Comprehensive Flow-Cytometric Quality Assessment of Ram Sperm Intended for Gene Banking Using Standard and Novel Fertility Biomarkers

. 2022 May 25 ; 23 (11) : . [epub] 20220525

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35682598

Grantová podpora
VEGA 1/0049/19 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences
APVV-17-0124 Slovak Research and Development Agency
APVV-20-0006 Slovak Research and Development Agency

Flow cytometry becomes a common method for analysis of spermatozoa quality. Standard sperm characteristics such as viability, acrosome and chromatin integrity, oxidative damage (ROS) etc. can be easily assess in any animal semen samples. Moreover, several fertility-related markers were observed in humans and some other mammals. However, these fertility biomarkers have not been previously studied in ram. The aim of this study was to optimize the flow-cytometric analysis of these standard and novel markers in ram semen. Ram semen samples from Slovak native sheep breeds were analyzed using CASA system for motility and concentration and were subsequently stained with several fluorescent dyes or specific antibodies to evaluate sperm viability (SYBR-14), apoptosis (Annexin V, YO-PRO-1, FLICA, Caspases 3/7), acrosome status (PNA, LCA, GAPDHS), capacitation (merocyanine 540, FLUO-4 AM), mitochondrial activity (MitoTracker Green, rhodamine 123, JC-1), ROS (CM-H2DCFDA, DHE, MitoSOX Red, BODIPY), chromatin (acridine orange), leukocyte content, ubiquitination and aggresome formation, and overexpression of negative biomarkers (MKRN1, SPTRX-3, PAWP, H3K4me2). Analyzed semen samples were divided into two groups according to viability as indicators of semen quality: Group 1 (viability over 60%) and Group 2 (viability under 60%). Significant (p < 0.05) differences were found between these groups in sperm motility and concentration, apoptosis, acrosome integrity (only PNA), mitochondrial activity, ROS production (except for DHE), leukocyte and aggresome content, and high PAWP expression. In conclusion, several standard and novel fluorescent probes have been confirmed to be suitable for multiplex ram semen analysis by flow cytometry as well as several antibodies have been validated for the specific detection of ubiquitin, PAWP and H3K4me2 in ram spermatozoa.

Zobrazit více v PubMed

Hamilton T.R.D., Mendes C.M., de Castro L.S., de Assis P.M., Siqueira A.F.P., Delgado J.D., Goissis M.D., Muino-Blanco T., Cebrian-Perez J.A., Nichi M., et al. Evaluation of Lasting Effects of Heat Stress on Sperm Profile and Oxidative Status of Ram Semen and Epididymal Sperm. Oxidative Med. Cell. Longev. 2016;2016:1687657. doi: 10.1155/2016/1687657. PubMed DOI PMC

Mendoza N., Casao A., Perez-Pe R., Cebrian-Perez J.A., Muino-Blanco T. New Insights into the Mechanisms of Ram Sperm Protection by Seminal Plasma Proteins. Biol. Reprod. 2013;88:149. doi: 10.1095/biolreprod.112.105650. PubMed DOI

Baláži A., Vašíček J., Svoradová A., Macháč M., Jurčík R., Huba J., Pavlík I., Chrenek P. Comparison of three different methods for the analysis of ram sperm concentration. Slovak J. Anim. Sci. 2020;53:53–58.

Vasicek J., Svoradova A., Balazi A., Jurcik R., Machac M., Chrenek P. Ram semen quality can be assessed by flow cytometry several hours after post-fixation. Zygote. 2021;29:130–137. doi: 10.1017/S0967199420000581. PubMed DOI

Martinez-Pastor F., Mata-Campuzano M., Alvarez-Rodriguez M., Alvarez M., Anel L., de Paz P. Probes and Techniques for Sperm Evaluation by Flow Cytometry. Reprod. Domest. Anim. 2010;45:67–78. doi: 10.1111/j.1439-0531.2010.01622.x. PubMed DOI

Svoradova A., Kuzelova L., Vasicek J., Olexikova L., Balazi A., Kulikova B., Hrncar C., Ostro A., Bednarczyk M., Chrenek P. The Assessment of Cryopreservation on the Quality of Endangered Oravka Rooster Spermatozoa using Casa and Cytometry. Cryoletters. 2018;39:359–365. PubMed

