DOI

Nandi M. Bej S. Jana T. Ghosh P. Chem. Commun. 2023;59:14776–14790. doi: 10.1039/D3CC03778A. PubMed DOI

Pearce N. Tarnowska M. Andersen N. J. Wahrhafting-Lewis A. Pilgrim B. S. Champness N. R. Chem. Sci. 2022;13:3915–3941. doi: 10.1039/D2SC00568A. PubMed DOI PMC

Heard A. W. Goldup S. M. ACS Cent. Sci. 2020;6:117–128. doi: 10.1021/acscentsci.9b01185. PubMed DOI PMC

Sluysmans D. Stoddart J. F. Trends Chem. 2019;1:185–197. doi: 10.1016/j.trechm.2019.02.013. DOI

Au-Yeung H. Y. Deng Y. Chem. Sci. 2022;13:3315–3334. doi: 10.1039/D1SC05391D. PubMed DOI PMC

Webb J. J. Am. Chem. Soc. 2020;142:18859–18865. doi: 10.1021/jacs.0c03125. PubMed DOI PMC

Danon J. J. Leigh D. A. Pisano S. Valero A. Vitorica-Yrezabal I. J. Angew. Chem., Int. Ed. 2018;57:13833–13837. doi: 10.1002/anie.201807135. PubMed DOI PMC

Ashbridge Z. Fielden S. D. P. Leigh D. A. Pirvu L. Schaufelberger F. Zhang L. Chem. Soc. Rev. 2022;51:7779–7809. doi: 10.1039/D2CS00323F. PubMed DOI PMC

Kim D. H. Singh N. Oh J. Kim E.-H. Juang J. Kim H. Chi K.-W. Angew. Chem., Int. Ed. 2018;57:5669–5673. doi: 10.1002/anie.201800638. PubMed DOI

Leigh D. A. Danon J. J. Fielden S. D. P. Lemonnier J.-F. Whitehead G. F. S. Woltering S. L. Nat. Chem. 2021;13:117–122. doi: 10.1038/s41557-020-00594-x. PubMed DOI

Leigh D. A. Schaufelberger F. Pirvu L. Stenlid J. H. August D. P. Segard J. Nature. 2020;584:562–568. doi: 10.1038/s41586-020-2614-0. PubMed DOI

Lu Y. Deng Y.-X. Lin Y.-J. Han Y.-F. Weng L.-H. Li Z.-H. Jin G.-X. Chem. 2017;3:110–121. doi: 10.1016/j.chempr.2017.06.006. DOI

Lu Y. Dutsche P. D. Kinas J. Hepp A. Jin G.-X. Hahn F. E. Angew. Chem., Int. Ed. 2023;62:e202217681. doi: 10.1002/anie.202217681. PubMed DOI

Xu H. Lin M.-D. Yuan J. Zhou B. Mu Y. Huo Y. Zhu K. Chem. Commun. 2021;57:3239–3242. doi: 10.1039/D0CC07471C. PubMed DOI

Chen X.-Y. Shen D. Cai K. Jiao Y. Wu H. Song B. Zhang L. Tan Y. Wang Y. Feng Y. Stern C. L. Stoddart J. F. J. Am. Chem. Soc. 2020;142:20152–20160. doi: 10.1021/jacs.0c09896. PubMed DOI

Liu W. Stern C. L. Stoddart J. F. J. Am. Chem. Soc. 2020;142:10273–10278. doi: 10.1021/jacs.0c03408. PubMed DOI

Chiang T.-H. Tsou C.-Y. Chang Y.-H. Lai C.-C. Cheng R. P. Chiu S.-H. Org. Lett. 2021;23:5787–5792. doi: 10.1021/acs.orglett.1c01945. PubMed DOI

Harrison I. T. Harrison S. J. Am. Chem. Soc. 1967;89:5723–5724. doi: 10.1021/ja00998a052. DOI

Wu P. Dharmadhikari B. Patra P. Xiong X. Nanoscale Adv. 2022;4:3418–3461. doi: 10.1039/D2NA00057A. PubMed DOI PMC

Zhang L. Marcos V. Leigh D. A. Proc. Natl. Acad. Sci. U.S.A. 2018;115:9397–9404. doi: 10.1073/pnas.1712788115. PubMed DOI PMC

