The Impact of Surface Roughness on Conformal Cooling Channels for Injection Molding
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2024/003
Internal Grant Agency of Tomas Bata University in Zlin
PubMed
38893741
PubMed Central
PMC11173280
DOI
10.3390/ma17112477
PII: ma17112477
Knihovny.cz E-zdroje
- Klíčová slova
- ADAM, DMLS, additive manufacturing, conformal cooling channels, injection molding, regression, surface roughness,
- Publikační typ
- časopisecké články MeSH
Injection molding technology is widely utilized across various industries for its ability to fabricate complex-shaped components with exceptional dimensional accuracy. However, challenges related to injection quality often arise, necessitating innovative approaches for improvement. This study investigates the influence of surface roughness on the efficiency of conformal cooling channels produced using additive manufacturing technologies, specifically Direct Metal Laser Sintering (DMLS) and Atomic Diffusion Additive Manufacturing (ADAM). Through a combination of experimental measurements, including surface roughness analysis, scanning electron microscopy, and cooling system flow analysis, this study elucidates the impact of surface roughness on coolant flow dynamics and pressure distribution within the cooling channels. The results reveal significant differences in surface roughness between DMLS and ADAM technologies, with corresponding effects on coolant flow behavior. Following that fact, this study shows that when cooling channels' surface roughness is lowered up to 90%, the reduction in coolant media pressure is lowered by 0.033 MPa. Regression models are developed to quantitatively describe the relationship between surface roughness and key parameters, such as coolant pressure, Reynolds number, and flow velocity. Practical implications for the optimization of injection molding cooling systems are discussed, highlighting the importance of informed decision making in technology selection and post-processing techniques. Overall, this research contributes to a deeper understanding of the role of surface roughness in injection molding processes and provides valuable insights for enhancing cooling system efficiency and product quality.
Zobrazit více v PubMed
Venkatesh G., Kumar Y.R., Raghavendra G. Comparison of Straight Line to Conformal Cooling Channel in Injection Molding. Mater. Today Proc. 2017;4:1167–1173. doi: 10.1016/j.matpr.2017.01.133. DOI
Deepika S.S., Patil B.T., Shaikh V.A. Plastic Injection Molded Door Handle Cooling Time Reduction Investigation Using Conformal Cooling Channels. Mater. Today Proc. 2020;27:519–523. doi: 10.1016/j.matpr.2019.11.316. DOI
Jahan S.A., El-Mounayri H. Optimal Conformal Cooling Channels In 3D Printed Dies for Plastic Injection Molding. Procedia Manuf. 2016;5:888–900. doi: 10.1016/j.promfg.2016.08.076. DOI
Dimla E., Rull-Trinidad J., Garcia-Granada A.A., Reyes G. Thermal Comparison of Conventional and Conformal Cooling Channel Designs For A Non-Constant Thickness Screw Cap. J. Korean Soc. Precis. Eng. 2018;35:95–101. doi: 10.7736/KSPE.2018.35.1.95. DOI
Park H.-S., Dang X.-P., Nguyen D.-S., Kumar S. Design of Advanced Injection Mold to Increase Cooling Efficiency. Int. J. Precis. Eng. Manuf.-Green Technol. 2020;7:319–328. doi: 10.1007/s40684-019-00041-4. DOI
Shen S., Kanbur B.B., Zhou Y., Duan F. Thermal and Mechanical Analysis for Conformal Cooling Channel in Plastic Injection Molding. Mater. Today Proc. 2020;28:396–401. doi: 10.1016/j.matpr.2019.10.020. DOI
Chung C.-Y. Integrated Optimum Layout of Conformal Cooling Channels and Optimal Injection Molding Process Parameters for Optical Lenses. Appl. Sci. 2019;9:4341. doi: 10.3390/app9204341. DOI
Park H.-S., Dang X.-P. Development of A Smart Plastic Injection Mold with Conformal Cooling Channels. Procedia Manuf. 2017;10:48–59. doi: 10.1016/j.promfg.2017.07.020. DOI
Torres-Alba A., Mercado-Colmenero J.M., Caballero-Garcia J.d.D., Martin-Doñate C. Application of New Triple Hook-Shaped Conformal Cooling Channels for Cores and Sliders in Injection Molding to Reduce Residual Stress and Warping in Complex Plastic Optical Parts. Polymers. 2021;13:2944. doi: 10.3390/polym13172944. PubMed DOI PMC
Goldsberry C. Milacron’s DME Partners with Linear AMS to Develop 3D-Printed Conformal Cooling Technology. Plastics Today; Santa Monica, CA, USA: 2017.