Garner D.L., Johnson L.A. Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol. Reprod. 1995;53:276–284. doi: 10.1095/biolreprod53.2.276. PubMed DOI

Perticarari S., Ricci G., Granzotto M., Boscolo R., Pozzobon C., Guarnieri S., Sartore A., Presani G. A new multiparameter flow cytometric method for human semen analysis. Hum. Reprod. 2007;22:485–494. doi: 10.1093/humrep/del415. PubMed DOI

Akagi J., Kordon M., Zhao H., Matuszek A., Dobrucki J., Errington R., Smith P.J., Takeda K., Darzynkiewicz Z., Wlodkowic D. Real-time cell viability assays using a new anthracycline derivative DRAQ7 (R) Cytom. Part A. 2013;83:227–234. doi: 10.1002/cyto.a.22228. PubMed DOI PMC

Pena F.J., Saravia F., Johannisson A., Wallgren M., Rodriguez-Martinez H. Detection of early changes in sperm membrane integrity pre-freezing can estimate post-thaw quality of boar spermatozoa. Anim. Reprod. Sci. 2007;97:74–83. doi: 10.1016/j.anireprosci.2005.12.014. PubMed DOI

Pena F.J., Saravia F., Johannisson A., Walgren M., Rodriguez-Martinez H. A new and simple method to evaluate early membrane changes in frozen-thawed boar spermatozoa. Int. J. Androl. 2005;28:107–114. doi: 10.1111/j.1365-2605.2005.00512.x. PubMed DOI

Grunewald S., Sharma R., Paasch U., Glander H.J., Agarwal A. Impact of Caspase Activation in Human Spermatozoa. Microsc. Res. Tech. 2009;72:878–888. doi: 10.1002/jemt.20732. PubMed DOI

Tao J., Critser E.S., Critser J.K. Evaluation of mouse sperm acrosomal status and viability by flow cytometry. Mol. Reprod. Dev. 1993;36:183–194. doi: 10.1002/mrd.1080360209. PubMed DOI

Sutovsky P., Kennedy C.E. Biomarker-based nanotechnology for the improvement of reproductive performance in beef and dairy cattle. Ind. Biotechnol. 2013;9:24–30. doi: 10.1089/ind.2012.0035. DOI

Margaryan H., Dorosh A., Capkova J., Manaskova-Postlerova P., Philimonenko A., Hozak P., Peknicova J. Characterization and possible function of glyceraldehyde-3-phosphate dehydrogenase-spermatogenic protein GAPDHS in mammalian sperm. Reprod. Biol. Endocrinol. 2015;13:15. doi: 10.1186/s12958-015-0008-1. PubMed DOI PMC

Capkova J., Kubatova A., Ded L., Tepla O., Peknicova J. Evaluation of the expression of sperm proteins in normozoospermic and asthenozoospermic men using monoclonal antibodies. Asian J. Androl. 2016;18:108–113. doi: 10.4103/1008-682x.151400. PubMed DOI PMC

Harrison R.A.P., Ashworth P.J.C., Miller N.G.A. Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membranes. Mol. Reprod. Dev. 1996;45:378–391. doi: 10.1002/(SICI)1098-2795(199611)45:3<378::AID-MRD16>3.0.CO;2-V. PubMed DOI

Muratori M., Porazzi I., Luconi M., Marchiani S., Forti G., Baldi E. Annexin V binding and merocyanine staining fail to detect human sperm capacitation. J. Androl. 2004;25:797–810. doi: 10.1002/j.1939-4640.2004.tb02858.x. PubMed DOI

Piehler E., Petrunkina A.M., Ekhlasi-Hundrieser M., Topfer-Petersen E. Dynamic quantification of the tyrosine phosphorylation of the sperm surface proteins during capacitation. Cytom. Part A. 2006;69:1062–1070. doi: 10.1002/cyto.a.20338. PubMed DOI

Chavez J.C., De la Vega-Beltran J.L., Jose O., Torres P., Nishigaki T., Trevino C.L., Darszon A. Acrosomal alkalization triggers Ca2+ release and acrosome reaction in mammalian spermatozoa. J. Cell. Physiol. 2018;233:4735–4747. doi: 10.1002/jcp.26262. PubMed DOI

