Influence of Injection Molding Parameters and Distance from Gate on the Mechanical Properties of Injection-Molded Polypropylene
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40284277
PubMed Central
PMC12030404
DOI
10.3390/polym17081012
PII: polym17081012
Knihovny.cz E-zdroje
- Klíčová slova
- indentation hardness, injection molding, injection pressure, mechanical properties, mold temperature, polypropylene,
- Publikační typ
- časopisecké články MeSH
This publication deals with the study of the mechanical properties of injection-molded polypropylene parts depending on the process parameters and the distance from the gate location in which the mechanical properties were investigated. Due to the fact that the mechanical properties of injection-molded parts are not the same at all locations, this research was designed to investigate the inhomogeneity of the properties of injection-molded parts along the length of the product. The inhomogeneity is affected by various influences, including distance from the sprue mouth, melt and mold temperature, injection pressure, crystal structure, and others. It was demonstrated that mechanical properties are not uniform over the entire injected product. Contrary to popular belief, mechanical properties can vary along the flow length due to uneven cooling and process parameters. Injection pressure and mold temperature significantly affect the mechanical properties of the injection-molded parts. The limiting injection pressure is 40 MPa and the mold temperature is 40 °C. The difference in individual spots in an injected article was up to 37%. Changes in mechanical properties are closely related to changes in morphology (crystallinity measured by DSC) caused by different injection molding process parameters. As is evident from the aforementioned results, the possible benefits of this work for injection molding of polymer products are apparent. Suitably chosen gate location, surface of the cavity, and process parameters can ensure targeted improvement of mechanical properties in stressed parts of a product.
Zobrazit více v PubMed
Chu J., Kamal M.R., Derdouri S., Hrymak A. Characterization of the microinjection molding process. Polym. Eng. Sci. 2010;50:1214–1225. doi: 10.1002/pen.21632. DOI
Liu Z., Chen Y., Ding W., Zhang C. Filling behavior, morphology evolution and crystallization behavior of microinjection molded poly (lactic acid)/hydroxyapatite nanocomposites. Compos. A Appl. Sci. Manuf. 2015;72:85–95. doi: 10.1016/j.compositesa.2015.02.002. DOI
Wang J.Y., Bai J., Zhang Y.Q., Fang H.G., Wang Z.G. Shearinduced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees. Sci. Rep. 2016;6:26560. PubMed PMC
Schrauwen B.A.G., Von Breemen L.C.A., Spoelstra A.B., Govaert L.E., Peters G.W.M., Meijer H.E.H. Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules. 2004;37:8618–8633. doi: 10.1021/ma048884k. DOI
Giboz J., Copponnex T., Mélé P. Microinjection molding of thermoplastic polymers: Morphological comparison with conventional injection molding. J. Micromech. Microeng. 2009;19:025023. doi: 10.1088/0960-1317/19/2/025023. DOI
Isayev A.I., Chan T.W., Shimojo K., Gmerek M. Injection molding of semicrystalline polymers. I. Material characterization. J. Appl. Polym. Sci. 1995;55:807–819. doi: 10.1002/app.1995.070550518. DOI
Isayev A.I., Chan T.W., Gmerek M., Shimojo K. Injection molding of semicrystalline polymers. II. Modeling and experiments. J. Appl. Polym. Sci. 1995;55:821–838. doi: 10.1002/app.1995.070550519. DOI
Persson J., Zhou J., Ståhl J. Characterizing the mechanical properties of skin-core structure in polymer molding process by nanoindentation. Mater. Sci. 2014:1–9.
Baerwinkel S., Seidel A., Hobeika S., Hufen R., Moerl M., Altstaedt V. Morphology Formation in PC/ABS Blends during Thermal Processing and the Effect of the Viscosity Ratio of Blend Partners. Materials. 2016;9:659. doi: 10.3390/ma9080659. PubMed DOI PMC
Bociaga E., Kula M., Kwiatkowski K. Analysis of structural changes in injection-molded parts due to cyclic loading. Adv. Polym. Technol. 2018;37:2134–2141. doi: 10.1002/adv.21872. DOI
Wang L., Zhang Y., Jiang L., Yang X., Zhou Y., Wang X., Li Q., Shen C., Turng L.S. Effect of injection speed on the mechanical properties of isotactic polypropylene micro injection molded parts based on a nanoindentation test. J. Appl. Polym. Sci. 2018;136:47329. doi: 10.1002/app.47329. DOI
Głogowska K., Sikora J., Dulebová L. The effect of multiple processing of polypropylene on selected properties of injection moulded parts. Adv. Sci. Technol. Res. J. 2016;10:65–72. doi: 10.12913/22998624/65139. DOI
Sykutera D., Wajer Ł., Kościuszko A., Szewczykowski P.P., Czyżewski P. The influence of processing conditions on the polypropylene apparent viscosity measured directly in the mold cavity. Macromol. Symp. 2018;378:1700056. doi: 10.1002/masy.201700056. DOI
Lafranche E., Krawczak P., Ciolczyk J.P., Maugey J. Injection moulding of long glass fiber reinforced polyamide 66: Processing conditions/microstructure/flexural properties relationship. Adv. Polym. Technol. 2005;24:114–131. doi: 10.1002/adv.20035. DOI
Moritzer E., Heiderich G., Hirsch A. Fiber length reduction during injection molding. AIP Conf. Proc. 2019;2055:070001.