Spina R., Walach P., Schild J., Hopmann C. Analysis of Lens Manufacturing with Injection Molding. Int. J. Precis. Eng. Manuf. 2012;13:2087–2095. doi: 10.1007/s12541-012-0276-z. DOI
Bensingh R.J., Boopathy S.R., Jebaraj C. Minimization of Variation in Volumetric Shrinkage and Deflection on Injection Molding of Bi-Aspheric Lens Using Numerical Simulation. J. Mech. Sci. Technol. 2016;30:5143–5152. doi: 10.1007/s12206-016-1032-6. DOI
Huang M.-S., Chen J.-Y., Xiao Y.-Q. Quality Monitoring of Micro-Shrinkage Defects in Thick-Walled Injection Molded Components. Measurement. 2022;201:111733. doi: 10.1016/j.measurement.2022.111733. DOI
Wang Y., Lee C. Design and Optimization of Conformal Cooling Channels for Increasing Cooling Efficiency In Injection Molding. Appl. Sci. 2023;13:7437. doi: 10.3390/app13137437. DOI
Vanek J., Stanek M., Martin Ovsik M., Chalupa V. Injection Molding of Polycarbonate Thick-Walled Parts Using a Tool with Variously Designed Gate Inserts. Mater. Tehnol. 2023;57:299–305. doi: 10.17222/mit.2022.692. DOI
Kuo C.-C., Jiang Z.-F., Yang X.-Y., Chu S.-X., Wu J.-Q. Characterization of A Direct Metal Printed Injection Mold with Different Conformal Cooling Channels. Int. J. Adv. Manuf. Technol. 2020;107:1223–1238. doi: 10.1007/s00170-020-05114-2. DOI
Simiyu L.W., Mutua J.M., Muiruri P.I., Ikua B.W. Optimization of Polygonal Cross-Sectioned Conformal Cooling Channels in Injection Molding. Int. J. Interact. Des. Manuf. (IJIDeM) 2023;18:1593–1609. doi: 10.1007/s12008-023-01226-7. DOI
Jahan S., El-Mounayri H. A Thermomechanical Analysis of Conformal Cooling Channels in 3D Printed Plastic Injection Molds. Appl. Sci. 2018;8:2567. doi: 10.3390/app8122567. DOI
Hensley C., Sisco K., Beauchamp S., Godfrey A., Rezayat H., McFalls T., Galicki D., List F., Carver K., Stover C., et al. Qualification Pathways for Additively Manufactured Components for Nuclear Applications. J. Nucl. Mater. 2021;548:152846. doi: 10.1016/j.jnucmat.2021.152846. DOI
Sun C., Wang Y., McMurtrey M.D., Jerred N.D., Liou F., Li J. Additive Manufacturing for Energy: A Review. Appl. Energy. 2021;282:116041. doi: 10.1016/j.apenergy.2020.116041. DOI
Khairallah S.A., Anderson A.T., Rubenchik A., King W.E. Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter and Denudation Zones. Acta Mater. 2016;108:36–45. doi: 10.1016/j.actamat.2016.02.014. DOI
Brennan M.C., Keist J.S., Palmer T.A. Defects in Metal Additive Manufacturing Processes. J. Mater. Eng. Perform. 2021;30:4808–4818. doi: 10.1007/s11665-021-05919-6. DOI
Tammas-Williams S., Withers P.J., Todd I., Prangnell P.B. The Influence of Porosity on Fatigue Crack Initiation in Addi-tively Manufactured Titanium Components. Sci. Rep. 2017;7:7308. doi: 10.1038/s41598-017-06504-5. PubMed DOI PMC
Sangid M.D., Ravi P., Prithivirajan V., Miller N.A., Kenesei P., Park J.-S. ICME Approach to Determining Critical Pore Size of IN718 Produced by Selective Laser Melting. JOM. 2019;72:465–474. doi: 10.1007/s11837-019-03910-0. DOI