Zou T.J., Liu X., Ding S.S., Xing J.P. Evaluation of sperm mitochondrial function using rh123/PI dual fluorescent staining in asthenospermia and oligoasthenozoospermia. J. Biomed. Res. 2010;24:404–410. doi: 10.1016/S1674-8301(10)60054-1. PubMed DOI PMC

Garner D.L., Thomas C.A., Joerg H.W., DeJarnette J.M., Marshall C.E. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 1997;57:1401–1406. doi: 10.1095/biolreprod57.6.1401. PubMed DOI

Dominguez-Rebolledo A.E., Fernandez-Santos M.R., Bisbal A., Ros-Santaella J.L., Ramon M., Carmona M., Martinez-Pastor F., Garde J.J. Improving the effect of incubation and oxidative stress on thawed spermatozoa from red deer by using different antioxidant treatments. Reprod. Fertil. Dev. 2010;22:856–870. doi: 10.1071/RD09197. PubMed DOI

Zhao H.T., Joseph J., Fales H.M., Sokoloski E.A., Levine R.L., Vasquez-Vivar J., Kalyanaraman B. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc. Natl. Acad. Sci. USA. 2005;102:5727–5732. doi: 10.1073/pnas.0501719102. PubMed DOI PMC

Koppers A.J., De Iuliis G.N., Finnie J.M., McLaughlin E.A., Aitken R.J. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J. Clin. Endocrinol. Metab. 2008;93:3199–3207. doi: 10.1210/jc.2007-2616. PubMed DOI

Brouwers J., Gadella B.M. In Situ detection and localization of lipid peroxidation in individual bovine sperm cells. Free Radic. Biol. Med. 2003;35:1382–1391. doi: 10.1016/j.freeradbiomed.2003.08.010. PubMed DOI

Henkel R. ROS and Semen Quality. In: Agarwal A., Aitken R., Alvarez J., editors. Studies on Men’s Health and Fertility, Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press; Totowa, NJ, USA: 2012. pp. 301–323.

Tvrda E., Kacaniova M., Balazi A., Vasicek J., Vozaf J., Jurcik R., Duracka M., Ziarovska J., Kovac J., Chrenek P. The Impact of Bacteriocenoses on Sperm Vitality, Immunological and Oxidative Characteristics of Ram Ejaculates: Does the Breed Play a Role? Animals. 2022;12:54. doi: 10.3390/ani12010054. PubMed DOI PMC

Ricci G., Presani G., Guaschino S., Simeone R., Perticarari S. Leukocyte detection in human semen using flow cytometry. Hum. Reprod. 2000;15:1329–1337. doi: 10.1093/humrep/15.6.1329. PubMed DOI

Evenson D., Jost L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci. Off. J. Soc. Vitr. Biol. 2000;22:169–189. doi: 10.1023/A:1009844109023. PubMed DOI

Waterhouse K.E., Haugan T., Kommisrud E., Tverdal A., Flatberg G., Farstad W., Evenson D.P., De Angelis P.M. Sperm DNA damage is related to field fertility of semen from young Norwegian Red bulls. Reprod. Fertil. Dev. 2006;18:781–788. doi: 10.1071/RD06029. PubMed DOI

Sutovsky P., Turner R.M., Hameed S., Sutovsky M. Differential ubiquitination of stallion sperm proteins: Possible implications for infertility and reproductive seasonality. Biol. Reprod. 2003;68:688–698. doi: 10.1095/biolreprod.102.005306. PubMed DOI

Sutovsky P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: Killing three birds with one stone. Microsc. Res. Tech. 2003;61:88–102. doi: 10.1002/jemt.10319. PubMed DOI

Sutovsky P., Neuber E., Schatten G. Ubiquitin-dependent sperm quality control mechanism recognizes spermatozoa with DNA defects as revealed by dual ubiquitin-TUNEL assay. Mol. Reprod. Dev. 2002;61:406–413. doi: 10.1002/mrd.10101. PubMed DOI

