Enhancing of Rabbit Sperm Cryopreservation with Antioxidants Mito-Tempo and Berberine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV 20-0006, APVV 23-0089
Slovak Research and Development Agency
VEGA 1/0002/23, VEGA 1/0011/23, KEGA-012UPJŠ-4/2023, KEGA - 024SPU-4/2023
Scientific Grant Agency of the ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Science
PubMed
39594502
PubMed Central
PMC11591075
DOI
10.3390/antiox13111360
PII: antiox13111360
Knihovny.cz E-zdroje
- Klíčová slova
- Mito-Tempo, berberine, oxidative stress, rabbit, sperm cryopreservation, sperm quality,
- Publikační typ
- časopisecké články MeSH
Cryopreservation plays a critical role in animal breeding and the conservation of endangered species, but it often compromises sperm characteristics such as morphology, motility, and viability due to oxidative stress. This study explores the antioxidative effect of Mito-Tempo (MT) and Berberine (BER) to enhance post-thaw sperm quality in rabbits. Pooled rabbit sperm samples were supplemented with different concentrations (0.0, 0.5, 5, 10, 50 µmol/L) of MT and BER. Sperm motility was evaluated using computer-assisted semen analysis, while viability, apoptosis, reactive oxygen species (ROS) levels, acrosome integrity, and mitochondrial function were assessed through flow cytometry. The results revealed that MT at 5 and 10 µmol/L and BER at 10 µmol/L significantly improved total and progressive motility, mitochondrial activity, and sperm viability compared to the control group. Furthermore, 10 µmol/L BER enhanced acrosome integrity, while both 5 µmol/L MT and 10 µmol/L BER effectively reduced ROS levels and apoptosis. This study is the first to demonstrate the protective effects of MT and BER on rabbit sperm during cryopreservation. By mitigating oxidative stress and reducing apoptosis, these antioxidants markedly improved post-thaw sperm quality, positioning MT and BER as promising agents for improving sperm cryosurvival.
Zobrazit více v PubMed
Nishijima K., Kitajima S., Matsuhisa F., Niimi M., Wang C.C., Fan J. Strategies for Highly Efficient Rabbit Sperm Cryopreservation. Animals. 2021;11:1220. doi: 10.3390/ani11051220. PubMed DOI PMC
Kodzik N., Ciereszko A., Judycka S., Słowińska M., Szczepkowska B., Świderska B., Dietrich M.A. Cryoprotectant-specific alterations in the proteome of Siberian sturgeon spermatozoa induced by cryopreservation. Sci. Rep. 2024;14:17707. doi: 10.1038/s41598-024-68395-7. PubMed DOI PMC
Sion B., Janny L., Boucher D., Grizard G. Annexin V binding to plasma membrane predicts the quality of human cryopreserved spermatozoa. Int. J. Androl. 2004;27:108–114. doi: 10.1046/j.1365-2605.2003.00457.x. PubMed DOI
Chatterjee S., Gagnon C. Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol. Reprod. Dev. 2001;59:451–458. doi: 10.1002/mrd.1052. PubMed DOI
Wang A.W., Zhang H., Ikemoto I., Anderson D.J., Loughlin K.R. Reactive oxygen species generation by seminal cells during cryopreservation. Urology. 1997;49:921–925. doi: 10.1016/S0090-4295(97)00070-8. PubMed DOI
Khan I.M., Cao Z., Liu H., Khan A., Rahman S.U., Khan M.Z., Sathanawongs A., Zhang Y. Impact of cryopreservation on spermatozoa freeze-thawed traits and relevance OMICS to assess sperm cryo-tolerance in farm animals. Front. Vet. Sci. 2021;8:609180. doi: 10.3389/fvets.2021.609180. PubMed DOI PMC
