Comprehensive Flow-Cytometric Quality Assessment of Ram Sperm Intended for Gene Banking Using Standard and Novel Fertility Biomarkers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 1/0049/19
Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
APVV-17-0124
Slovak Research and Development Agency
APVV-20-0006
Slovak Research and Development Agency
PubMed
35682598
PubMed Central
PMC9180808
DOI
10.3390/ijms23115920
PII: ijms23115920
Knihovny.cz E-zdroje
- Klíčová slova
- H3K4me2, MKRN1, PAWP, SPTRX-3, biomarkers, flow cytometry, native breeds, ram, semen, ubiquitin,
- MeSH
- analýza spermatu MeSH
- biologické markery MeSH
- chromatin MeSH
- fertilita MeSH
- kryoprezervace metody MeSH
- motilita spermií * MeSH
- ovce MeSH
- průtoková cytometrie MeSH
- reaktivní formy kyslíku MeSH
- savci MeSH
- spermie MeSH
- uchování spermatu * metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- chromatin MeSH
- reaktivní formy kyslíku MeSH
Flow cytometry becomes a common method for analysis of spermatozoa quality. Standard sperm characteristics such as viability, acrosome and chromatin integrity, oxidative damage (ROS) etc. can be easily assess in any animal semen samples. Moreover, several fertility-related markers were observed in humans and some other mammals. However, these fertility biomarkers have not been previously studied in ram. The aim of this study was to optimize the flow-cytometric analysis of these standard and novel markers in ram semen. Ram semen samples from Slovak native sheep breeds were analyzed using CASA system for motility and concentration and were subsequently stained with several fluorescent dyes or specific antibodies to evaluate sperm viability (SYBR-14), apoptosis (Annexin V, YO-PRO-1, FLICA, Caspases 3/7), acrosome status (PNA, LCA, GAPDHS), capacitation (merocyanine 540, FLUO-4 AM), mitochondrial activity (MitoTracker Green, rhodamine 123, JC-1), ROS (CM-H2DCFDA, DHE, MitoSOX Red, BODIPY), chromatin (acridine orange), leukocyte content, ubiquitination and aggresome formation, and overexpression of negative biomarkers (MKRN1, SPTRX-3, PAWP, H3K4me2). Analyzed semen samples were divided into two groups according to viability as indicators of semen quality: Group 1 (viability over 60%) and Group 2 (viability under 60%). Significant (p < 0.05) differences were found between these groups in sperm motility and concentration, apoptosis, acrosome integrity (only PNA), mitochondrial activity, ROS production (except for DHE), leukocyte and aggresome content, and high PAWP expression. In conclusion, several standard and novel fluorescent probes have been confirmed to be suitable for multiplex ram semen analysis by flow cytometry as well as several antibodies have been validated for the specific detection of ubiquitin, PAWP and H3K4me2 in ram spermatozoa.
Zobrazit více v PubMed
Hamilton T.R.D., Mendes C.M., de Castro L.S., de Assis P.M., Siqueira A.F.P., Delgado J.D., Goissis M.D., Muino-Blanco T., Cebrian-Perez J.A., Nichi M., et al. Evaluation of Lasting Effects of Heat Stress on Sperm Profile and Oxidative Status of Ram Semen and Epididymal Sperm. Oxidative Med. Cell. Longev. 2016;2016:1687657. doi: 10.1155/2016/1687657. PubMed DOI PMC
Mendoza N., Casao A., Perez-Pe R., Cebrian-Perez J.A., Muino-Blanco T. New Insights into the Mechanisms of Ram Sperm Protection by Seminal Plasma Proteins. Biol. Reprod. 2013;88:149. doi: 10.1095/biolreprod.112.105650. PubMed DOI
Baláži A., Vašíček J., Svoradová A., Macháč M., Jurčík R., Huba J., Pavlík I., Chrenek P. Comparison of three different methods for the analysis of ram sperm concentration. Slovak J. Anim. Sci. 2020;53:53–58.
