Fullerenol C60(OH)40 Nanoparticles and Ectoine Protect Human Nasal Epithelial Cells Against the Cytokine Storm After Addition of the Full-Length Spike Protein from SARS-CoV-2
Language English Country New Zealand Media electronic-ecollection
Document type Journal Article
PubMed
39600409
PubMed Central
PMC11588572
DOI
10.2147/ijn.s482652
PII: 482652
Knihovny.cz E-resources
- Keywords
- ACE2, cytokine storm, ectoine, nasal epithelium, polyhydroxylated fullerene, spike,
- MeSH
- Amino Acids, Diamino MeSH
- Angiotensin-Converting Enzyme 2 metabolism MeSH
- COVID-19 * prevention & control MeSH
- Cytokines metabolism MeSH
- Epithelial Cells * drug effects virology MeSH
- Fullerenes * pharmacology chemistry MeSH
- Spike Glycoprotein, Coronavirus * metabolism MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Nanoparticles * chemistry MeSH
- Nasal Mucosa drug effects cytology MeSH
- Reactive Oxygen Species metabolism MeSH
- SARS-CoV-2 * drug effects MeSH
- Cytokine Release Syndrome * prevention & control MeSH
- Cell Survival * drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amino Acids, Diamino MeSH
- Angiotensin-Converting Enzyme 2 MeSH
- Cytokines MeSH
- ectoine MeSH Browser
- fullerenol MeSH Browser
- Fullerenes * MeSH
- Spike Glycoprotein, Coronavirus * MeSH
- Reactive Oxygen Species MeSH
- spike protein, SARS-CoV-2 MeSH Browser
INTRODUCTION AND OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the nasal cavity, penetrates the nasal epithelial cells through the interaction of its spike protein with the host cell receptor angiotensin-converting enzyme 2 (ACE2) and then triggers a cytokine storm. We aimed to assess the biocompatibility of fullerenol nanoparticles C60(OH)40 and ectoine, and to document their effect on the protection of primary human nasal epithelial cells (HNEpCs) against the effects of interaction with the fragment of virus - spike protein. This preliminary research is the first step towards the construction of a intranasal medical device with a protective, mechanical function against SARS-CoV-2 similar to that of personal protective equipment (eg masks). METHODS: We used HNEpCs and the full-length spike protein from SARS-CoV-2 to mimic the first stage of virus infection. We assessed cell viability with the XTT assay and a spectrophotometer. May-Grünwald Giemsa and periodic acid-Schiff staining served to evaluate HNEpC morphology. We assessed reactive oxygen species (ROS) production by using 2',7'-dichlorofluorescin diacetate and commercial kit. Finally, we employed reverse transcription polymerase chain reaction, Western blotting and confocal microscopy to determine the expression of angiotensin-converting enzyme 2 (ACE2) and inflammatory cytokines. RESULTS: There was normal morphology and unchanged viability of HNEpCs after incubation with 10 mg/L C60(OH)40, 0.2% ectoine or their composite for 24 h. The spike protein exerted cytotoxicity via ROS production. Preincubation with the composite protected HNEpCs against the interaction between the spike protein and the host membrane and prevented the production of key cytokines characteristic of severe coronavirus disease 2019, including interleukin 6 and 8, monocyte chemotactic protein 1 and 2, tissue inhibitor of metalloproteinases 2 and macrophage colony-stimulating factor. CONCLUSION: In the future, the combination of fullerenol and ectoine may be used to prevent viral infections as an intranasal medical device for people with reduced immunity and damaged mucous membrane.