Sutovsky P. New Approaches to Boar Semen Evaluation, Processing and Improvement. Reprod. Domest. Anim. 2015;50:11–19. doi: 10.1111/rda.12554. PubMed DOI

Yoshida N., Yano Y., Yoshiki A., Ueno M., Deguchi N., Hirotsune S. Identification of a new target molecule for a cascade therapy of polycystic kidney. Hum. Cell. 2003;16:65–72. doi: 10.1111/j.1749-0774.2003.tb00132.x. PubMed DOI

Buckman C., Ozanon C., Qiu J., Sutovsky M., Carafa J.A., Rawe V.Y., Manandhar G., Miranda-Vizuete A., Sutovsky P. Semen Levels of Spermatid-Specific Thioredoxin-3 Correlate with Pregnancy Rates in ART Couples. PLoS ONE. 2013;8:e61000. doi: 10.1371/annotation/5ec7a768-7129-460f-9290-57ae5d631dd9. PubMed DOI PMC

Sutovsky P., Aarabi M., Miranda-Vizuete A., Oko R. Negative biomarker based male fertility evaluation: Sperm phenotypes associated with molecular-level anomalies. Asian J. Androl. 2015;17:554–560. doi: 10.4103/1008-682X.153847. PubMed DOI PMC

Stiavnicka M., Garcia-Alvarez O., Ulcova-Gallova Z., Sutovsky P., Abril-Parreno L., Dolejsova M., Rimnacova H., Moravec J., Hosek P., Losan P., et al. H3K4me2 accompanies chromatin immaturity in human spermatozoa: An epigenetic marker for sperm quality assessment. Syst. Biol. Reprod. Med. 2020;66:3–11. doi: 10.1080/19396368.2019.1666435. PubMed DOI

Flowers W.L. Management of Reproduction. In: Wiseman J., Varley M., Chadwick J., editors. Progress in Pig Science. Nottingham University Press; Nottingham, UK: 1998. pp. 383–405.

Duracka M., Kovacik A., Kacaniova M., Lukac N., Tvrda E. Bacteria may deteriorate progressive motility of bovine spermatozoa and biochemical parameters of seminal plasma. J. Microbiol. Biotechnol. Food Sci. 2020;9:844–847. doi: 10.15414/jmbfs.2020.9.4.844-847. DOI

Makarevich A.V., Spalekova E., Olexikova L., Lukac N., Kubovicova E., Hegedusova Z. Functional characteristics of ram cooling-stored spermatozoa under the influence of epidermal growth factor. Gen. Physiol. Biophys. 2011;30:S36–S43. doi: 10.4149/gpb_2011_SI1_36. PubMed DOI

Makarevich A.V., Spalekova E., Olexikova L., Kubovicova E., Hegedusova Z. Effect of insulin-like growth factor I on functional parameters of ram cooled-stored spermatozoa. Zygote. 2014;22:305–313. doi: 10.1017/S0967199412000500. PubMed DOI

Gaitskell-Phillips G., Martin-Cano F.E., Ortiz-Rodriguez J.M., Silva-Rodriguez A., Da Silva-Alvarez E., Gil M.C., Ortega-Ferrusola C., Pena F.J. The seminal plasma proteins Peptidyl arginine deaminase 2, rRNA adenine N (6)-methyltransferase and KIAA0825 are linked to better motility post thaw in stallions. Theriogenology. 2022;177:94–102. doi: 10.1016/j.theriogenology.2021.10.010. PubMed DOI

Svoradová A., Macháč M., Baláži A., Vašíček J., Jurčík R., Huba J., Chrenek P. Semen quality assessment of improved Wallachian sheep breed: A preliminary study. Slovak J. Anim. Sci. 2020;53:92–95.

De Iuliis G.N., Wingate J.K., Koppers A.J., McLaughlin E.A., Aitken R.J. Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J. Clin. Endocrinol. Metab. 2006;91:1968–1975. doi: 10.1210/jc.2005-2711. PubMed DOI

Svoradová A., Baláži A., Vašíček J., Hrnčár C., Chrenek P. Quality evaluation of fresh gander semen of Slovak white goose by casa and flow cytometry. Slovak J. Anim. Sci. 2019;52:90–94.