Vasicek J., Svoradova A., Balazi A., Jurcik R., Machac M., Chrenek P. Ram semen quality can be assessed by flow cytometry several hours after post-fixation. Zygote. 2021;29:130–137. doi: 10.1017/S0967199420000581. PubMed DOI
Martinez-Pastor F., Mata-Campuzano M., Alvarez-Rodriguez M., Alvarez M., Anel L., de Paz P. Probes and Techniques for Sperm Evaluation by Flow Cytometry. Reprod. Domest. Anim. 2010;45:67–78. doi: 10.1111/j.1439-0531.2010.01622.x. PubMed DOI
Svoradova A., Kuzelova L., Vasicek J., Olexikova L., Balazi A., Kulikova B., Hrncar C., Ostro A., Bednarczyk M., Chrenek P. The Assessment of Cryopreservation on the Quality of Endangered Oravka Rooster Spermatozoa using Casa and Cytometry. Cryoletters. 2018;39:359–365. PubMed
Garner D.L., Johnson L.A. Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol. Reprod. 1995;53:276–284. doi: 10.1095/biolreprod53.2.276. PubMed DOI
Perticarari S., Ricci G., Granzotto M., Boscolo R., Pozzobon C., Guarnieri S., Sartore A., Presani G. A new multiparameter flow cytometric method for human semen analysis. Hum. Reprod. 2007;22:485–494. doi: 10.1093/humrep/del415. PubMed DOI
Akagi J., Kordon M., Zhao H., Matuszek A., Dobrucki J., Errington R., Smith P.J., Takeda K., Darzynkiewicz Z., Wlodkowic D. Real-time cell viability assays using a new anthracycline derivative DRAQ7 (R) Cytom. Part A. 2013;83:227–234. doi: 10.1002/cyto.a.22228. PubMed DOI PMC
Pena F.J., Saravia F., Johannisson A., Wallgren M., Rodriguez-Martinez H. Detection of early changes in sperm membrane integrity pre-freezing can estimate post-thaw quality of boar spermatozoa. Anim. Reprod. Sci. 2007;97:74–83. doi: 10.1016/j.anireprosci.2005.12.014. PubMed DOI
Pena F.J., Saravia F., Johannisson A., Walgren M., Rodriguez-Martinez H. A new and simple method to evaluate early membrane changes in frozen-thawed boar spermatozoa. Int. J. Androl. 2005;28:107–114. doi: 10.1111/j.1365-2605.2005.00512.x. PubMed DOI
Grunewald S., Sharma R., Paasch U., Glander H.J., Agarwal A. Impact of Caspase Activation in Human Spermatozoa. Microsc. Res. Tech. 2009;72:878–888. doi: 10.1002/jemt.20732. PubMed DOI
Tao J., Critser E.S., Critser J.K. Evaluation of mouse sperm acrosomal status and viability by flow cytometry. Mol. Reprod. Dev. 1993;36:183–194. doi: 10.1002/mrd.1080360209. PubMed DOI
Sutovsky P., Kennedy C.E. Biomarker-based nanotechnology for the improvement of reproductive performance in beef and dairy cattle. Ind. Biotechnol. 2013;9:24–30. doi: 10.1089/ind.2012.0035. DOI
Margaryan H., Dorosh A., Capkova J., Manaskova-Postlerova P., Philimonenko A., Hozak P., Peknicova J. Characterization and possible function of glyceraldehyde-3-phosphate dehydrogenase-spermatogenic protein GAPDHS in mammalian sperm. Reprod. Biol. Endocrinol. 2015;13:15. doi: 10.1186/s12958-015-0008-1. PubMed DOI PMC
Capkova J., Kubatova A., Ded L., Tepla O., Peknicova J. Evaluation of the expression of sperm proteins in normozoospermic and asthenozoospermic men using monoclonal antibodies. Asian J. Androl. 2016;18:108–113. doi: 10.4103/1008-682x.151400. PubMed DOI PMC
Harrison R.A.P., Ashworth P.J.C., Miller N.G.A. Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membranes. Mol. Reprod. Dev. 1996;45:378–391. doi: 10.1002/(SICI)1098-2795(199611)45:3<378::AID-MRD16>3.0.CO;2-V. PubMed DOI