See more in PubMed
Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40(5):905–919. doi:10.1007/s10096-020-04138-6 PubMed DOI PMC
Heidary M, Kaviar VH, Shirani M, et al. A comprehensive review of the protein subunit vaccines against COVID-19. Front Microbiol. 2022;13:927306. doi:10.3389/fmicb.2022.927306 PubMed DOI PMC
Bałaban J, Wierzbicki M, Zielińska-Górska M, et al. Graphene oxide decreases pro-inflammatory proteins production in skeletal muscle cells exposed to SARS-CoV-2 spike protein. Nanotechnol Sci Appl. 2023;16:1–18. doi:10.2147/NSA.S391761 PubMed DOI PMC
Touisserkani SK, Ayatollahi A. Oral corticosteroid relieves post-COVID-19 anosmia in a 35-year-old patient. Case Rep Otolaryngol. 2020;2020:5892047. doi:10.1155/2020/5892047 PubMed DOI PMC
Parisi GF, Brindisi G, Indolfi C, et al. COVID-19, anosmia, and ageusia in atopic children. Pediat Allerg Immunol. 2022;33:99–101. doi:10.1111/pai.13644 PubMed DOI PMC
Zhu F, Teng Z, Zhou X, et al. H1N1 influenza virus-infected nasal mucosal epithelial progenitor cells promote dendritic cell recruitment and maturation. Front Immunol. 2022;13:879575. doi:10.3389/fimmu.2022.879575 PubMed DOI PMC
Sanli DET, Altundag A, Kandemirli SG, et al. Relationship between disease severity and serum IL-6 levels in COVID-19 anosmia. AmJ Otolaryng. 2021;42(1):102796. doi:10.1016/j.amjoto.2020.102796 PubMed DOI PMC
Doty RL. The mechanisms of smell loss after SARS-CoV-2 infection. Lancet Neurol. 2021;20(9):693–695. doi:10.1016/S1474-4422(21)00202-7 PubMed DOI PMC
Khatiwada S, Subedi A. A mechanistic link between selenium and coronavirus disease 2019 (COVID-19). Curr Nutr Rep. 2021;10:125–136. doi:10.1007/s13668-021-00354-4 PubMed DOI PMC
Abdelsalam YI, Aliev FA, Khamidullin RF, Dengaev AV, Katnov VE, Vakhin AV. Catalytic low-temperature thermolysis of heavy oil in the presence of fullerene c60 nanoparticles in aquatic and N2 medium. Catalysts. 2023;13(2):347. doi:10.3390/catal13020347 DOI
Sayers BC, Germolec DR, Walker NJ, et al. Respiratory toxicity and immunotoxicity evaluations of microparticle and nanoparticle C60 fullerene aggregates in mice and rats following nose-only inhalation for 13 weeks. Nanotoxicology. 2016;10(10):1458–1468. doi:10.1080/17435390.2016.1235737 PubMed DOI PMC
Taylor R. Addition reactions of fullerenes. CR Chim. 2006;9(7–8):982–1000. doi:10.1016/j.crci.2006.01.004 DOI
Chen X, Yang J, Li M, et al. Fullerenol protects cornea from ultraviolet B exposure. Redox Biol. 2022;54:102360. doi:10.1016/j.redox.2022.102360 PubMed DOI PMC
Injac R, Prijatelj M, Strukelj B. Fullerenol nanoparticles: toxicity and antioxidant activity. Methods Mol Biol. 2013;1028:75–100. doi:10.1007/978-1-62703-475-3_5 PubMed DOI
Xu JY, Han K, Li SX, et al. Pulmonary responses to polyhydroxylated fullerenols, C60(OH)x. J Appl Toxicol. 2009;29(7):578–584. doi:10.1002/jat.1442 PubMed DOI
Jiao X, Wang Z, Li Y, et al. Fullerenol inhibits tendinopathy by alleviating inflammation. Front Bioeng Biotechnol. 2023;11:1171360. doi:10.3389/fbioe.2023.1171360 PubMed DOI PMC
Dao VA, Overhagen S, Bilstein A, Kolot C, Sonnemann U, Mösges R. Ectoine lozenges in the treatment of acute viral pharyngitis: a prospective, active-controlled clinical study. Eur Arch Otorhinolaryngol. 2019;276:775–783. doi:10.1007/s00405-019-05324-9 PubMed DOI PMC
Kocherovets VI. Ectoine — a microbial metabolite with unique biotherapeutic properties. Pediatric Consilium Medicum. 2019;1:108–115.