Binks L. Borsley S. Gingrich T. R. Leigh D. A. Penocchio E. Roberts B. M. W. Chem. 2023;9:2902–2917. doi: 10.1016/j.chempr.2023.05.035. DOI

Moulin E. Faour L. Carmona-Vargas C. C. Giuseppone N. Adv. Mater. 2019;32:1906036. doi: 10.1002/adma.201906036. PubMed DOI

Leigh D. A. Marcos V. Wilson M. R. ACS Catal. 2014;4:4490–4497. doi: 10.1021/cs5013415. DOI

Kwamen C. Niemeyer J. Chem.–Eur. J. 2021;27:175–186. doi: 10.1002/chem.202002876. PubMed DOI PMC

Martinez-Cuezva A. Saura-Sanmartin A. Alajarin M. Berna J. ACS Catal. 2020;10:7719–7733. doi: 10.1021/acscatal.0c02032. DOI

Saura-Sanmartin A. Beilstein J. Org. Chem. 2023;19:873–880. doi: 10.3762/bjoc.19.64. PubMed DOI PMC

d'Orchymont F. Holland J. P. Chem. Sci. 2022;13:12713–12725. doi: 10.1039/D2SC03928A. PubMed DOI PMC

Fernandes A. Viterisi A. Coutrot F. Potok S. Leigh D. A. Aucagne V. Papot S. Angew. Chem., Int. Ed. 2009;48:6443–6447. doi: 10.1002/anie.200903215. PubMed DOI

Barat R. Legigan T. Tranoy-Opalinski I. Renoux B. Péraudeau E. Clarhaut J. Poinot P. Fernandes A. E. Aucagne V. Leigh D. A. Papot S. Chem. Sci. 2015;6:2608–2613. doi: 10.1039/C5SC00648A. PubMed DOI PMC

Green J. E. Choi J. W. Boukai A. Bunimovich Y. Johnston-Halperin E. DeIonno E. Luo Y. Sheriff B. A. Xu K. Shin Y. S. Tseng H.-R. Stoddart J. F. Heath J. R. Nature. 2007;445:414–417. doi: 10.1038/nature05462. PubMed DOI

Xue M. Yang Y. Chi X. Yan X. Huang F. Chem. Rev. 2015;115:7398–7501. doi: 10.1021/cr5005869. PubMed DOI

Ling X. Samuel E. L. Patchell D. L. Masson E. Org. Lett. 2010;12:2730–2733. doi: 10.1021/ol1008119. PubMed DOI

Catalán A. C. Tiburcio J. Chem. Commun. 2016;52:9526–9529. doi: 10.1039/C6CC04619C. PubMed DOI

McConnell A. J. Beer P. D. Chem.–Eur. J. 2011;17:2724–2733. doi: 10.1002/chem.201002528. PubMed DOI

Masai H. Terao J. Fujihara T. Tsuji Y. Chem.–Eur. J. 2016;22:6624–6630. doi: 10.1002/chem.201600429. PubMed DOI

David A. H. G. García-Cerezo P. Campaña A. G. Santoyo-González F. Blanco V. Chem.–Eur. J. 2019;25:6170–6179. doi: 10.1002/chem.201900156. PubMed DOI

Soto M. A. MacLachlan M. J. Org. Lett. 2019;21:1744–1748. doi: 10.1021/acs.orglett.9b00310. PubMed DOI

Cornelissen M. D. Pilon S. Steemers L. Wanner M. J. Frölke S. Zuidinga E. Jørgensen S. I. van der Vlugt J. I. van Maarseveen J. H. J. Org. Chem. 2020;85:3146–3159. doi: 10.1021/acs.joc.9b03030. PubMed DOI PMC

Branná P. Rouchal M. Prucková Z. Dastychová L. Lenobel R. Pospíšil T. Maláč K. Vícha R. Chem.–Eur. J. 2015;21:11712–11718. doi: 10.1002/chem.201501353. PubMed DOI

Sun H.-L. Zhang H.-Y. Dai Z. Han X. Liu Y. Chem.–Asian J. 2017;12:265–270. doi: 10.1002/asia.201601545. PubMed DOI

Horn M. Ihringer J. Glink P. T. Stoddart J. F. Chem.–Eur. J. 2003;9:4046–4054. doi: 10.1002/chem.200204479. PubMed DOI

Yin J. Dasgupta S. Wu J. Org. Lett. 2010;12:1712–1715. doi: 10.1021/ol100256w. PubMed DOI