Muratori M., Porazzi I., Luconi M., Marchiani S., Forti G., Baldi E. Annexin V binding and merocyanine staining fail to detect human sperm capacitation. J. Androl. 2004;25:797–810. doi: 10.1002/j.1939-4640.2004.tb02858.x. PubMed DOI
Piehler E., Petrunkina A.M., Ekhlasi-Hundrieser M., Topfer-Petersen E. Dynamic quantification of the tyrosine phosphorylation of the sperm surface proteins during capacitation. Cytom. Part A. 2006;69:1062–1070. doi: 10.1002/cyto.a.20338. PubMed DOI
Chavez J.C., De la Vega-Beltran J.L., Jose O., Torres P., Nishigaki T., Trevino C.L., Darszon A. Acrosomal alkalization triggers Ca2+ release and acrosome reaction in mammalian spermatozoa. J. Cell. Physiol. 2018;233:4735–4747. doi: 10.1002/jcp.26262. PubMed DOI
Zou T.J., Liu X., Ding S.S., Xing J.P. Evaluation of sperm mitochondrial function using rh123/PI dual fluorescent staining in asthenospermia and oligoasthenozoospermia. J. Biomed. Res. 2010;24:404–410. doi: 10.1016/S1674-8301(10)60054-1. PubMed DOI PMC
Garner D.L., Thomas C.A., Joerg H.W., DeJarnette J.M., Marshall C.E. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 1997;57:1401–1406. doi: 10.1095/biolreprod57.6.1401. PubMed DOI
Dominguez-Rebolledo A.E., Fernandez-Santos M.R., Bisbal A., Ros-Santaella J.L., Ramon M., Carmona M., Martinez-Pastor F., Garde J.J. Improving the effect of incubation and oxidative stress on thawed spermatozoa from red deer by using different antioxidant treatments. Reprod. Fertil. Dev. 2010;22:856–870. doi: 10.1071/RD09197. PubMed DOI
Zhao H.T., Joseph J., Fales H.M., Sokoloski E.A., Levine R.L., Vasquez-Vivar J., Kalyanaraman B. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc. Natl. Acad. Sci. USA. 2005;102:5727–5732. doi: 10.1073/pnas.0501719102. PubMed DOI PMC
Koppers A.J., De Iuliis G.N., Finnie J.M., McLaughlin E.A., Aitken R.J. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J. Clin. Endocrinol. Metab. 2008;93:3199–3207. doi: 10.1210/jc.2007-2616. PubMed DOI
Brouwers J., Gadella B.M. In Situ detection and localization of lipid peroxidation in individual bovine sperm cells. Free Radic. Biol. Med. 2003;35:1382–1391. doi: 10.1016/j.freeradbiomed.2003.08.010. PubMed DOI
Henkel R. ROS and Semen Quality. In: Agarwal A., Aitken R., Alvarez J., editors. Studies on Men’s Health and Fertility, Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press; Totowa, NJ, USA: 2012. pp. 301–323.
Tvrda E., Kacaniova M., Balazi A., Vasicek J., Vozaf J., Jurcik R., Duracka M., Ziarovska J., Kovac J., Chrenek P. The Impact of Bacteriocenoses on Sperm Vitality, Immunological and Oxidative Characteristics of Ram Ejaculates: Does the Breed Play a Role? Animals. 2022;12:54. doi: 10.3390/ani12010054. PubMed DOI PMC
Ricci G., Presani G., Guaschino S., Simeone R., Perticarari S. Leukocyte detection in human semen using flow cytometry. Hum. Reprod. 2000;15:1329–1337. doi: 10.1093/humrep/15.6.1329. PubMed DOI
Evenson D., Jost L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci. Off. J. Soc. Vitr. Biol. 2000;22:169–189. doi: 10.1023/A:1009844109023. PubMed DOI
Waterhouse K.E., Haugan T., Kommisrud E., Tverdal A., Flatberg G., Farstad W., Evenson D.P., De Angelis P.M. Sperm DNA damage is related to field fertility of semen from young Norwegian Red bulls. Reprod. Fertil. Dev. 2006;18:781–788. doi: 10.1071/RD06029. PubMed DOI