Hui H, Ma W, Cui J, et al. Periodic acid‑Schiff staining method for function detection of liver cells is affected by 2% horse serum in induction medium. Mol Med Rep. 2017;16(6):8062–8068. doi:10.3892/mmr.2017.7587 PubMed DOI PMC
Tanne C, Golovina EA, Hoekstra FA, Meffert A, Galinski EA. Glass-forming property of hydroxyectoine is the cause of its superior function as a desiccation protectant. Front Microbiol. 2014;5:150. doi:10.3389/fmicb.2014.00150 PubMed DOI PMC
Zhang RG, Liu XJ, Guo YL, Chen CL. SARS-CoV-2 spike protein receptor binding domain promotes IL-6 and IL-8 release via ATP/P2Y2 and ERK1/2 signaling pathways in human bronchial epithelia. Mol Immunol. 2024;167:53–61. doi:10.1016/j.molimm.2024.02.005 PubMed DOI
Gasparello J, d’Aversa E, Breveglieri G, Borgatti M, Finotti A, Gambari R. In vitro induction of interleukin-8 by SARS-CoV-2 Spike protein is inhibited in bronchial epithelial IB3-1 cells by a miR-93-5p agomiR. Int Immunopharmacol. 2021;101:108201. doi:10.1016/j.intimp.2021.108201 PubMed DOI PMC
Sosnowska-ławnicka M, Kutwin M, Sawosz-Chwalibóg E, et al. Composition with barrier and virucidal properties against coronaviruses, especially SARS-CoV-2, method of its preparation and use. Poland patent P.448505; 2024.
Schramm F, Lange M, Hoppmann P, Heutelbeck A. Cytotoxicity of carbon nanohorns in different human cells of the respiratory system. J Toxicol Environ Heal A. 2016;79(22–23):1085–1093. doi:10.1080/15287394.2016.1219594 PubMed DOI
Sosnowska M, Kutwin M, Koczoń P, Chwalibog A, Sawosz E. Polyhydroxylated fullerene C60(OH)40 nanofilms promote the mesenchymal–epithelial transition of human liver cancer cells via the TGF-β1/Smad pathway. J Inflamm Res. 2023;16:3739–3761. doi:10.2147/JIR.S415378 PubMed DOI PMC
Ershova ES, Sergeeva VA, Chausheva AI, et al. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts. Mutat Res Genet Toxicol Environ Mutagen. 2016;805:46–57. doi:10.1016/j.mrgentox.2016.05.004 PubMed DOI
Wang F, Jin C, Liang H, Tang Y, Zhang H, Yang Y. Effects of fullerene C60 nanoparticles on A549 cells. Environ Toxicol Phar. 2014;37(2):656–661. doi:10.1016/j.etap.2014.01.015 PubMed DOI
Chen YW, Hwang KC, Yen CC, Lai YL. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol. 2004;287(1):R21–R26. doi:10.1152/ajpregu.00310.2003 PubMed DOI
Su Y, Xu JY, Shen P, et al. Cellular uptake and cytotoxic evaluation of fullerenol in different cell lines. Toxicology. 2010;269(2–3):155–159. doi:10.1016/j.tox.2009.11.015 PubMed DOI
Çavaş T, Çinkılıç N, Vatan Ö, Yılmaz D. Effects of fullerenol nanoparticles on acetamiprid induced cytotoxicity and genotoxicity in cultured human lung fibroblasts. Pestic Biochem Phys. 2014;114:1–7. doi:10.1016/j.pestbp.2014.07.008 PubMed DOI
Rieckmann T, Gatzemeier F, Christiansen S, Rothkamm K, Münscher A. The inflammation-reducing compatible solute ectoine does not impair the cytotoxic effect of ionizing radiation on head and neck cancer cells. Sci Rep. 2019;9(1):6594. doi:10.1038/s41598-019-43040-w PubMed DOI PMC
Yao CL, Lin YM, Mohamed MS, Chen JH. Inhibitory effect of ectoine on melanogenesis in B16-F0 and A2058 melanoma cell lines. Biochem Eng J. 2013;78:163–169. doi:10.1016/j.bej.2013.01.005 DOI
Fatollahi P, Ghasemi M, Yazdian F, Sadeghi A. Ectoine production in bioreactor by Halomonas elongata DSM2581: using MWCNT and Fe-nanoparticle. Biotechnol Progr. 2021;37(1):e3073. doi:10.1002/btpr.3073 PubMed DOI