Yoon I. Narita M. Shimizu T. Asakawa M. J. Am. Chem. Soc. 2004;126:16740–16741. doi: 10.1021/ja0464490. PubMed DOI

Hsueh S.-Y. Ko J.-L. Lai C.-C. Liu Y.-H. Peng S.-M. Chiu S.-H. Angew. Chem., Int. Ed. 2011;48:6643–6646. doi: 10.1002/anie.201101524. PubMed DOI

Chiu C.-W. Lai C.-C. Chiu S.-H. J. Am. Chem. Soc. 2007;129:3500–3501. doi: 10.1021/ja069362i. PubMed DOI

Fujimura K. Ueda Y. Yamaoka Y. Takasu K. Kawabata T. Angew. Chem., Int. Ed. 2023;62:e202303078. doi: 10.1002/anie.202303078. PubMed DOI

Denis M. Goldup S. M. Nat. Rev. Chem. 2017;1:0061. doi: 10.1038/s41570-017-0061. DOI

Jamagne R. Power M. J. Zhang Z.-H. Zango G. Gibber B. Leigh D. A. Chem. Soc. Rev. 2024;53:10216–10252. doi: 10.1039/D4CS00430B. PubMed DOI PMC

Bruns C. J. and Stoddart J. F., The Nature of the Mechanical Bond: From Molecules to Machines, John Wiley & Sons, Hoboken, NJ, 2016

Tomas D. Tetlow D. J. Ren Y. Kassem S. Karaca U. Leigh D. A. Nat. Nanotechnol. 2022;17:701–707. doi: 10.1038/s41565-022-01097-1. PubMed DOI

Feng L. Qiu Y. Guo Q.-H. Chen Z. Seale J. S. W. He K. Wu H. Feng Y. Farha O. Astumian R. D. Stoddart J. F. Science. 2021;374:1215–1221. doi: 10.1126/science.abk1391. PubMed DOI

Ren Y. Jamagne R. Tetlow D. J. Leigh D. A. Nature. 2022;612:78–82. doi: 10.1038/s41586-022-05305-9. PubMed DOI

Guo Q.-H. Qiu Y. Kuang X. Liang J. Feng Y. Zhang L. Jiao Y. Shen D. Astumian R. D. Stoddart J. F. J. Am. Chem. Soc. 2020;142:14443–14449. doi: 10.1021/jacs.0c06663. PubMed DOI

Kench T. Summers P. A. Kuimova M. K. Lewis J. E. M. Vilar R. Angew. Chem., Int. Ed. 2021;60:10928–10934. doi: 10.1002/anie.202100151. PubMed DOI

Slack C. C. Finbloom J. A. Jeong K. Bruns C. J. Wemmer D. E. Pines A. Francis M. B. Chem. Commun. 2017;53:1076–1079. doi: 10.1039/C6CC09302G. PubMed DOI

Tamura A. Yui N. Polym. J. 2017;49:527–534. doi: 10.1038/pj.2017.17. DOI

David A. H. G. García-Cerezo P. Campaña A. G. Santoyo-González F. Blanco V. Org. Chem. Front. 2022;9:633–642. doi: 10.1039/D1QO01491A. DOI

Rajappan S. C. McCarthy D. R. Campbell J. P. Ferrell J. B. Sharafi M. Ambrozaite O. Li J. Schneebeli S. T. Angew. Chem., Int. Ed. 2020;59:16668–16674. doi: 10.1002/anie.202006305. PubMed DOI PMC

Zhang M. De Bo G. J. Am. Chem. Soc. 2019;141:15879–15883. doi: 10.1021/jacs.9b06960. PubMed DOI

Muramatsu T. Okado Y. Traeger H. Schrettl S. Tamaoki N. Weder C. Sagara Y. J. Am. Chem. Soc. 2021;143:9884–9892. doi: 10.1021/jacs.1c03790. PubMed DOI

Leigh D. A. Pirvu L. Schaufelberger F. Tetlow D. J. Zhang L. Angew. Chem., Int. Ed. 2018;57:10484–10488. doi: 10.1002/anie.201803871. PubMed DOI PMC

Zhang K.-D. Zhao X. Wang G.-T. Liu Y. Zhang Y. Lu H.-J. Jiang X.-K. Li Z.-T. Angew. Chem., Int. Ed. 2011;50:9866–9870. doi: 10.1002/anie.201104099. PubMed DOI