Sutovsky P., Turner R.M., Hameed S., Sutovsky M. Differential ubiquitination of stallion sperm proteins: Possible implications for infertility and reproductive seasonality. Biol. Reprod. 2003;68:688–698. doi: 10.1095/biolreprod.102.005306. PubMed DOI
Sutovsky P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: Killing three birds with one stone. Microsc. Res. Tech. 2003;61:88–102. doi: 10.1002/jemt.10319. PubMed DOI
Sutovsky P., Neuber E., Schatten G. Ubiquitin-dependent sperm quality control mechanism recognizes spermatozoa with DNA defects as revealed by dual ubiquitin-TUNEL assay. Mol. Reprod. Dev. 2002;61:406–413. doi: 10.1002/mrd.10101. PubMed DOI
Sutovsky P. New Approaches to Boar Semen Evaluation, Processing and Improvement. Reprod. Domest. Anim. 2015;50:11–19. doi: 10.1111/rda.12554. PubMed DOI
Yoshida N., Yano Y., Yoshiki A., Ueno M., Deguchi N., Hirotsune S. Identification of a new target molecule for a cascade therapy of polycystic kidney. Hum. Cell. 2003;16:65–72. doi: 10.1111/j.1749-0774.2003.tb00132.x. PubMed DOI
Buckman C., Ozanon C., Qiu J., Sutovsky M., Carafa J.A., Rawe V.Y., Manandhar G., Miranda-Vizuete A., Sutovsky P. Semen Levels of Spermatid-Specific Thioredoxin-3 Correlate with Pregnancy Rates in ART Couples. PLoS ONE. 2013;8:e61000. doi: 10.1371/annotation/5ec7a768-7129-460f-9290-57ae5d631dd9. PubMed DOI PMC
Sutovsky P., Aarabi M., Miranda-Vizuete A., Oko R. Negative biomarker based male fertility evaluation: Sperm phenotypes associated with molecular-level anomalies. Asian J. Androl. 2015;17:554–560. doi: 10.4103/1008-682X.153847. PubMed DOI PMC
Stiavnicka M., Garcia-Alvarez O., Ulcova-Gallova Z., Sutovsky P., Abril-Parreno L., Dolejsova M., Rimnacova H., Moravec J., Hosek P., Losan P., et al. H3K4me2 accompanies chromatin immaturity in human spermatozoa: An epigenetic marker for sperm quality assessment. Syst. Biol. Reprod. Med. 2020;66:3–11. doi: 10.1080/19396368.2019.1666435. PubMed DOI
Flowers W.L. Management of Reproduction. In: Wiseman J., Varley M., Chadwick J., editors. Progress in Pig Science. Nottingham University Press; Nottingham, UK: 1998. pp. 383–405.
Duracka M., Kovacik A., Kacaniova M., Lukac N., Tvrda E. Bacteria may deteriorate progressive motility of bovine spermatozoa and biochemical parameters of seminal plasma. J. Microbiol. Biotechnol. Food Sci. 2020;9:844–847. doi: 10.15414/jmbfs.2020.9.4.844-847. DOI
Makarevich A.V., Spalekova E., Olexikova L., Lukac N., Kubovicova E., Hegedusova Z. Functional characteristics of ram cooling-stored spermatozoa under the influence of epidermal growth factor. Gen. Physiol. Biophys. 2011;30:S36–S43. doi: 10.4149/gpb_2011_SI1_36. PubMed DOI
Makarevich A.V., Spalekova E., Olexikova L., Kubovicova E., Hegedusova Z. Effect of insulin-like growth factor I on functional parameters of ram cooled-stored spermatozoa. Zygote. 2014;22:305–313. doi: 10.1017/S0967199412000500. PubMed DOI
Gaitskell-Phillips G., Martin-Cano F.E., Ortiz-Rodriguez J.M., Silva-Rodriguez A., Da Silva-Alvarez E., Gil M.C., Ortega-Ferrusola C., Pena F.J. The seminal plasma proteins Peptidyl arginine deaminase 2, rRNA adenine N (6)-methyltransferase and KIAA0825 are linked to better motility post thaw in stallions. Theriogenology. 2022;177:94–102. doi: 10.1016/j.theriogenology.2021.10.010. PubMed DOI
Svoradová A., Macháč M., Baláži A., Vašíček J., Jurčík R., Huba J., Chrenek P. Semen quality assessment of improved Wallachian sheep breed: A preliminary study. Slovak J. Anim. Sci. 2020;53:92–95.