Autengruber A, Sydlik U, Kroker M, et al. Signalling-dependent adverse health effects of carbon nanoparticles are prevented by the compatible solute mannosylglycerate (firoin) in vitro and in vivo. PLoS One. 2014;9(11):e111485. doi:10.1371/journal.pone.0111485 PubMed DOI PMC
Barzegar A, Mousavi SJ, Hamidi H, Sadeghi M. 2D-QSAR study of fullerene nanostructure derivatives as potent HIV-1 protease inhibitors. Physica E. 2017;93:324–331. doi:10.1016/j.physe.2017.06.016 DOI
Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci. 2020;11(26):6606–6622. doi:10.1039/D0SC02658A PubMed DOI PMC
Prylutskyy YI, Cherepanov VV, Evstigneev MP, et al. Structural self-organization of C60 and cisplatin in physiological solution. Phys Chem Chem Phys. 2015;17(39):26084–26092. doi:10.1039/C5CP02688A PubMed DOI
Meyer S, Schröter MA, Hahn MB, Solomun T, Sturm H, Kunte HJ. Ectoine can enhance structural changes in DNA in vitro. Sci Rep. 2017;7(1):7170. doi:10.1038/s41598-017-07441-z PubMed DOI PMC
Butowska K, Kozak W, Zdrowowicz M, et al. Cytotoxicity of doxorubicin conjugated with C60 fullerene. Structural and in vitro studies. Struct Chem. 2019;30(6):2327–2338. doi:10.1007/s11224-019-01428-4 DOI
Yang N, Cheng H, Mo Q, Zhou X, Xie M. miR-155-5p downregulation inhibits epithelial-to-mesenchymal transition by targeting SIRT1 in human nasal epithelial cells. Mol Med Rep. 2020;22(5):3695–3704. doi:10.3892/mmr.2020.11468 PubMed DOI PMC
Castro-Ochoa KF, Vargas-Robles H, Chánez-Paredes S, et al. Homoectoine protects against colitis by preventing a claudin switch in epithelial tight junctions. Digest Dis Sci. 2019;64:409–420. doi:10.1007/s10620-018-5309-8 PubMed DOI
Carlson TL, Lock JY, Carrier RL. Engineering the mucus barrier. Annu Rev Biomed Eng. 2018;20:197–220. doi:10.1146/annurev-bioeng-062117-121156 PubMed DOI PMC
Sun B, Wang B, Xu M. Esculetin inhibits histamine-induced expression of inflammatory cytokines and mucin in nasal epithelial cells. Clin Exp Pharmacol Physiol. 2019;46(9):821–827. doi:10.1111/1440-1681.13128 PubMed DOI
Ishinaga H, Kitano M, Toda M, et al. Interleukin-33 induces mucin gene expression and goblet cell hyperplasia in human nasal epithelial cells. Cytokine. 2017;90:60–65. doi:10.1016/j.cyto.2016.10.010 PubMed DOI
Suzuki YJ, Nikolaienko SI, Dibrova VA, et al. SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells. Vasc Pharmacol. 2021;137:106823. doi:10.1016/j.vph.2020.106823 PubMed DOI PMC
Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiol Dis. 2020;146:105131. doi:10.1016/j.nbd.2020.105131 PubMed DOI PMC
Clough E, Inigo J, Chandra D, et al. Mitochondrial dynamics in SARS-COV2 spike protein treated human microglia: implications for neuro-COVID. J Neuroimmune Pharm. 2021;16:770–784. doi:10.1007/s11481-021-10015-6 PubMed DOI PMC
Manfredelli D, Pariano M, Costantini C, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 induces methylglyoxal-derived hydroimidazolone/receptor for advanced glycation end products (MG-H1/RAGE) activation to promote inflammation in human bronchial BEAS-2B cells. Int J Mol Sci. 2023;24(19):14868. doi:10.3390/ijms241914868 PubMed DOI PMC
Keturakis V, Narauskaitė D, Balion Z, et al. The effect of SARS-CoV-2 spike protein RBD-epitope on immunometabolic state and functional performance of cultured primary cardiomyocytes subjected to hypoxia and reoxygenation. Int J Mol Sci. 2023;24(23):16554. doi:10.3390/ijms242316554 PubMed DOI PMC