Sakata Y. Nakamura R. Hibi T. Akine S. Angew. Chem., Int. Ed. 2023;62:e202217048. doi: 10.1002/anie.202217048. PubMed DOI

Djemili R. Adrouche S. Durot S. Heitz V. J. Org. Chem. 2023;88:14760–14766. doi: 10.1021/acs.joc.3c01381. PubMed DOI

Kermagoret A. Bardelang D. Chem.–Eur. J. 2023;29:e202302114. doi: 10.1002/chem.202302114. PubMed DOI

Assaf K. A. Nau W. M. Chem. Soc. Rev. 2015;44:394–418. doi: 10.1039/C4CS00273C. PubMed DOI

Barrow S. J. Kasera S. Rowland M. J. del Barrio J. Scherman O. A. Chem. Rev. 2015;115:12320–12406. doi: 10.1021/acs.chemrev.5b00341. PubMed DOI

Mock W. L. Shih N. Y. J. Org. Chem. 1983;48:3618–3619. doi: 10.1021/jo00168a069. DOI

Rekharsky M. V. Ko Y. H. Selvapalam N. Kim K. Inoue Y. Supramol. Chem. 2007;19:39–46. doi: 10.1080/10610270600915292. DOI

Branná P. Černochová J. Rouchal M. Kulhánek P. Babinský M. Marek R. Nečas M. Kuřitka I. Vícha R. J. Org. Chem. 2016;81:9595–9604. doi: 10.1021/acs.joc.6b01564. PubMed DOI

Sinha M. K. Reany O. Yefet M. Botoshansky M. Keinan E. Chem.–Eur. J. 2012;18:5589–5605. doi: 10.1002/chem.201103434. PubMed DOI

Liu Y.-C. Nau W. M. Hennig A. Chem. Commun. 2019;55:14123–14126. doi: 10.1039/C9CC07165B. PubMed DOI

Tomeček J. Čablová A. Hromádková A. Novotný J. Marek R. Durník I. Kulhánek P. Prucková Z. Rouchal M. Dastychová L. Vícha R. J. Org. Chem. 2021;86:4483–4496. doi: 10.1021/acs.joc.0c02917. PubMed DOI

Bannwarth C. Caldeweyher E. Ehlert S. Hansen A. Pracht P. Seibert J. Spicher S. Grimme S. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021;11:e01493.

Bannwarth C. Ehlert S. Grimme S. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI

Yuan L. Wang R. Macartney D. H. J. Org. Chem. 2007;72:4539–4542. doi: 10.1021/jo070358e. PubMed DOI

Wyman I. W. Macartney D. H. J. Org. Chem. 2009;74:8031–8038. doi: 10.1021/jo901861e. PubMed DOI

Rekharsky M. V. Mori T. Yang C. Ko Y. H. Selvapalam N. Kim H. Sobransingh D. Kaifer A. E. Liu S. Isaacs L. Chen W. Moghaddam S. Gilson M. K. Kim K. Inoue Y. Proc. Natl. Acad. Sci. U.S.A. 2007;104:20737–20742. doi: 10.1073/pnas.0706407105. PubMed DOI PMC

Neira I. García M. D. Peinador C. Kaifer A. E. J. Org. Chem. 2019;84:2325–2329. doi: 10.1021/acs.joc.8b02993. PubMed DOI

Senler S. Cheng B. Kaifer A. E. Org. Lett. 2014;16:5834–5837. doi: 10.1021/ol502479k. PubMed DOI

Tootoonchi M. H. Yi S. Kaifer A. E. J. Am. Chem. Soc. 2013;135:10804–10809. doi: 10.1021/ja404797y. PubMed DOI

Ling X. Masson E. Org. Lett. 2012;14:4866–4869. doi: 10.1021/ol3021989. PubMed DOI

Masson E. Lu X. Ling X. Patchell D. L. Org. Lett. 2009;11:3798–3801. doi: 10.1021/ol901237p. PubMed DOI

Celtek G. Artar M. Scherman O. A. Tuncel D. Chem.–Eur. J. 2009;15:10360–10363. doi: 10.1002/chem.200901504. PubMed DOI

Mukhopadhyay P. Zavalij P. Y. Isaacs L. J. Am. Chem. Soc. 2006;128:14093–14102. doi: 10.1021/ja063390j. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...