De Iuliis G.N., Wingate J.K., Koppers A.J., McLaughlin E.A., Aitken R.J. Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J. Clin. Endocrinol. Metab. 2006;91:1968–1975. doi: 10.1210/jc.2005-2711. PubMed DOI
Svoradová A., Baláži A., Vašíček J., Hrnčár C., Chrenek P. Quality evaluation of fresh gander semen of Slovak white goose by casa and flow cytometry. Slovak J. Anim. Sci. 2019;52:90–94.
Varum S., Bento C., Sousa A.P.M., Gomes-Santos C.S.S., Henriques P., Almeida-Santos T., Teodosio C., Paiva A., Ramalho-Santos J. Characterization of human sperm populations using conventional parameters, surface ubiquitination, and apoptotic markers. Fertil. Steril. 2007;87:572–583. doi: 10.1016/j.fertnstert.2006.07.1528. PubMed DOI
Peris-Frau P., Alvarez-Rodriguez M., Martin-Maestro A., Iniesta-Cuerda M., Sanchez-Ajofrin I., Medina-Chavez D.A., Garde J.J., Villar M., Rodriguez-Martinez H., Soler A.J. Unravelling how in vitro capacitation alters ram sperm chromatin before and after cryopreservation. Andrology. 2021;9:414–425. doi: 10.1111/andr.12900. PubMed DOI
Ledesma A., Fernandez-Alegre E., Cano A., Hozbor F., Martinez-Pastor F., Cesari A. Seminal plasma proteins interacting with sperm surface revert capacitation indicators in frozen-thawed ram sperm. Anim. Reprod. Sci. 2016;173:35–41. doi: 10.1016/j.anireprosci.2016.08.007. PubMed DOI
Neila-Montero M., Riesco M.F., Alvarez M., Montes-Garrido R., Boixo J.C., de Paz P., Anel-Lopez L., Anel L. Centrifugal force assessment in ram sperm: Identifying species-specific impact. Acta Vet. Scand. 2021;63:42. doi: 10.1186/s13028-021-00609-8. PubMed DOI PMC
Riesco M.F., Alvarez M., Anel-Lopez L., Neila-Montero M., Palacin-Martinez C., Montes-Garrido R., Boixo J.C., de Paz P., Anel L. Multiparametric Study of Antioxidant Effect on Ram Sperm Cryopreservation-From Field Trials to Research Bench. Animals. 2021;11:283. doi: 10.3390/ani11020283. PubMed DOI PMC
Lee M.C., Damjanov I. Lectin binding-sites on human-sperm and spermatogenic cells. Anat. Rec. 1985;212:282–287. doi: 10.1002/ar.1092120310. PubMed DOI
Fabrega A., Puigmule M., Dacheux J.L., Bonet S., Pinart E. Glycocalyx characterisation and glycoprotein expression of Sus domesticus epididymal sperm surface samples. Reprod. Fertil. Dev. 2012;24:619–630. doi: 10.1071/RD11064. PubMed DOI
Wu S.C., Yang H.T., Liu M. Biochemical identification and characterisation of changes associated with capacitation of mannosylated glycoproteins in murine sperm. Andrologia. 2012;44:747–755. doi: 10.1111/j.1439-0272.2011.01261.x. PubMed DOI
Gimeno-Martos S., Miguel-Jimenez S., Casao A., Cebrian-Perez J.A., Muino-Blanco T., Perez-Pe R. Underlying molecular mechanism in the modulation of the ram sperm acrosome reaction by progesterone and 17 beta-estradiol. Anim. Reprod. Sci. 2020;221:106567. doi: 10.1016/j.anireprosci.2020.106567. PubMed DOI
Miguel-Jimenez S., Pina-Beltran B., Gimeno-Martos S., Carvajal-Serna M., Casao A., Perez-Pe R. NADPH Oxidase 5 and Melatonin: Involvement in Ram Sperm Capacitation. Front. Cell Dev. Biol. 2021;9:655794. doi: 10.3389/fcell.2021.655794. PubMed DOI PMC
de Lamirande E., Lamothe G. Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic. Biol. Med. 2009;46:502–510. doi: 10.1016/j.freeradbiomed.2008.11.004. PubMed DOI
Dutta S., Majzoub A., Agarwal A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab. J. Urol. 2019;17:87–97. doi: 10.1080/2090598X.2019.1599624. PubMed DOI PMC
Zielonka J., Kalyanaraman B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radic. Biol. Med. 2010;48:983–1001. doi: 10.1016/j.freeradbiomed.2010.01.028. PubMed DOI PMC
Dikalov S.I., Harrison D.G. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species. Antioxid. Redox Signal. 2014;20:372–382. doi: 10.1089/ars.2012.4886. PubMed DOI PMC