Bilodeau J.F., Chatterjee S., Sirard M.A., Gagnon C. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol. Reprod. Dev. 2000;55:282–288. doi: 10.1002/(SICI)1098-2795(200003)55:3<282::AID-MRD6>3.0.CO;2-7. PubMed DOI
Lasso J.L., Noiles E.E., Alvarez J.G., Storey B.T. Mechanism of superoxide dismutase loss from human sperm cells during cryopreservation. J. Androl. 1994;15:255–265. doi: 10.1002/j.1939-4640.1994.tb00444.x. PubMed DOI
Ball B.A. Oxidative stress, osmotic stress, and apoptosis: Impacts on sperm function and preservation in the horse. Anim. Reprod. Sci. 2008;107:257–267. doi: 10.1016/j.anireprosci.2008.04.014. PubMed DOI
Gadea J., Molla M., Selles E., Marco M.A., Garcia-Vazquez F.A., Gardon J.C. Reduced glutathione content in human sperm is decreased after cryopreservation: Effect of the addition of reduced glutathione to the freezing and thawing extenders. Cryobiology. 2011;62:40–46. doi: 10.1016/j.cryobiol.2010.12.001. PubMed DOI
Amidi F., Pazhohan A., Nashtaei M.S., Khodarahmian M., Nekoonam S. The role of antioxidants in sperm freezing: A review. Cell Tissue Bank. 2016;17:745–756. doi: 10.1007/s10561-016-9566-5. PubMed DOI
Covarrubias L., Hernández-García D., Schnabel D., Salas-Vidal E., Castro-Obregón S. Function of reactive oxygen species during animal development: Passive or active? Dev. Biol. 2008;320:1–11. doi: 10.1016/j.ydbio.2008.04.041. PubMed DOI
Baskaran S., Finelli R., Agarwal A., Henkel R. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia. 2021;53:e13577. doi: 10.1111/and.13577. PubMed DOI
Qamar A.Y., Naveed M.I., Raza S., Fang X., Roy P.K., Bang S., Tanga B.M., Saadeldin I.M., Lee S., Cho J. Role of antioxidants in fertility preservation of sperm—A narrative review. Anim. Biosci. 2023;36:385–403. doi: 10.5713/ab.22.0325. PubMed DOI PMC
Mehdipour M., Daghigh-Kia H., Najafi A., Mehdipour Z., Mohammadi H. Protective effect of rosiglitazone on microscopic and oxidative stress parameters of ram sperm after freeze-thawing. Sci. Rep. 2022;12:13981. doi: 10.1038/s41598-022-18298-2. PubMed DOI PMC
Santonastaso M., Mottola F., Iovine C., Colacurci N., Rocco L. Protective effects of curcumin on the outcome of cryopreservation in human sperm. Reprod. Sci. 2021;28:2895–2905. doi: 10.1007/s43032-021-00572-9. PubMed DOI PMC
Akbari B., Baghaei-Yazdi N., Bahmaie M., Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors. 2022;48:414–423. doi: 10.1002/biof.1831. PubMed DOI
Moslemi M.K., Tavanbakhsh S. Selenium–vitamin E supplementation in infertile men: Effects on semen parameters and pregnancy rate. Int. J. Gen. Med. 2011;4:99–104. doi: 10.2147/IJGM.S16275. PubMed DOI PMC
Azawi O.I., Hussein E.K. Effect of vitamins C or E supplementation to Tris diluent on the semen quality of Awassi rams preserved at 5 °C. Vet. Res. Forum. 2013;4:157–160. PubMed PMC
Mistry H.D., Pipkin F.B., Redman C.W.G., Poston L. Selenium in reproductive health. Am. J. Obstet. Gynecol. 2012;206:21–30. doi: 10.1016/j.ajog.2011.07.034. PubMed DOI
Alsalman A.R.S., Almashhedy L.A., Alta’ee A.H., Hadwan M.H. Effect of zinc supplementation on urate pathway enzymes in spermatozoa and seminal plasma of asthenozoospermic patients: A randomized controlled trial. Int. J. Fertil. Steril. 2020;13:315–323. doi: 10.22074/ijfs.2020.5760. PubMed DOI PMC
