ACE2
Dotaz
Zobrazit nápovědu
ACE2 was observed as the cell surface receptor of the SARS-CoV-2 virus. Interestingly, we also found ACE2 positivity inside the cell nucleus. The ACE2 levels changed during cell differentiation and aging and varied in distinct cell types. We observed ACE2 depletion in the aortas of aging female mice, similarly, the aging caused ACE2 decrease in the kidneys. Compared with that in the heart, brain and kidneys, the ACE2 level was the lowest in the mouse lungs. In mice exposed to nicotine, ACE2 was not changed in olfactory bulbs but in the lungs, ACE2 was upregulated in females and downregulated in males. These observations indicate the distinct gender-dependent properties of ACE2. Differentiation into enterocytes, and cardiomyocytes, caused ACE2 depletion. The cardiomyogenesis was accompanied by renin upregulation, delayed in HDAC1-depleted cells. In contrast, vitamin D2 decreased the renin level while ACE2 was upregulated. Together, the ACE2 level is high in non-differentiated cells. This protein is more abundant in the tissues of mouse embryos and young mice in comparison with older animals. Mostly, downregulation of ACE2 is accompanied by renin upregulation. Thus, the pathophysiology of COVID-19 disease should be further studied not only by considering the ACE2 level but also the whole renin-angiotensin system.
- MeSH
- angiotensin-konvertující enzym 2 metabolismus MeSH
- buněčná diferenciace fyziologie MeSH
- buňky A549 MeSH
- buňky HT-29 MeSH
- COVID-19 epidemiologie patologie virologie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- myši MeSH
- pandemie MeSH
- regulace genové exprese fyziologie MeSH
- renin-angiotensin systém fyziologie MeSH
- renin metabolismus MeSH
- SARS-CoV-2 patogenita MeSH
- sexuální faktory MeSH
- stárnutí fyziologie MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The renin angiotensin system (RAS) regulates fluid balance, blood pressure and maintains vascular tone. The potent vasoconstrictor angiotensin II (Ang II) produced by angiotensin-converting enzyme (ACE) comprises the classical RAS. The non-classical RAS involves the conversion of Ang II via ACE2 into the vasodilator Ang (1-7) to counterbalance the effects of Ang II. Furthermore, ACE2 converts AngA into another vasodilator named alamandine. The over activation of the classical RAS (increased vasoconstriction) and depletion of the non-classical RAS (decreased vasodilation) results in vascular dysfunction. Vascular dysfunction is the leading cause of atherosclerosis and cardiovascular disease (CVD). Additionally, local RAS is expressed in various tissues and regulates cellular functions. RAS dysregulation is involved in other several diseases such as inflammation, renal dysfunction and even cancer growth. An approach in restoring vascular dysfunction and other pathological diseases is to either increase the activity of ACE2 or reduce the effect of the classical RAS by counterbalancing Ang II effects. The antitrypanosomal agent, diminazene aceturate (DIZE), is one approach in activating ACE2. DIZE has been shown to exert beneficial effects in CVD experimental models of hypertension, myocardial infarction, type 1 diabetes and atherosclerosis. Thus, this review focuses on DIZE and its effect in several tissues such as blood vessels, cardiac, renal, immune and cancer cells.
- MeSH
- aktivace enzymů MeSH
- aktivátory enzymů škodlivé účinky terapeutické užití MeSH
- angiotensin-konvertující enzym 2 metabolismus MeSH
- diminazen škodlivé účinky analogy a deriváty terapeutické užití MeSH
- kardiovaskulární nemoci farmakoterapie enzymologie patofyziologie MeSH
- lidé MeSH
- nádory farmakoterapie enzymologie patofyziologie MeSH
- renin-angiotensin systém účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), accountable for causing the coronavirus diseases 2019 (COVID-19), is already declared as a pandemic disease globally. Like previously reported SARS-CoV strain, the novel SARS-CoV-2 also initiates the viral pathogenesis via docking viral spike-protein with the membranal angiotensin-converting enzyme 2 (ACE2) - a receptor on variety of cells in the human body. Therefore, COVID-19 is broadly characterized as a disease that targets multiple organs, particularly causing acute complications via organ-specific pathogenesis accompanied by destruction of ACE2+ cells, including alveolus, cardiac microvasculature, endothelium, and glomerulus. Under such circumstances, the high expression of ACE2 in predisposing individuals associated with anomalous production of the renin-angiotensin system (RAS) may promote enhanced viral load in COVID-19, which comparatively triggers excessive apoptosis. Furthermore, multi-organ injuries were found linked to altered ACE2 expression and inequality between the ACE2/angiotensin-(1-7)/mitochondrial Ang system (MAS) and renin-angiotensin-system (RAS) in COVID-19 patients. However, the exact pathogenesis of multi-organ damage in COVID-19 is still obscure, but several perspectives have been postulated, involving altered ACE2 expression linked with direct/indirect damages by the virus-induced immune responses, such as cytokinin storm. Thus, insights into the invasion of a virus with respect to ACE2 expression site can be helpful to simulate or understand the possible complications in the targeted organ during viral infection. Hence, this review summarizes the multiple organs invasion by SARS CoV-2 linked with ACE2 expression and their consequences, which can be helpful in the management of the COVID-19 pathogenesis under life-threatening conditions.