Nazarewicz R.R., Bikineyeva A., Dikalov S.I. Rapid and Specific Measurements of Superoxide Using Fluorescence Spectroscopy. J. Biomol. Screen. 2013;18:498–503. doi: 10.1177/1087057112468765. PubMed DOI PMC
Zaja I.Z., Berta V., Valpotic H., Samardzija M., Milinkovic-Tur S., Vilic M., Suran J., Hlede J.P., Duricic D., Spoljaric B., et al. The influence of exogenous melatonin on antioxidative status in seminal plasma and spermatozoa in French Alpine bucks during the nonbreeding season. Domest. Anim. Endocrinol. 2020;71:106400. doi: 10.1016/j.domaniend.2019.106400. PubMed DOI
Tvarozkova K., Vasicek J., Uhrincat M., Macuhova L., Hleba L., Tancin V. The presence of pathogens in milk of ewes in relation to the somatic cell count and subpopulations of leukocytes. Czech J. Anim. Sci. 2021;66:315–322. doi: 10.17221/43/2021-CJAS. DOI
Alvarez J.G., Sharma R.K., Ollero M., Saleh R.A., Lopez M.C., Thomas A.J., Evenson D.P., Agarwal A. Increased DNA damage in sperm from leukocylospermic semen samples as determined by the sperm chromatin structure assay. Fertil. Steril. 2002;78:319–329. doi: 10.1016/S0015-0282(02)03201-6. PubMed DOI
Garcia-Macias V., Martinez-Pastor F., Alvarez M., Garde J.J., Anel E., Anel L., de Paz P. Assessment of chromatin status (SCSA (R)) in epididymal and ejaculated sperm in Iberian red deer, ram and domestic dog. Theriogenology. 2006;66:1921–1930. doi: 10.1016/j.theriogenology.2006.05.011. PubMed DOI
Garcia-Macias V., Martinez-Pastor F., Alvarez M., Borragan S., Chamorro C.A., Soler A.J., Anel L., De Paz P. Seasonal changes in sperm chromatin condensation in ram (Ovis aries), Iberian red deer (Cervus elaphus hispanicus), and brown bear (Ursus arctos) J. Androl. 2006;27:837–846. doi: 10.2164/jandrol.106.000315. PubMed DOI
Odhiambo J.F., Sutovsky M., DeJarnette J.M., Marshall C., Sutovsky P. Adaptation of ubiquitin-PNA based sperm quality assay for semen evaluation by a conventional flow cytometer and a dedicated platform for flow cytometric semen analysis. Theriogenology. 2011;76:1168–1176. doi: 10.1016/j.theriogenology.2011.05.009. PubMed DOI
Purdy P.H. Ubiquitination and its influence in boar sperm physiology and cryopreservation. Theriogenology. 2008;70:818–826. doi: 10.1016/j.theriogenology.2008.05.044. PubMed DOI
Sutovsky P., Moreno R., Ramalho-Santos J., Dominko T., Winston W.E., Schatten G. A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J. Cell Sci. 2001;114:1665–1675. doi: 10.1242/jcs.114.9.1665. PubMed DOI
Lanconi R., Celeghini E.C.C., Gonella-Diaza A.M., De Giuli V., de Carvalho C.P.T., Zoca G.B., Garcia-Oliveros L.N., Batissaco L., Oliveira L.Z., de Arruda R.P. Relationship between sperm ubiquitination and equine semen freezability. Reprod. Domest. Anim. 2022;57:465–472. doi: 10.1111/rda.14082. PubMed DOI
Kennedy C.E., Krieger K.B., Sutovsky M., Xu W., Vargovic P., Didion B.A., Ellersieck M.R., Hennessy M.E., Verstegen J., Oko R., et al. Protein Expression Pattern of PAWP in Bull Spermatozoa Is Associated with SpermQuality and Fertility Following Artificial Insemination. Mol. Reprod. Dev. 2014;81:436–449. doi: 10.1002/mrd.22309. PubMed DOI
Kerns K., Jankovitz J., Robinson J., Minton A., Kuster C., Sutovsky P. Relationship between the Length of Sperm Tail Mitochondrial Sheath and Fertility Traits in Boars Used for Artificial Insemination. Antioxidants. 2020;9:1033. doi: 10.3390/antiox9111033. PubMed DOI PMC
Lindsey L.L., Platt R.N., Phillips C.D., Ray D.A., Bradley R.D. Differential Expression in Testis and Liver Transcriptomes from Four Species of Peromyscus (Rodentia: Cricetidae) Genome Biol. Evol. 2020;12:3698–3709. doi: 10.1093/gbe/evz280. PubMed DOI PMC
Sutovsky P. Pig Overview. In: Skinner M.K., editor. Encyclopedia of Reproduction. 2nd ed. Volume 1. Academic Press; Cambridge, MA, USA: 2018. pp. 501–507.
