Simulation and Experimental Study on Enhancing Dimensional Accuracy of Polycarbonate Light Guides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39599294
PubMed Central
PMC11598470
DOI
10.3390/polym16223203
PII: polym16223203
Knihovny.cz E-zdroje
- Klíčová slova
- injection molding, light guides, polycarbonate, process evaluation, quality enhancement, thick-walled parts,
- Publikační typ
- časopisecké články MeSH
This research investigates the adaptation of conventional injection-molding techniques for producing thick-walled polycarbonate optical components, specifically targeting their application in automotive light guides. With the automotive industry's growing demand for reliable yet cost-efficient optical products, the study examines how traditional injection-molding processes can be refined to enhance dimensional accuracy and reduce defects. Simulations and experimental trials were conducted to evaluate the impact of critical process parameters, such as melt temperature, mold temperature, injection pressure, and gate design, on the overall quality of the final components. The results show that by carefully optimizing these parameters, it is possible to significantly reduce common defects like warpage, surface imperfections, and dimensional instability. This research highlights the potential of existing molding techniques to meet high industry standards while maintaining cost-effectiveness, offering valuable guidance for manufacturers aiming to produce high-quality optical components for demanding applications like automotive lighting.
Zobrazit více v PubMed
Walach P., Hopmann C., Weber N., Walach P. Multilayer Injection Moulding of Thick-Walled Optical Plastics Parts. AIP Conf. Proc. 2014;1593:146–149. doi: 10.1063/1.4873752. DOI
Nian S., Zhao X., Jiang Z., Xu Y., Yang Y. Multi-Objective Optimization of Injection Molding Process Parameters for Moderately Thick Plane Lens Based on PSO-BPNN, OMOPSO, and TOPSIS. Processes. 2024;12:36. doi: 10.3390/pr12010036. DOI
Forster J. Ph.D. Thesis. RWTH Aachen University; Aachen, Germany: 2006. Vergleich der Optischen Leistungsfähigkeit Spritzgegossener und Spritzgeprägter Kunststofflinsen.
Hopmann C., Robig M. Application of a Multilayer Injection Molding Process for Thick-Walled Optical Components. J. Polym. Eng. 2016;36:557–562. doi: 10.1515/polyeng-2014-0259. DOI
Hopmann C., Michaeli W., Walach P. Injection Molding of High-Precision Optical Lenses: A Review. J. Appl. Polym. Sci. 2020;137:e48600. doi: 10.1002/app.48600. DOI
Hopmann C., Michaeli W., Schöngart M. Mold Design for Complex Optical Plastics Components; Proceedings of the International Conference on Polymer Processing; Berlin, Germany. 23–25 March 2012.
Mayer R. Precision Injection Moulding. Opt. Photonik. 2011;6:46–48. doi: 10.1002/opph.201190286. DOI
Gao R., Zhao P., Xie J., Chen H., Jiao X., Zhu N., Chen Y., Fu J. Research on the Multilayer Injection Molding of Thick-Walled Polymer Optical Products. J. Manuf. Process. 2023;103:309–319. doi: 10.1016/j.jmapro.2023.08.033. DOI
Liu Y., Zhang X., Jiang L., Luo X. Multi-Layer Counter-Pressure Injection Molding for Thick-Walled Optical Lens. Int. Polym. Process. 2021;36:131–136. doi: 10.1515/ipp-2020-3994. DOI
Peixoto C., Valentim P.T., Sousa P.C., Dias D., Araújo C., Pereira D., Machado C.F., Pontes A.J., Santos H., Cruz S. Injection Molding of High-Precision Optical Lenses: A Review. Precis. Eng. 2022;76:29–51. doi: 10.1016/j.precisioneng.2022.02.002. DOI
Heßner S., Heinisch J., Langenbach E. Analysis of Different Compression-Molding Techniques Regarding the Quality of Optical Lenses. J. Vac. Sci. Technol. B. 2009;27:1442–1448. doi: 10.1116/1.3079765. DOI
Huang M.S., Chen T.J., Chang P.L., Chen J.T. Quality Monitoring of Micro-Shrinkage Defects in Thick-Walled Injection Molded Components. Measurement. 2022;201:111733. doi: 10.1016/j.measurement.2022.111733. DOI
Lu X., Khim L.S. A Statistical Experimental Study of the Injection Molding of Optical Lenses. J. Mater. Process. Technol. 2001;113:189–195. doi: 10.1016/S0924-0136(01)00606-9. DOI
Michaeli W., Hopmann C., Walach P. Injection Moulding—Mould Design for High Precision Optical Lenses Without Centering Error; Proceedings of the 11th Euspen International Conference; Como, Italy. 23–25 May 2011.
Lin C.M., Chen W.C., Wu C.H., Hsieh H.T. Gate Design Optimization in the Injection Molding of the Optical Lens. Rapid Commun. Optoelectron. Adv. Mater. 2013;7:580–584.
Vanek J., Stanek M., Ovsik M., Chalupa V. Injection Molding of Polycarbonate Thick-Walled Parts Using a Tool with Variously Designed Gate Inserts. Mater. Tehnol. 2023;57:299–305. doi: 10.17222/mit.2022.692. DOI
Hanzlik J., Vanek J., Pata V., Senkerik V., Polaskova M., Kruzelak J., Bednarik M. The Impact of Surface Roughness on Conformal Cooling Channels for Injection Molding. Materials. 2024;17:2477. doi: 10.3390/ma17112477. PubMed DOI PMC
Vanek J., Ovsik M., Stanek M., Hanzlik J., Pata V. Study of Injection Molding Process to Improve Geometrical Quality of Thick-Walled Polycarbonate Optical Lenses by Reducing Sink Marks. Polymers. 2024;16:2318. doi: 10.3390/polym16162318. PubMed DOI PMC
Zhu T., Liu Y., Yu T., Jin Y., Zhao D. Experimental Study of Injection Molding Replicability for the Micro Embossment of the Ultrasonic Vibrator. Polymers. 2022;14:4798. doi: 10.3390/polym14224798. PubMed DOI PMC
Kuang T., Wang J., Liu H., Yuan Z. Effects of Processing Method and Parameters on the Wall Thickness of Gas-Projectile-Assisted Injection Molding Pipes. Polymers. 2023;15:1985. doi: 10.3390/polym15091985. PubMed DOI PMC