Angiotensin-converting enzyme 2 (ACE2) was identified as a molecule that mediates the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several membrane molecules of the host cell must cooperate in this process. While ACE2 serves in a membrane receptor-mediating interaction with the surface spike (S) glycoprotein of SARS-CoV-2 located on the virus envelope, enzyme A disintegrin and metalloproteinase 17 (ADAM17) regulates ACE2 availability on the membrane and transmembrane protease serine 2 (TMPRSS2) facilitates virus-cell membrane fusion. Interestingly, ACE2, ADAM17 and TMPRSS2 show a daily rhythm of expression in at least some mammalian tissue. The circadian system can also modulate COVID-19 progression via circadian control of the immune system (direct, as well as melatonin-mediated) and blood coagulation. Virus/ACE2 interaction causes ACE2 internalization into the cell, which is associated with suppressed activity of ACE2. As a major role of ACE2 is to form vasodilatory angiotensin 1-7 from angiotensin II (Ang II), suppressed ACE2 levels in the lung can contribute to secondary COVID-19 complications caused by up-regulated, pro-inflammatory vasoconstrictor Ang II. This is supported by the positive association of hypertension and negative COVID-19 prognosis although this relationship is dependent on numerous comorbidities. Hypertension treatment with inhibitors of renin-angiotensin system does not negatively influence prognosis of COVID-19 patients. It seems that tissue susceptibility to SARS-CoV-2 shows negative correlation to ACE2 expression. However, in lungs of infected patient, a high ACE2 expression is associated with better outcome, compared to low ACE2 expression. Manipulation of soluble ACE2 levels is a promising COVID-19 therapeutic strategy.
- MeSH
- angiotensin-konvertující enzym 2 metabolismus MeSH
- časové faktory MeSH
- cirkadiánní rytmus * MeSH
- COVID-19 metabolismus patofyziologie terapie virologie MeSH
- hypertenze metabolismus patofyziologie MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- periodicita MeSH
- prognóza MeSH
- protein ADAM17 metabolismus MeSH
- renin-angiotensin systém * MeSH
- SARS-CoV-2 metabolismus patogenita MeSH
- serinové endopeptidasy metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Angiotensin-converting enzyme 2 (ACE2), one of the key enzymes of the renin-angiotensin system (RAS), plays an important role in SARS-CoV-2 infection by functioning as a virus receptor. Angiotensin peptides Ang I and Ang II, the substrates of ACE2, can modulate the binding of SARS-CoV-2 Spike protein to the ACE2 receptor. In the present work, we found that co incubation of HEK-ACE2 and Vero E6 cells with the SARS-CoV-2 Spike pseudovirus (PVP) resulted in stimulation of the virus entry at low and high micromolar concentrations of Ang I and Ang II, respectively. The potency of Ang I and Ang II stimulation of virus entry corresponds to their binding affinity to ACE2 catalytic pocket with 10 times higher efficiency of Ang II. The Ang II induced mild increase of PVP infectivity at 20 microM; while at 100 microM the increase (129.74+/-3.99 %) was highly significant (p<0.001). Since the angiotensin peptides act in HEK ACE2 cells without the involvement of angiotensin type I receptors, we hypothesize that there is a steric interaction between the catalytic pocket of the ACE2 enzyme and the SARS-CoV-2 S1 binding domain. Oversaturation of the ACE2 with their angiotensin substrate might result in increased binding and entry of the SARS-CoV-2. In addition, the analysis of angiotensin peptides metabolism showed decreased ACE2 and increased ACE activity upon SARS-CoV-2 action. These effects should be taken into consideration in COVID-19 patients suffering from comorbidities such as the over-activated renin-angiotensin system as a mechanism potentially influencing the SARS-CoV-2 invasion into recipient cells.
- MeSH
- angiotensin I metabolismus farmakologie MeSH
- angiotensin II metabolismus MeSH
- angiotensin konvertující enzym metabolismus MeSH
- angiotensin-konvertující enzym 2 metabolismus MeSH
- COVID-19 * MeSH
- glykoprotein S, koronavirus * MeSH
- inhibitory ACE MeSH
- lidé MeSH
- renin-angiotensin systém * MeSH
- SARS-CoV-2 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. METHODS: We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. RESULTS: ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. CONCLUSIONS: Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.