Bauer M., Baláži A., Olexiková L., Vašíček J., Chrenek P. Comparison of the semen swim-up and somatic cell lysis procedures for ram sperm RNA extraction. Slovak J. Anim. Sci. 2021;54:107–112.
Aarabi M., Balakier H., Bashar S., Moskovtsev S.I., Sutovsky P., Librach C.L., Oko R. Sperm content of postacrosomal WW binding protein is related to fertilization outcomes in patients undergoing assisted reproductive technology. Fertil. Steril. 2014;102:440–447. doi: 10.1016/j.fertnstert.2014.05.003. PubMed DOI
Wu A.T.H., Sutovsky P., Manandhar G., Xu W., Katayama M., Day B.N., Park K.W., Yi Y.J., Xi Y.W., Prather R.S., et al. PAWP, a sperm-specific WW domain-binding protein, promotes meiotic resumption and pronuclear development during fertilization. J. Biol. Chem. 2007;282:12164–12175. doi: 10.1074/jbc.M609132200. PubMed DOI
Tavalaee M., Razavi S., Nasr-Esfahani M.H. Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil. Steril. 2009;91:1119–1126. doi: 10.1016/j.fertnstert.2008.01.063. PubMed DOI
Tunc O., Tremellen K. Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J. Assist. Reprod. Genet. 2009;26:537–544. doi: 10.1007/s10815-009-9346-2. PubMed DOI PMC
Bahreinian M., Tavalaee M., Abbasi H., Kiani-Esfahani A., Shiravi A.H., Nasr-Esfahani M.H. DNA hypomethylation predisposes sperm to DNA damage in individuals with varicocele. Syst. Biol. Reprod. Med. 2015;61:179–186. doi: 10.3109/19396368.2015.1020116. PubMed DOI
Vozaf J., Makarevich A.V., Balazi A., Vasicek J., Svoradova A., Olexikova L., Chrenek P. Cryopreservation of ram semen: Manual versus programmable freezing and different lengths of equilibration. Anim. Sci. J. 2021;92:e13670. doi: 10.1111/asj.13670. PubMed DOI
Elweza A.E., Sharshar A.M., Elbaz H.T. Doppler and B-mode ultrasonographic monitoring of accessory sex glands and testes in Barki rams during the breeding season. Vet. Stanica. 2021;52:173–183. doi: 10.46419/vs.52.2.4. DOI
Mahfouz R.Z., du Plessis S.S., Aziz N., Sharma R., Sabanegh E., Agarwal A. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil. Steril. 2010;93:814–821. doi: 10.1016/j.fertnstert.2008.10.068. PubMed DOI
Bolanos J.M.G., da Silva C.M.B., Munoz P.M., Rodriguez A.M., Davila M.P., Rodriguez-Martinez H., Aparicio I.M., Tapia J.A., Ferrusola C.O., Pena F.J. Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction. 2014;148:221–235. doi: 10.1530/REP-13-0191. PubMed DOI
Nagy S., Jansen J., Topper E.K., Gadella B.M. A triple-stain flow cytometric method to assess plasma- and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 2003;68:1828–1835. doi: 10.1095/biolreprod.102.011445. PubMed DOI
Enhancing of Rabbit Sperm Cryopreservation with Antioxidants Mito-Tempo and Berberine