Kaltsas A. Oxidative stress and male infertility: The protective role of antioxidants. Medicina. 2023;59:1769. doi: 10.3390/medicina59101769. PubMed DOI PMC
Najafi A., Mohammadi H., Sharifi S.D., Rahimi A. Apigenin supplementation substantially improves rooster sperm freezability and post-thaw function. Sci. Rep. 2024;14:4527. doi: 10.1038/s41598-024-55057-x. PubMed DOI PMC
Iovine C., Mottola F., Santonastaso M., Finelli R., Agarwal A., Rocco L. In vitro ameliorative effects of ellagic acid on vitality, motility, and DNA quality in human spermatozoa. Mol. Reprod. Dev. 2021;88:167–174. doi: 10.1002/mrd.23455. PubMed DOI
Grba J., Kuželová L., Makarevich A., Baláži A., Dragin S., Tekic D., Chrenek P. The effect of ellagic acid on rabbit sperm in vitro parameters after cryopreservation. Czech J. Anim. Sci. 2024;69:110–117. doi: 10.17221/142/2023-CJAS. DOI
Zarei F., Daghigh Kia H., Masoudi R., Moghaddam G., Ebrahimi M. Supplementation of ram’s semen extender with Mito-TEMPO I: Improvement in quality parameters and reproductive performance of cooled-stored semen. Cryobiology. 2021;98:215–218. doi: 10.1016/j.cryobiol.2020.10.018. PubMed DOI
Elkhawagah A.R., Ricci A., Bertero A., Poletto M.L., Nervo T., Donato G.G., Vincenti L., Martino N.A. Supplementation with MitoTEMPO before cryopreservation improves sperm quality and fertility potential of Piedmontese beef bull semen. Front. Vet. Sci. 2024;11:1376057. doi: 10.3389/fvets.2024.1376057. PubMed DOI PMC
Trnka J., Blaikie F.H., Smith R.A.J., Murphy M.P. A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic. Biol. Med. 2008;44:1406–1419. doi: 10.1016/j.freeradbiomed.2007.12.036. PubMed DOI
Lu X., Zhang Y., Bai H., Liu J., Li J., Wu B. Mitochondria-targeted antioxidant MitoTEMPO improves the post-thaw sperm quality. Cryobiology. 2018;80:26–29. doi: 10.1016/j.cryobiol.2017.12.009. PubMed DOI
Zhang X., Lu X., Li J., Xia Q., Gao J., Wu B. Mito-Tempo alleviates cryodamage by regulating intracellular oxidative metabolism in spermatozoa from asthenozoospermic patients. Cryobiology. 2019;91:18–22. doi: 10.1016/j.cryobiol.2019.11.005. PubMed DOI
Kumar A., Ghosh S.K., Katiyar R., Rautela R., Bisla A., Ngou A.A., Pande M., Srivastava N., Bhure S.K. Effect of Mito-Tempo incorporated semen extender on physico-morphological attributes and functional membrane integrity of frozen-thawed buffalo spermatozoa. Cryoletters. 2021;42:111–119. PubMed
Masoudi R., Asadzadeh N., Sharafi M. Effects of freezing extender supplementation with mitochondria-targeted antioxidant Mito-TEMPO on frozen-thawed rooster semen quality and reproductive performance. Anim. Reprod. Sci. 2021;225:106671. doi: 10.1016/j.anireprosci.2020.106671. PubMed DOI
Barfourooshi H.A., Esmaeilkhanian S., Dadashpour Davachi A., Asadzadeh N., Masoudi R. Effect of Mito-TEMPO on post-thawed semen quality in goats. Iran. J. Vet. Med. 2023;17:393–400. doi: 10.32598/IJVM.17.4.1005346. DOI
Hassan H.A., Banchi P., Domain G., Vanderheyden L., Prochowska S., Nizański W., Van Soom A. Mito-Tempo improves acrosome integrity of frozen-thawed epididymal spermatozoa in tomcats. Front. Vet. Sci. 2023;10:1170347. doi: 10.3389/fvets.2023.1170347. PubMed DOI PMC