- MeSH
- angiotensin-konvertující enzym 2 genetika imunologie MeSH
- basigin genetika imunologie MeSH
- bronchiální astma epidemiologie genetika imunologie MeSH
- chronická nemoc epidemiologie MeSH
- chronická obstrukční plicní nemoc epidemiologie genetika imunologie MeSH
- COVID-19 epidemiologie genetika imunologie MeSH
- dipeptidylpeptidasa 4 genetika imunologie MeSH
- dítě MeSH
- dospělí MeSH
- exprese genu genetika MeSH
- hypertenze epidemiologie genetika imunologie MeSH
- kojenec MeSH
- komorbidita MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- obezita epidemiologie genetika imunologie MeSH
- předškolní dítě MeSH
- přirozená imunita imunologie MeSH
- rizikové faktory MeSH
- SARS-CoV-2 genetika imunologie MeSH
- senioři MeSH
- věkové faktory MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIM: The objective of this research was to determine whether invasively measured central pulse pressure (PP) in patients indicated for coronarography is associated with two common polymorphisms in the ACE2 region (rs4646156 and rs4646174). METHODS: A total of 307 patients were enrolled in the study. The genotyping of both SNPs from peripheral blood samples was carried out using 5'exonuclease (Taqman®) chemistry on the ABI Prism® 7000 system (Applied Biosystems, Foster City, CA, USA). RESULTS: In both polymorphisms, the associations with central PP were found to be highly significant when all five possible genotypes in the population had been compared (p = 0.0001). In men, there was a higher incidence of previous myocardial infarction in G0 genotype carriers of rs54646174 (OR ratio = 7; p = 0.005). The AA genotype of rs4646156 had a 7.81× higher risk of severe angina pectoris in women (OR = 7.81, p = 0.05). A significant difference in allelic frequency of ACE2rs4646174 was found between women with and without significant stenoses of the circumflex branch of the left coronary artery. CONCLUSION: More research into the role of ACE2 genetic variability in PP regulations is necessary for more detailed physiological and pathophysiological comprehension of PP regulation.
- MeSH
- angiotensin konvertující enzym genetika MeSH
- demografie MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kardiovaskulární nemoci enzymologie genetika patofyziologie radiografie MeSH
- koronární angiografie * MeSH
- krevní tlak * MeSH
- lidé středního věku MeSH
- lidé MeSH
- multivariační analýza MeSH
- pulz MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs.
- MeSH
- angiotensin konvertující enzym metabolismus MeSH
- hypertenze komplikace farmakoterapie genetika prevence a kontrola MeSH
- hypertrofie levé komory srdeční komplikace farmakoterapie genetika prevence a kontrola MeSH
- ledviny účinky léků enzymologie MeSH
- losartan aplikace a dávkování farmakologie terapeutické užití MeSH
- messenger RNA genetika metabolismus MeSH
- myokard enzymologie MeSH
- novorozená zvířata MeSH
- oxid dusnatý metabolismus MeSH
- potkani inbrední SHR MeSH
- protoonkogenní proteiny metabolismus MeSH
- receptory spřažené s G-proteiny metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- renin-angiotensin systém účinky léků genetika MeSH
- signální transdukce účinky léků MeSH
- srdeční komory účinky léků metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.
- MeSH
- akční potenciály fyziologie MeSH
- angiotensin-konvertující enzym 2 * MeSH
- mutace genetika MeSH
- myši MeSH
- neurony fyziologie MeSH
- rodopsin * genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Infekce virem SARS-CoV-2 způsobila celosvětově nevídanou zdravotní krizi. Infekce může mít závažný dopad prakticky na všechny orgánové systémy, gastrointestinální trakt a játra nevyjímaje. Virus se velmi snadno dokáže množit v enterocytech a cholangiocytech. Navzdory přítomnosti menšího množství receptorů angiotenzin konvertujícího enzymu 2 (angiotensin-converting enzyme 2, ACE2) v hepatocytech však není replikace viru v jaterním parenchymu bezpečně prokázána. Na jaterní postižení mají vliv systémová imunitní reakce, hepatotoxická medikace, ischemie s tvorbou mikrotrombů a preexistující chronické jaterní onemocnění, zejména dekompenzovaná cirhóza jater, při které mají pacienti s covidem-19 velmi vysokou mortalitu. Následky pandemie mají ale v hepatologii zásadní dopad i na omezení screeningu hepatocelulárního karcinomu, vyhledávání pacientů s chronickou hepatitidou C, nárůst alkoholismu a zvýšení incidence nealkoholické tukové choroby jater, jejichž následky teprve v budoucnu pocítíme.
SARS-CoV-2 infection has caused an unprecedented health crisis worldwide. The infection can affect and damage nearly every organ system in the body, including gastrointestinal tract and the liver. The virus can replicate in the cholangiocytes and enterocytes. Despite of the presence of small amount of angiotensin-converting enzyme 2 (ACE2) receptors on the hepatocyte surface, its replication in the liver has not certainly been proved. The liver injury is caused by systemic immune reaction, hepatotoxicity of the drugs, ischemia with microthrombi in the liver vessels and pre-existing liver disease. Especially decompensated liver cirrhosis is associated with high morbidity and mortality. Nevertheless, the pandemic has even further consequences, such as postponement of the screening of the hepatocellular carcinoma, searching for patients with chronic hepatitis C, growth of alcohol consumption as well as higher incidence of non-alcoholic fatty liver disease. The overall impact of the pandemic will be therefore fully revealed in the future.