Perico L, Morigi M, Pezzotta A, et al. SARS-CoV-2 spike protein induces lung endothelial cell dysfunction and thrombo-inflammation depending on the C3a/C3a receptor signalling. Sci Rep. 2023;13(1):11392. doi:10.1038/s41598-023-38382-5 PubMed DOI PMC
Youn JY, Zhang Y, Wu Y, Cannesson M, Cai H. Therapeutic application of estrogen for COVID-19: attenuation of SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in endothelial cells. Redox Biol. 2021;46:102099. doi:10.1016/j.redox.2021.102099 PubMed DOI PMC
Zhang Y, Peng X, Xue M, et al. SARS-COV-2 spike protein promotes RPE cell senescence via the ROS/P53/P21 pathway. Biogerontology. 2023;24(5):813–827. doi:10.1007/s10522-023-10019-0 PubMed DOI PMC
Li F, Li J, Wang PH, et al. SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166260. doi:10.1016/j.bbadis.2021.166260 PubMed DOI PMC
Poeta M, Cioffi V, Tarallo A, et al. Postbiotic preparation of Lacticaseibacillus rhamnosus GG against diarrhea and oxidative stress induced by spike protein of SARS-CoV-2 in human enterocytes. Antioxidants. 2023;12(10):1878. doi:10.3390/antiox12101878 PubMed DOI PMC
Jiang J, Gu X, Song R, et al. Time-dependent oxidative stress and histopathological changes in Cyprinus carpio L. exposed to microcystin-LR. Ecotoxicology. 2011;20:1000–1009. doi:10.1007/s10646-011-0646-9 PubMed DOI
Murphy MP, Bayir H, Belousov V, et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab. 2022;4(6):651–662. doi:10.1038/s42255-022-00591-z PubMed DOI PMC
Poeta M, Cioffi V, Buccigrossi V, et al. SARS-CoV-2 causes secretory diarrhea with an enterotoxin-like mechanism, which is reduced by diosmectite. Heliyon. 2022;8(8):e10246. doi:10.1016/j.heliyon.2022.e10246 PubMed DOI PMC
Zhou Y, Wang M, Li Y, et al. SARS-CoV-2 Spike protein enhances ACE2 expression via facilitating Interferon effects in bronchial epithelium. Immunol Lett. 2021;237:33–41. doi:10.1016/j.imlet.2021.06.008 PubMed DOI PMC
Patra T, Meyer K, Geerling L, et al. SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog. 2020;16(12):e1009128. doi:10.1371/journal.ppat.1009128 PubMed DOI PMC
Eichhorn T, Huber S, Weiss R, et al. Infection with SARS-CoV-2 is associated with elevated levels of IP-10, MCP-1, and IL-13 in sepsis patients. Diagnostics. 2023;13(6):1069. doi:10.3390/diagnostics13061069 PubMed DOI PMC
Wang YC, Tsai CH, Wang YC, et al. SARS-CoV-2 nucleocapsid protein, rather than spike protein, triggers a cytokine storm originating from lung epithelial cells in patients with COVID-19. Infection. 2023;52(3):955–983. doi:10.1007/s15010-023-02142-4 PubMed DOI PMC
Xia B, Shen X, He Y, et al. SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target. Cell Res. 2021;31(8):847–860. doi:10.1038/s41422-021-00519-4 PubMed DOI PMC
Xing Z, Jordana M, Braciak T, Ohtoshi T, Gauldie J. Lipopolysaccharide induces expression of granulocyte/macrophage colony-stimulating factor, interleukin-8, and interleukin-6 in human nasal, but not lung, fibroblasts: evidence for heterogeneity within the respiratory tract. Am J Resp Cell Mol. 1993;9:255–263. doi:10.1165/ajrcmb/9.3.255 PubMed DOI
Wang W, Ye L, Ye L, et al. Up-regulation of IL-6 and TNF-α induced by SARS-coronavirus spike protein in murine macrophages via NF-κB pathway. Virus Res. 2007;128(1–2):1–8. doi:10.1016/j.virusres.2007.02.007 PubMed DOI PMC
Duarte C, Akkaoui J, Ho A, Garcia C, Yamada C, Movila A. Age-dependent effects of the recombinant spike protein/SARS-CoV-2 on the M–CSF–and IL-34-differentiated macrophages in vitro. Biochem Bioph Res Commun. 2021;546:97–102. doi:10.1016/j.bbrc.2021.01.104 PubMed DOI PMC