Varum S., Bento C., Sousa A.P.M., Gomes-Santos C.S.S., Henriques P., Almeida-Santos T., Teodosio C., Paiva A., Ramalho-Santos J. Characterization of human sperm populations using conventional parameters, surface ubiquitination, and apoptotic markers. Fertil. Steril. 2007;87:572–583. doi: 10.1016/j.fertnstert.2006.07.1528. PubMed DOI

Peris-Frau P., Alvarez-Rodriguez M., Martin-Maestro A., Iniesta-Cuerda M., Sanchez-Ajofrin I., Medina-Chavez D.A., Garde J.J., Villar M., Rodriguez-Martinez H., Soler A.J. Unravelling how in vitro capacitation alters ram sperm chromatin before and after cryopreservation. Andrology. 2021;9:414–425. doi: 10.1111/andr.12900. PubMed DOI

Ledesma A., Fernandez-Alegre E., Cano A., Hozbor F., Martinez-Pastor F., Cesari A. Seminal plasma proteins interacting with sperm surface revert capacitation indicators in frozen-thawed ram sperm. Anim. Reprod. Sci. 2016;173:35–41. doi: 10.1016/j.anireprosci.2016.08.007. PubMed DOI

Neila-Montero M., Riesco M.F., Alvarez M., Montes-Garrido R., Boixo J.C., de Paz P., Anel-Lopez L., Anel L. Centrifugal force assessment in ram sperm: Identifying species-specific impact. Acta Vet. Scand. 2021;63:42. doi: 10.1186/s13028-021-00609-8. PubMed DOI PMC

Riesco M.F., Alvarez M., Anel-Lopez L., Neila-Montero M., Palacin-Martinez C., Montes-Garrido R., Boixo J.C., de Paz P., Anel L. Multiparametric Study of Antioxidant Effect on Ram Sperm Cryopreservation-From Field Trials to Research Bench. Animals. 2021;11:283. doi: 10.3390/ani11020283. PubMed DOI PMC

Lee M.C., Damjanov I. Lectin binding-sites on human-sperm and spermatogenic cells. Anat. Rec. 1985;212:282–287. doi: 10.1002/ar.1092120310. PubMed DOI

Fabrega A., Puigmule M., Dacheux J.L., Bonet S., Pinart E. Glycocalyx characterisation and glycoprotein expression of Sus domesticus epididymal sperm surface samples. Reprod. Fertil. Dev. 2012;24:619–630. doi: 10.1071/RD11064. PubMed DOI

Wu S.C., Yang H.T., Liu M. Biochemical identification and characterisation of changes associated with capacitation of mannosylated glycoproteins in murine sperm. Andrologia. 2012;44:747–755. doi: 10.1111/j.1439-0272.2011.01261.x. PubMed DOI

Gimeno-Martos S., Miguel-Jimenez S., Casao A., Cebrian-Perez J.A., Muino-Blanco T., Perez-Pe R. Underlying molecular mechanism in the modulation of the ram sperm acrosome reaction by progesterone and 17 beta-estradiol. Anim. Reprod. Sci. 2020;221:106567. doi: 10.1016/j.anireprosci.2020.106567. PubMed DOI

Miguel-Jimenez S., Pina-Beltran B., Gimeno-Martos S., Carvajal-Serna M., Casao A., Perez-Pe R. NADPH Oxidase 5 and Melatonin: Involvement in Ram Sperm Capacitation. Front. Cell Dev. Biol. 2021;9:655794. doi: 10.3389/fcell.2021.655794. PubMed DOI PMC

de Lamirande E., Lamothe G. Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic. Biol. Med. 2009;46:502–510. doi: 10.1016/j.freeradbiomed.2008.11.004. PubMed DOI

Dutta S., Majzoub A., Agarwal A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab. J. Urol. 2019;17:87–97. doi: 10.1080/2090598X.2019.1599624. PubMed DOI PMC

Zielonka J., Kalyanaraman B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radic. Biol. Med. 2010;48:983–1001. doi: 10.1016/j.freeradbiomed.2010.01.028. PubMed DOI PMC