Ramzy A.Y., El-Sabbagh A.M., Steuernagel L., Ziegmann G., Meiners D. Rheology of natural fibers thermoplastic compounds: Flow length and fiber distribution. J. Appl. Polym. Sci. 2013;131:39861. doi: 10.1002/app.39861. DOI
Liparoti S., Speranza V., De Meo A., De Santis F., Pantani R. Prediction of the maximum flow length of a thin injection molded part. J. Polym. Eng. 2020;40:783–795. doi: 10.1515/polyeng-2019-0292. DOI
Moneke M., Seeger P., Stengler R. Capability of scratch testing—A view on the influence of injection molding, water absorption, and blend systems of polymeric materials. Macromol. Symp. 2019;384:1800176. doi: 10.1002/masy.201800176. DOI
Özçelik B., Ozbay A., Demırbaş E. Influence of injection parameters and mold materials on mechanical properties of abs in plastic injection molding. Int. Commun. Heat Mass Transf. 2010;37:1359–1365. doi: 10.1016/j.icheatmasstransfer.2010.07.001. DOI
Chen J., Hung P., Huang M. Determination of process parameters based on cavity pressure characteristics to enhance quality uniformity in injection molding. Int. J. Heat Mass Transf. 2021;180:121788. doi: 10.1016/j.ijheatmasstransfer.2021.121788. DOI
Vaněk J., Ovsík M., Staněk M., Hanzlik J., Pata V. Study of injection molding process to improve geometrical quality of thick-walled polycarbonate optical lenses by reducing sink marks. Polymers. 2024;16:2318. doi: 10.3390/polym16162318. PubMed DOI PMC
Huang M., Ke K., Liu C. Cavity pressure-based holding pressure adjustment for enhancing the consistency of injection molding quality. J. Appl. Polym. Sci. 2020;138:50357. doi: 10.1002/app.50357. DOI
Hanzlik J., Vaněk J., Pata V., Šenkeřík V., Polášková M., Kruželák J. The impact of surface roughness on conformal cooling channels for injection molding. Materials. 2024;17:2477. doi: 10.3390/ma17112477. PubMed DOI PMC
Low J., IBA D., Yamazaki D., Seo Y. Shape deviation network of an injection-molded gear: Visualization of the effect of gate position on helix deviation. Appl. Sci. 2024;14:2013. doi: 10.3390/app14052013. DOI
Bociąga E., Kaptacz S., Duda P., Rudawská A. The influence of the type of polypropylene and the length of the flow path on the structure and properties of injection molded parts with the weld lines. Polym. Eng. Sci. 2019;59:1710–1718. doi: 10.1002/pen.25170. DOI
Nabiałek J. Simulation studies of the impact of the gate location on the deformation of the pa 6 gf30 injection molded part. Arch. Metall. Mater. 2024;69:699–703. doi: 10.24425/amm.2024.149799. DOI
Li X., Liu F., Zhang C., Gao R., Xu X., Fuet J. The influence of mold design and process parameters on dimensional shrinkage of perfluoroalkoxy alkane injection molding parts. J. Appl. Polym. Sci. 2024;141:e55757. doi: 10.1002/app.55757. DOI
Miranda D., Rauber W., Vaz M., Zdanski P. A methodology for determination the inlet velocity in injection molding simulations. Polímeros. 2024;34:e20240011. doi: 10.1590/0104-1428.20230099. DOI
Chen J., Zhuang J., Huang M. Enhancing the quality stability of injection molded parts by adjusting v/p switchover point and holding pressure. Polymer. 2021;213:123332. doi: 10.1016/j.polymer.2020.123332. DOI
Huang P., Peng H., Hwang S., Huang C. The low breaking fiber mechanism and its effect on the behavior of the melt flow of injection molded ultra-long glass fiber reinforced polypropylene composites. Polymers. 2021;13:2492. doi: 10.3390/polym13152492. PubMed DOI PMC
International Organization for Standardization; Geneva, Switzerland: 2015. Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method.
International Organization for Standardization; Geneva, Switzerland: 2015. Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 2: Verification and Calibration of Testing Machines.
International Organization for Standardization; Geneva, Switzerland: 2015. Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 3: Calibration of Reference Blocks.
International Organization for Standardization; Geneva, Switzerland: 2016. Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 4: Test Method for Metallic and Non-Metallic Coatings.
Lanyi F.J., Wenzke N., Kaschta J., Schubert D.W. On the Determination of the Enthalpy of Fusion of α-Crystalline Isotactic Polypropylene Using Differential Scanning Calorimetry, X-Ray Diffraction, and Fourier-Transform Infrared Spectroscopy: An Old Story Revisited. Adv. Eng. Mater. 2020;22:1900796. doi: 10.1002/adem.201900796. DOI
Björn L., Mazza R., Andreasson E., Linell F., Lutz-Bueno V., Guizar-Sicairoset M. Scanning small-angle x-ray scattering of injection-molded polymers: Anisotropic structure and mechanical properties of low-density polyethylene. ACS Appl. Polym. Mater. 2023;5:6429–6440. doi: 10.1021/acsapm.3c01007. DOI
Sun H., Zhao Z., Yang Q., Yang L., Wu P. The morphological evolution and β-crystal distribution of isotactic polypropylene with the assistance of a long chain branched structure at micro-injection molding condition. J. Polym. Res. 2017;24:75. doi: 10.1007/s10965-017-1234-3. DOI