Petrone V, Fanelli M, Giudice M, et al. Expression profile of HERVs and inflammatory mediators detected in nasal mucosa as a predictive biomarker of COVID-19 severity. Front Microbiol. 2023;14:1155624. doi:10.3389/fmicb.2023.1155624 PubMed DOI PMC
Brusa S, Terracciano D, Bruzzese D, et al. Circulating tissue inhibitor of metalloproteinases 1 (TIMP-1) at COVID-19 onset predicts severity status. Front Med. 2022;9:1034288. doi:10.3389/fmed.2022.1034288 PubMed DOI PMC
Falynskova IN, Ionova KS, Dedova AV, Leneva IA, Makhmudova NR, Rasnetsov LD. Antiviral activity of fullerene-(tris-aminocaproic acid) hydrate against respiratory syncytial virus in HEp-2 cell culture. Pharm Chem J. 2014;48:85–88. doi:10.1007/s11094-014-1053-3 DOI
Katagishi D, Yasuda D, Takahashi K, Nakamura S, Mashino T, Ohe T. Fullerene derivatives as inhibitors of the SARS-CoV-2 main protease. Bioorg Med Chem Lett. 2023;80:129121. doi:10.1016/j.bmcl.2022.129121 PubMed DOI PMC
Page TM, Nie C, Neander L, et al. Functionalized fullerene for inhibition of SARS-CoV-2 variants. Small. 2023;19(15):2206154. doi:10.1002/smll.202206154 PubMed DOI
Unal MA, Bayrakdar F, Nazir H, et al. Graphene oxide nanosheets interact and interfere with SARS-CoV-2 surface proteins and cell receptors to inhibit infectivity. Small. 2021;17(25):2101483. doi:10.1002/smll.202101483 PubMed DOI PMC
Salmannejad F, Nafissi-Varcheh N. Ectoine and hydroxyectoine inhibit thermal-induced aggregation and increase thermostability of recombinant human interferon Alfa2b. Eur J Pharm Sci. 2017;97:200–207. doi:10.1016/j.ejps.2016.11.014 PubMed DOI
Takabayashi T, Yoshida K, Imoto Y, Schleimer RP, Fujieda S. Regulation of the expression of SARS-CoV-2 receptor angiotensin-converting enzyme 2 in nasal mucosa. Am J Rhinol Allergy. 2022;36(1):115–122. doi:10.1177/19458924211027798 PubMed DOI PMC
Chen M, Shen W, Rowan NR, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J. 2020;56(3):2001948. doi:10.1183/13993003.01948-2020 PubMed DOI PMC
Liu Q, Jin L, Shen FH, Balian G, Li XJ. Fullerol nanoparticles suppress inflammatory response and adipogenesis of vertebral bone marrow stromal cells—a potential novel treatment for intervertebral disc degeneration. Spine J. 2013;13(11):1571–1580. doi:10.1016/j.spinee.2013.04.004 PubMed DOI PMC
Santa Cruz A, Mendes-Frias A, Oliveira AI, et al. Interleukin-6 is a biomarker for the development of fatal severe acute respiratory syndrome coronavirus 2 pneumonia. Front Immunol. 2021;12:613422. doi:10.3389/fimmu.2021.613422 PubMed DOI PMC
Quartuccio L, Fabris M, Sonaglia A, et al. Interleukin 6, soluble interleukin 2 receptor alpha (CD25), monocyte colony-stimulating factor, and hepatocyte growth factor linked with systemic hyperinflammation, innate immunity hyperactivation, and organ damage in COVID-19 pneumonia. Cytokine. 2021;140:155438. doi:10.1016/j.cyto.2021.155438 PubMed DOI PMC
Xiao Y, Qian J, Deng X, et al. Macrophages regulate healing-associated fibroblasts in diabetic wound. Mol Biol Rep. 2024;51(1):203. doi:10.1007/s11033-023-09100-1 PubMed DOI PMC
Mukherjee A, Khuda-Bukhsh AR. Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall-cell lung-cancer cell line, A549. J Pharmacopuncture. 2015;18(1):19. doi:10.3831/KPI.2015.18.002 PubMed DOI PMC
Bequignon E, Mangin D, Bécaud J, et al. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. J Transl Med. 2020;18:1–12. doi:10.1186/s12967-020-02309-9 PubMed DOI PMC