Imanshahidi M., Hosseinzadeh H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother. Res. 2008;22:999–1012. doi: 10.1002/ptr.2399. PubMed DOI
Tillhon M., Guamán Ortiz L.M., Lombardi P., Scovassi A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol. 2012;84:1260–1267. doi: 10.1016/j.bcp.2012.07.018. PubMed DOI
Abudureheman B., Zhou X., Shu X., Chai Z., Xu Y., Li S., Tian J., Pan H., Ye X. Evaluation of biochemical properties, antioxidant activities, and phenolic content of two wild-grown Berberis fruits: Berberis nummularia and Berberis atrocarpa. Foods. 2022;11:2569. doi: 10.3390/foods11172569. PubMed DOI PMC
Golubev D., Platonova E., Zemskaya N., Shevchenko O., Shaposhnikov M., Nekrasova P., Patov S., Ibragimova U., Valuisky N., Borisov A., et al. Berberis vulgaris L. extract supplementation exerts regulatory effects on the lifespan and healthspan of Drosophila through its antioxidant activity depending on the sex. Biogerontology. 2024;25:507–528. doi: 10.1007/s10522-023-10083-6. PubMed DOI
Tvrdá E., Greifová H., Ivanič P., Lukáč N. In vitro effects of berberine on the vitality and oxidative profile of bovine spermatozoa. Int. J. Anim. Vet. Sci. 2019;13:244–249. doi: 10.5281/zenodo.3566257. DOI
Vašíček J., Baláži A., Svoradová A., Vozaf J., Dujíčková L., Makarevich A.V., Bauer M., Chrenek P. Comprehensive flow-cytometric quality assessment of ram sperm intended for gene banking using standard and novel fertility biomarkers. Int. J. Mol. Sci. 2022;23:5920. doi: 10.3390/ijms23115920. PubMed DOI PMC
Fang L., Bai C., Chen Y., Dai J., Xiang Y., Ji X., Huang C., Dong Q. Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish. Cryobiology. 2014;69:386–393. doi: 10.1016/j.cryobiol.2014.09.005. PubMed DOI
Chelewani A.P., Takahashi E., Nishimura T., Fujimoto T. Optimizing the post-thaw quality of cryopreserved masu salmon (Oncorhynchus masou) sperm: Evaluating the effects of antioxidant-supplemented extender. Aquaculture. 2024;593:741332. doi: 10.1016/j.aquaculture.2024.741332. DOI
Len J.S., Koh W.S.D., Tan S.-X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep. 2019;39:BSR20191601. doi: 10.1042/BSR20191601. PubMed DOI PMC
Niżański W., Partyka A., Prochowska S. Evaluation of spermatozoal function—Useful tools or just science. Reprod. Domest. Anim. 2016;51((Suppl. S1)):37–45. doi: 10.1111/rda.12786. PubMed DOI
Agarwal A., Durairajanayagam D., du Plessis S.S. Utility of antioxidants during assisted reproductive techniques: An evidence-based review. Reprod. Biol. Endocrinol. 2014;12:112. doi: 10.1186/1477-7827-12-112. PubMed DOI PMC
Berean D.I., Bogdan L.M., Cimpean R. Advancements in Understanding and Enhancing Antioxidant-Mediated Sperm Cryopreservation in Small Ruminants: Challenges and Perspectives. Antioxidants. 2024;13:624. doi: 10.3390/antiox13060624. PubMed DOI PMC
Yi X., Qiu Y., Tang X., Lei Y., Pan Y., Raza S.H.A., Althobaiti N.A., Albalawi A.E., Al Abdulmonem W., Makhlof R.T.M., et al. Effect of Five Different Antioxidants on the Effectiveness of Goat Semen Cryopreservation. Reprod. Sci. 2024;31:1958–1972. doi: 10.1007/s43032-024-01452-8. PubMed DOI