Dikalov S.I., Harrison D.G. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species. Antioxid. Redox Signal. 2014;20:372–382. doi: 10.1089/ars.2012.4886. PubMed DOI PMC

Nazarewicz R.R., Bikineyeva A., Dikalov S.I. Rapid and Specific Measurements of Superoxide Using Fluorescence Spectroscopy. J. Biomol. Screen. 2013;18:498–503. doi: 10.1177/1087057112468765. PubMed DOI PMC

Zaja I.Z., Berta V., Valpotic H., Samardzija M., Milinkovic-Tur S., Vilic M., Suran J., Hlede J.P., Duricic D., Spoljaric B., et al. The influence of exogenous melatonin on antioxidative status in seminal plasma and spermatozoa in French Alpine bucks during the nonbreeding season. Domest. Anim. Endocrinol. 2020;71:106400. doi: 10.1016/j.domaniend.2019.106400. PubMed DOI

Tvarozkova K., Vasicek J., Uhrincat M., Macuhova L., Hleba L., Tancin V. The presence of pathogens in milk of ewes in relation to the somatic cell count and subpopulations of leukocytes. Czech J. Anim. Sci. 2021;66:315–322. doi: 10.17221/43/2021-CJAS. DOI

Alvarez J.G., Sharma R.K., Ollero M., Saleh R.A., Lopez M.C., Thomas A.J., Evenson D.P., Agarwal A. Increased DNA damage in sperm from leukocylospermic semen samples as determined by the sperm chromatin structure assay. Fertil. Steril. 2002;78:319–329. doi: 10.1016/S0015-0282(02)03201-6. PubMed DOI

Garcia-Macias V., Martinez-Pastor F., Alvarez M., Garde J.J., Anel E., Anel L., de Paz P. Assessment of chromatin status (SCSA (R)) in epididymal and ejaculated sperm in Iberian red deer, ram and domestic dog. Theriogenology. 2006;66:1921–1930. doi: 10.1016/j.theriogenology.2006.05.011. PubMed DOI

Garcia-Macias V., Martinez-Pastor F., Alvarez M., Borragan S., Chamorro C.A., Soler A.J., Anel L., De Paz P. Seasonal changes in sperm chromatin condensation in ram (Ovis aries), Iberian red deer (Cervus elaphus hispanicus), and brown bear (Ursus arctos) J. Androl. 2006;27:837–846. doi: 10.2164/jandrol.106.000315. PubMed DOI

Odhiambo J.F., Sutovsky M., DeJarnette J.M., Marshall C., Sutovsky P. Adaptation of ubiquitin-PNA based sperm quality assay for semen evaluation by a conventional flow cytometer and a dedicated platform for flow cytometric semen analysis. Theriogenology. 2011;76:1168–1176. doi: 10.1016/j.theriogenology.2011.05.009. PubMed DOI

Purdy P.H. Ubiquitination and its influence in boar sperm physiology and cryopreservation. Theriogenology. 2008;70:818–826. doi: 10.1016/j.theriogenology.2008.05.044. PubMed DOI

Sutovsky P., Moreno R., Ramalho-Santos J., Dominko T., Winston W.E., Schatten G. A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J. Cell Sci. 2001;114:1665–1675. doi: 10.1242/jcs.114.9.1665. PubMed DOI

Lanconi R., Celeghini E.C.C., Gonella-Diaza A.M., De Giuli V., de Carvalho C.P.T., Zoca G.B., Garcia-Oliveros L.N., Batissaco L., Oliveira L.Z., de Arruda R.P. Relationship between sperm ubiquitination and equine semen freezability. Reprod. Domest. Anim. 2022;57:465–472. doi: 10.1111/rda.14082. PubMed DOI

Kennedy C.E., Krieger K.B., Sutovsky M., Xu W., Vargovic P., Didion B.A., Ellersieck M.R., Hennessy M.E., Verstegen J., Oko R., et al. Protein Expression Pattern of PAWP in Bull Spermatozoa Is Associated with SpermQuality and Fertility Following Artificial Insemination. Mol. Reprod. Dev. 2014;81:436–449. doi: 10.1002/mrd.22309. PubMed DOI