Mori S, Pawankar R, Ozu C, Nonaka M, Yagi T, Okubo K. Expression and roles of MMP-2, MMP-9, MMP-13, TIMP-1, and TIMP-2 in allergic nasal mucosa. Allergy Asthma Immunol Res. 2012;4(4):231. doi:10.4168/aair.2012.4.4.231 PubMed DOI PMC
Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294. doi:10.1155/2012/256294 PubMed DOI PMC
Cavalcante GL, Bonifacio LP, Sanches‐lopes JM, et al. Matrix metalloproteinases are associated with severity of disease among COVID‐19 patients: a possible pharmacological target. Basic Clin Pharmacol. 2024;134(5):727–736. doi:10.1111/bcpt.14001 PubMed DOI
Fatima SH, Viquar U, Ahmed T, Kazmi MH. The possible immunopathogenesis of SARS-Cov-2 infection-A review of immune changes in patients with COVID-19. Indian J Pathol Oncol. 2020;7(4):519–526. doi:10.18231/j.ijpo.2020.105 DOI
Cesta MC, Zippoli M, Marsiglia C, et al. The role of interleukin-8 in lung inflammation and injury: implications for the management of COVID-19 and hyperinflammatory acute respiratory distress syndrome. Front Pharmacol. 2022;12:808797. doi:10.3389/fphar.2021.808797 PubMed DOI PMC
Saathoff JG, Inman AO, Xia XR, Riviere JE, Monteiro-Riviere NA. In vitro toxicity assessment of three hydroxylated fullerenes in human skin cells. Toxicol In Vitro. 2011;25(8):2105–2112. doi:10.1016/j.tiv.2011.09.013 PubMed DOI PMC
Unfried K, Krämer U, Sydlik U, et al. Reduction of neutrophilic lung inflammation by inhalation of the compatible solute ectoine: a randomized trial with elderly individuals. Int J Chronic Obstruct Pulmon Dis. 2016;11:2573–2583. doi:10.2147/COPD.S115061 PubMed DOI PMC
Kovarik JJ, Kämpf AK, Gasser F, et al. Identification of immune activation markers in the early onset of COVID-19 infection. Front Cell Infect Microbiol. 2021;11:651484. doi:10.3389/fcimb.2021.651484 PubMed DOI PMC
Gallo O, Locatello LG, Mazzoni A, Novelli L, Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2021;14(2):305–316. doi:10.1038/s41385-020-00359-2 PubMed DOI PMC
Jacobsen NR, Møller P, Jensen KA, et al. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol. 2009;6:1–17. doi:10.1186/1743-8977-6-2 PubMed DOI PMC
Radaeva OA, Simbirtsev AS, Selezneva NM, Iskandyarova MS. Serum macrophage colony-stimulating factor levels in patients with essential hypertension after SARS-CoV-2 infection. Russ J Immunol. 2020;23(4):429–436. doi:10.46235/1028-7221-430-SMC DOI
Takeuchi F, Sugano A, Yoneshige A, et al. Potential contribution of cell adhesion molecule 1 to the binding of SARS-CoV-2 spike protein to mouse nasal mucosa. Cells Tissues Organs. 2023;213(4):326–337. doi:10.1159/000534892 PubMed DOI PMC
Wójcik B, Sawosz E, Szczepaniak J, et al. Effects of metallic and carbon-based nanomaterials on human pancreatic cancer cell lines AsPC-1 and BxPC-3. Int J Mol Sci. 2021;22(22):12100. doi:10.3390/ijms222212100 PubMed DOI PMC
Gelderman MP, Simakova O, Clogston JD, et al. Adverse effects of fullerenes on endothelial cells: fullerenol C60(OH)24 induced tissue factor and ICAM-1 membrane expression and apoptosis in vitro. Int J Nanomed. 2008;3(1):59–68. doi:10.1182/blood.V108.11.1801.1801 PubMed DOI PMC
Lee CW, Chi MC, Peng KT, et al. Water-soluble fullerenol C60(OH)36 toward effective anti-air pollution induced by urban particulate matter in HaCaT cell. Int J Mol Sci. 2019;20(17):4259. doi:10.3390/ijms20174259 PubMed DOI PMC
Abdel-Aziz H, Wadie W, Abdallah DM, Lentzen G, Khayyal MT. Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis. Phytomedicine. 2013;20(7):585–591. doi:10.1016/j.phymed.2013.01.009 PubMed DOI