Chakraborty S., Saha S. Understanding sperm motility mechanisms and the implication of sperm surface molecules in promoting motility. Middle East Fertil. Soc. J. 2022;27:4. doi: 10.1186/s43043-022-00094-7. DOI
Verstegen J., Iguer-Ouada M., Onclin K. Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology. 2002;57:149–179. doi: 10.1016/S0093-691X(01)00664-1. PubMed DOI
Ruiz-Pesini E., Díez-Sánchez C., López-Pérez M.J., Enríquez J.A. The role of the mitochondrion in sperm function: Is there a place for oxidative phosphorylation or is this a purely glycolytic process? Curr. Top. Dev. Biol. 2007;77:3–19. doi: 10.1016/S0070-2153(06)77001-6. PubMed DOI
Chen L., Wang T., Liu J. Effect of berberine on human sperm parameters in vitro. Transl. Androl. Urol. 2016;5((Suppl. S1)):AB229. doi: 10.21037/tau.2016.s229. DOI
Liang H.L., Sedlic F., Bosnjak Z., Nilakantan V. SOD1 and MitoTEMPO partially prevent mitochondrial permeability transition pore opening, necrosis, and mitochondrial apoptosis after ATP depletion recovery. Free Radic. Biol. Med. 2010;49:1550–1560. doi: 10.1016/j.freeradbiomed.2010.08.018. PubMed DOI PMC
Hu H., Li M. Mitochondria-targeted antioxidant MitoTEMPO protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons. Biochem. Biophys. Res. Commun. 2016;478:174–180. doi: 10.1016/j.bbrc.2016.07.071. PubMed DOI
Smaili S., Hsu Y.T., Sanders K., Russell C., Youle R.J. Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential. Cell Death Differ. 2001;8:909–920. doi: 10.1038/sj.cdd.4400889. PubMed DOI
Grycová L., Dostál J., Marek R. Quaternary protoberberine alkaloids. Phytochemistry. 2007;68:150–175. doi: 10.1016/j.phytochem.2006.10.004. PubMed DOI
Li Q., Zhou T., Liu C., Wang X.-Y., Zhang J.-Q., Wu F., Lin G., Ma Y.-M., Ma B.-L. Mitochondrial membrane potential played crucial roles in the accumulation of berberine in HepG2 cells. Biosci. Rep. 2019;39:BSR20190477. doi: 10.1042/BSR20190477. PubMed DOI PMC
Pereira G.C., Branco A.F., Matos J.A., Pereira S.L., Parke D., Perkins E.L., Serafim T.L., Sardao V.A., Santos M.S., Moreno A.J., et al. Mitochondrially targeted effects of berberine [Natural Yellow 18, 5,6-dihydro-9,10-dimethoxybenzo(g)-1,3-benzodioxolo(5,6-a)quinolizinium] on K1735-M2 mouse melanoma cells: Comparison with direct effects on isolated mitochondrial fractions. J. Pharmacol. Exp. Ther. 2007;323:636–649. doi: 10.1124/jpet.107.128017. PubMed DOI
Ye J., Le J., Sun Y. Berberine improves mitochondrial function in colon epithelial cells to protect L-cells from necrosis in preservation of GLP-1 secretion. Diabetes. 2018;67((Suppl. S1)):2451-PUB. doi: 10.2337/db18-2451-PUB. DOI
Saleh S.R., Attia R., Ghareeb D.A. The ameliorating effect of berberine-rich fraction against gossypol-induced testicular inflammation and oxidative stress. Oxid. Med. Cell. Longev. 2018;2018:1056173. doi: 10.1155/2018/1056173. PubMed DOI PMC
Bailey J.L., Blodeau J.F., Cormier N. Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon minireview. J. Androl. 2000;21:1–7. doi: 10.1002/j.1939-4640.2000.tb03268.x. PubMed DOI
Palacín I., Santolaria P., Alquezar-Baeta C., Soler C., Yániz J. Relationship of sperm plasma membrane and acrosomal integrities with sperm morphometry in Bos taurus. Asian J. Androl. 2020;22:578–582. doi: 10.4103/aja.aja_2_20. PubMed DOI PMC