Kerns K., Jankovitz J., Robinson J., Minton A., Kuster C., Sutovsky P. Relationship between the Length of Sperm Tail Mitochondrial Sheath and Fertility Traits in Boars Used for Artificial Insemination. Antioxidants. 2020;9:1033. doi: 10.3390/antiox9111033. PubMed DOI PMC

Lindsey L.L., Platt R.N., Phillips C.D., Ray D.A., Bradley R.D. Differential Expression in Testis and Liver Transcriptomes from Four Species of Peromyscus (Rodentia: Cricetidae) Genome Biol. Evol. 2020;12:3698–3709. doi: 10.1093/gbe/evz280. PubMed DOI PMC

Sutovsky P. Pig Overview. In: Skinner M.K., editor. Encyclopedia of Reproduction. 2nd ed. Volume 1. Academic Press; Cambridge, MA, USA: 2018. pp. 501–507.

Bauer M., Baláži A., Olexiková L., Vašíček J., Chrenek P. Comparison of the semen swim-up and somatic cell lysis procedures for ram sperm RNA extraction. Slovak J. Anim. Sci. 2021;54:107–112.

Aarabi M., Balakier H., Bashar S., Moskovtsev S.I., Sutovsky P., Librach C.L., Oko R. Sperm content of postacrosomal WW binding protein is related to fertilization outcomes in patients undergoing assisted reproductive technology. Fertil. Steril. 2014;102:440–447. doi: 10.1016/j.fertnstert.2014.05.003. PubMed DOI

Wu A.T.H., Sutovsky P., Manandhar G., Xu W., Katayama M., Day B.N., Park K.W., Yi Y.J., Xi Y.W., Prather R.S., et al. PAWP, a sperm-specific WW domain-binding protein, promotes meiotic resumption and pronuclear development during fertilization. J. Biol. Chem. 2007;282:12164–12175. doi: 10.1074/jbc.M609132200. PubMed DOI

Tavalaee M., Razavi S., Nasr-Esfahani M.H. Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil. Steril. 2009;91:1119–1126. doi: 10.1016/j.fertnstert.2008.01.063. PubMed DOI

Tunc O., Tremellen K. Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J. Assist. Reprod. Genet. 2009;26:537–544. doi: 10.1007/s10815-009-9346-2. PubMed DOI PMC

Bahreinian M., Tavalaee M., Abbasi H., Kiani-Esfahani A., Shiravi A.H., Nasr-Esfahani M.H. DNA hypomethylation predisposes sperm to DNA damage in individuals with varicocele. Syst. Biol. Reprod. Med. 2015;61:179–186. doi: 10.3109/19396368.2015.1020116. PubMed DOI

Vozaf J., Makarevich A.V., Balazi A., Vasicek J., Svoradova A., Olexikova L., Chrenek P. Cryopreservation of ram semen: Manual versus programmable freezing and different lengths of equilibration. Anim. Sci. J. 2021;92:e13670. doi: 10.1111/asj.13670. PubMed DOI

Elweza A.E., Sharshar A.M., Elbaz H.T. Doppler and B-mode ultrasonographic monitoring of accessory sex glands and testes in Barki rams during the breeding season. Vet. Stanica. 2021;52:173–183. doi: 10.46419/vs.52.2.4. DOI

Mahfouz R.Z., du Plessis S.S., Aziz N., Sharma R., Sabanegh E., Agarwal A. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil. Steril. 2010;93:814–821. doi: 10.1016/j.fertnstert.2008.10.068. PubMed DOI

Bolanos J.M.G., da Silva C.M.B., Munoz P.M., Rodriguez A.M., Davila M.P., Rodriguez-Martinez H., Aparicio I.M., Tapia J.A., Ferrusola C.O., Pena F.J. Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction. 2014;148:221–235. doi: 10.1530/REP-13-0191. PubMed DOI

Nagy S., Jansen J., Topper E.K., Gadella B.M. A triple-stain flow cytometric method to assess plasma- and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 2003;68:1828–1835. doi: 10.1095/biolreprod.102.011445. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enhancing of Rabbit Sperm Cryopreservation with Antioxidants Mito-Tempo and Berberine

. 2024 Nov 06 ; 13 (11) : . [epub] 20241106

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...