Scott S., Chen W.-Y., Heifetz A. Multi-Task Learning of Scanning Electron Microscopy and Synthetic Thermal Tomography Images for Detection of Defects in Additively Manufactured Metals. Sensors. 2023;23:8462. doi: 10.3390/s23208462. PubMed DOI PMC
Galati M., Minetola P. Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (Adam) Process for Metal Parts. Materials. 2019;12:4122. doi: 10.3390/ma12244122. PubMed DOI PMC
Phani Babu V.V., GB V.K. A Review On 3D Printing Process on Metals and Their Surface Roughness and Dimensional Accuracy. Mater. Today Proc. 2022;64:523–530. doi: 10.1016/j.matpr.2022.05.018. DOI
Abbès B., Abbès F., Abdessalam H., Upganlawar A. Finite Element Cooling Simulations of Conformal Cooling Hybrid Injection Molding Tools Manufactured by Selective Laser Melting. Int. J. Adv. Manuf. Technol. 2019;103:2515–2522. doi: 10.1007/s00170-019-03721-2. DOI
Han S., Salvatore F., Rech J., Bajolet J., Courbon J. Effect of Abrasive Flow Machining (Afm) Finish of Selective Laser Melting (Slm) Internal Channels on Fatigue Performance. J. Manuf. Process. 2020;59:248–257. doi: 10.1016/j.jmapro.2020.09.065. DOI
Günther J., Leuders S., Koppa P., Tröster T., Henkel S., Biermann H., Niendorf T. On the Effect of Internal Channels and Surface Roughness on the High-Cycle Fatigue Performance of Ti-6Al-4V Processed by Slm. Mater. Des. 2018;143:1–11. doi: 10.1016/j.matdes.2018.01.042. DOI
Dumas M., Cabanettes F., Kaminski R., Valiorgue F., Picot E., Lefebvre F., Grosjean C., Rech J. Influence of the Finish Cutting Operations on the Fatigue Performance of Ti-6Al-4V Parts Produced by Selective Laser Melting. Procedia CIRP. 2018;71:429–434. doi: 10.1016/j.procir.2018.05.054. DOI
Han S., Salvatore F., Rech J., Bajolet J. Abrasive Flow Machining (Afm) Finishing of Conformal Cooling Channels Created by Selective Laser Melting (Slm) Precis. Eng. 2020;64:20–33. doi: 10.1016/j.precisioneng.2020.03.006. DOI
Chawla G., Mittal V.K., Mittal S. Design and Development of Fixture and Modification Of Existing Afm Setup to Magnetic Abrasive Flow Machining (Mafm) Process Setup. J. Phys. Conf. Ser. 2019;1240:012009. doi: 10.1088/1742-6596/1240/1/012009. DOI
François M., Han S., Segonds F., Dupuy C., Rivette M., Turpault S., Mimouna M., Salvatore F., Rech J., Peyre P. Electromagnetic Performance of Ti6Al4V and Alsi7Mg0.6 Waveguides with Laser Beam Melting (Lbm) Produced and Abrasive Flow Machining (Afm) Finished Internal Surfaces. J. Electromagn. Waves Appl. 2021;35:2510–2526. doi: 10.1080/09205071.2021.1954554. DOI
Bílek O., Pata V., Kubišová M., Řezníček M. Mathematical Methods of Surface Roughness Evaluation of Areas with a Distinctive Inclination. Manuf. Technol. 2018;18:363–368. doi: 10.21062/ujep/106.2018/a/1213-2489/MT/18/3/363. DOI
Meloun M., Militky J. A Compendium of Statistical Data Processing. Karolinum; Prague, Czech Republic: 2013. p. 984.